Nama : Muhammad Hafidlul Qolbi

NIM : 220605110063

Kelas : C

Mata Kuliah : Kalkulus

Dosen Pengampuh : Prof. Dr. Suhartono, M.Kom

Jurusan : Teknik Informatika

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Seringkali, Anda memiliki ide tentang bentuk fungsi untuk sebuah model dan Anda perlu memilih parameter yang akan membuat fungsi model cocok untuk observasi. Proses pemilihan parameter untuk mencocokkan pengamatan disebut model fitting.

Sebagai ilustrasi, data dalam file “utilities.csv” mencatat suhu rata-rata setiap bulan (dalam derajat F) serta penggunaan gas alam bulanan (dalam kaki kubik, ccf). Ada, seperti yang Anda duga, hubungan yang kuat antara keduanya.

Banyak jenis fungsi yang berbeda dapat digunakan untuk mewakili data ini. Salah satu yang paling sederhana dan paling sering digunakan dalam pemodelan adalah fungsi garis lurus . Dalam fungsi , variabel singkatan dari input, sedangkan A dan B adalah parameter. Penting untuk diingat apa nama input dan output saat menyesuaikan model dengan data – Anda perlu mengatur agar namanya cocok dengan data yang sesuai.

Contoh Soal:

library(MASS)
lm.fit <- lm(medv~lstat, data=Boston)
anova(lm.fit)
## Analysis of Variance Table
## 
## Response: medv
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## lstat       1  23244 23243.9  601.62 < 2.2e-16 ***
## Residuals 504  19472    38.6                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(lm.fit)
## 
## Call:
## lm(formula = medv ~ lstat, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.168  -3.990  -1.318   2.034  24.500 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 34.55384    0.56263   61.41   <2e-16 ***
## lstat       -0.95005    0.03873  -24.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.216 on 504 degrees of freedom
## Multiple R-squared:  0.5441, Adjusted R-squared:  0.5432 
## F-statistic: 601.6 on 1 and 504 DF,  p-value: < 2.2e-16

Sumber Referensi:

https://bookdown.org/moh_rosidi2610/Metode_Numerik/datamod.html

https://dtkaplan.github.io/RforCalculus/fitting-functions-to-data.html