## eigenvalue percentage of variance cumulative percentage of variance
## comp 1 9.872375e+00 3.404267e+01 34.04267
## comp 2 4.245656e+00 1.464019e+01 48.68287
## comp 3 3.552780e+00 1.225096e+01 60.93383
## comp 4 3.024566e+00 1.042954e+01 71.36337
## comp 5 2.199136e+00 7.583229e+00 78.94660
## comp 6 1.570087e+00 5.414095e+00 84.36069
## comp 7 9.453714e-01 3.259901e+00 87.62059
## comp 8 7.519478e-01 2.592923e+00 90.21352
## comp 9 5.021676e-01 1.731612e+00 91.94513
## comp 10 3.707297e-01 1.278378e+00 93.22351
## comp 11 3.209538e-01 1.106737e+00 94.33025
## comp 12 3.134460e-01 1.080848e+00 95.41109
## comp 13 2.419820e-01 8.344208e-01 96.24551
## comp 14 1.904572e-01 6.567489e-01 96.90226
## comp 15 1.400744e-01 4.830152e-01 97.38528
## comp 16 1.295375e-01 4.466811e-01 97.83196
## comp 17 1.231099e-01 4.245169e-01 98.25648
## comp 18 8.939553e-02 3.082604e-01 98.56474
## comp 19 8.502571e-02 2.931921e-01 98.85793
## comp 20 7.839598e-02 2.703309e-01 99.12826
## comp 21 5.608581e-02 1.933993e-01 99.32166
## comp 22 4.998430e-02 1.723597e-01 99.49402
## comp 23 4.504667e-02 1.553334e-01 99.64935
## comp 24 3.617093e-02 1.247273e-01 99.77408
## comp 25 3.148988e-02 1.085858e-01 99.88267
## comp 26 2.510756e-02 8.657778e-02 99.96924
## comp 27 4.597449e-03 1.585327e-02 99.98510
## comp 28 4.322041e-03 1.490359e-02 100.00000
## comp 29 1.946983e-30 6.713734e-30 100.00000
dat_tx_dim%>%
dplyr::select(dim1,dim2,dim3,dim4,dim5,dim6) %>%
single_imputation() %>%
estimate_profiles(1:6,
variances = c("equal", "varying"),
covariances = c("zero", "varying"),
package = c( "Mclust","MplusAutomation")
) %>%
compare_solutions(statistics = c("AIC", "BIC"))
## Warning in (function (data, modelName = NULL, nboot = 999, level = 0.05, : some
## model(s) could not be fitted!
## Warning: Mclust could not estimate model 6 with 6 classes.
## Warning:
## One or more analyses resulted in warnings! Examine these analyses carefully: model_6_class_6
## Warning:
## One or more analyses resulted in warnings! Examine these analyses carefully: model_6_class_6
## Compare tidyLPA solutions:
##
## Model Classes AIC BIC Warnings
## 1 1 26984.51 27044.61
## 1 2 26942.05 27037.21
## 1 3 26456.96 26587.18
## 1 4 25851.59 26016.87
## 1 5 25800.97 26001.31
## 1 6 25314.75 25550.15
## 6 1 27014.51 27149.74
## 6 2 24248.01 24523.48
## 6 3 22766.05 23181.75
## 6 4 22152.89 22708.83
## 6 5 21718.33 22414.52
## 6 6 Warning
##
## Best model according to AIC is Model 6 with 5 classes.
## Best model according to BIC is Model 6 with 5 classes.
##
## An analytic hierarchy process, based on the fit indices AIC, AWE, BIC, CLC, and KIC (Akogul & Erisoglu, 2017), suggests the best solution is Model 6 with 5 classes.
##
## 1 2 3 4 5
## 356 101 133 183 333
| V1 | V2 | V3 | V4 | V5 | |
|---|---|---|---|---|---|
| class | 1.000 | 2.000 | 3.000 | 4.000 | 5.000 |
| y00_04 | 259.550 | 120.840 | 371.320 | 1022.790 | 176.680 |
| y05_09 | 330.350 | 81.530 | 469.230 | 1316.820 | 155.500 |
| y10_14 | 404.280 | 68.030 | 466.270 | 1445.080 | 118.050 |
| y15_19 | 479.360 | 72.420 | 608.750 | 1660.780 | 141.550 |
| inc | 2.000 | 1.000 | 2.000 | 2.000 | 1.000 |
| pnhw00 | 0.225 | 0.047 | 0.103 | 0.340 | 0.204 |
| pnhw12 | 0.364 | 0.086 | 0.151 | 0.686 | 0.382 |
| pnhw19 | 0.362 | 0.087 | 0.149 | 0.652 | 0.337 |
| pnhb00 | 0.050 | 0.010 | 0.192 | 0.015 | 0.028 |
| pnhb12 | 0.109 | 0.019 | 0.507 | 0.040 | 0.085 |
| pnhb19 | 0.112 | 0.020 | 0.468 | 0.043 | 0.093 |
| phisp00 | 0.111 | 0.249 | 0.058 | 0.050 | 0.107 |
| phisp12 | 0.469 | 0.885 | 0.310 | 0.196 | 0.473 |
| phisp19 | 0.458 | 0.883 | 0.346 | 0.204 | 0.502 |
| mhhinc00 | 69435.730 | 44952.050 | 55647.210 | 122206.850 | 87850.250 |
| mhhinc12 | 61365.650 | 39366.540 | 46719.060 | 113795.560 | 80018.050 |
| mhhinc19 | 69856.540 | 43392.790 | 52155.720 | 128569.620 | 82852.420 |
| pedu00 | 0.282 | 0.060 | 0.146 | 0.552 | 0.284 |
| pedu12 | 0.303 | 0.070 | 0.153 | 0.600 | 0.300 |
| pedu19 | 0.354 | 0.089 | 0.194 | 0.655 | 0.320 |
| pop00 | 8.261 | 8.358 | 7.763 | 8.150 | 8.036 |
| pop12 | 8.266 | 8.304 | 7.573 | 8.362 | 8.488 |
| pop19 | 8.349 | 8.372 | 7.680 | 8.500 | 8.636 |
| dev01 | 0.985 | 0.984 | 0.743 | 0.716 | 0.581 |
| dev11 | 0.989 | 0.987 | 0.784 | 0.752 | 0.659 |
| dev19 | 0.990 | 0.989 | 0.799 | 0.769 | 0.689 |
| la00 | 0.431 | 0.369 | 0.240 | 0.293 | 0.105 |
| la10 | 0.431 | 0.369 | 0.240 | 0.293 | 0.105 |
| la19 | 0.498 | 0.377 | 0.278 | 0.336 | 0.164 |
#mapping the data
tmap_mode("view")
## tmap mode set to interactive viewing
dat_tx_dim_sf %>%
filter( city == "austin") %>%
tm_shape()+
tm_basemap("Esri.WorldStreetMap")+
tm_polygons("class",legend.hist=T,
style = "cat",
palette = "Set2",
alpha = .5,
labels = c("One","Two" ,"Three", "Four","Five"))+
tm_layout(title = "Austin",
legend.outside = T)+
tm_view(view.legend.position = c("right","bottom"))+
tm_scale_bar()
dat_tx_dim_sf %>%
filter( city == "dallas") %>%
tm_shape()+
tm_basemap("Esri.WorldStreetMap")+
tm_polygons("class",legend.hist=T,
style = "cat",
palette = "Set2",
alpha = .5,
labels = c("One","Two" ,"Three", "Four","Five"))+
tm_layout(title = "Dallas",
legend.outside = T)+
tm_view(view.legend.position = c("right","bottom"))+
tm_scale_bar()
dat_tx_dim_sf %>%
filter( city == "san_antonio") %>%
tm_shape()+
tm_basemap("Esri.WorldStreetMap")+
tm_polygons("class",legend.hist=T,
style = "cat",
palette = "Set2",
alpha = .5,
labels = c("One","Two" ,"Three", "Four","Five"))+
tm_layout(title = "San Antonio",
legend.outside = T)+
tm_view(view.legend.position = c("right","bottom"))+
tm_scale_bar()
dat_tx_dim_sf %>%
filter(city == "austin") %>%
ggplot() +
geom_sf()
dat_tx_dim_sf %>%
filter(city == "dallas") %>%
ggplot() +
geom_sf()
### facetwrap
#### SA prob 1
dat_tx_dim_sf %>%
filter(city == "san_antonio") %>%
ggplot() +
geom_sf(aes(fill = prob1))+
facet_wrap(~class,nrow = 2)
#### SA prob 2
dat_tx_dim_sf %>%
filter(city == "san_antonio") %>%
ggplot() +
geom_sf(aes(fill = prob2))+
facet_wrap(~class,nrow = 2)
dat_tx_dim_sf %>%
filter(city == "san_antonio") %>%
ggplot() +
geom_sf(aes(fill = prob3))+
facet_wrap(~class,nrow = 2)
SA prob 4
dat_tx_dim_sf %>%
filter(city == "san_antonio") %>%
ggplot() +
geom_sf(aes(fill = prob4))+
facet_wrap(~class,nrow = 2)
SA prob 5
dat_tx_dim_sf %>%
filter(city == "san_antonio") %>%
ggplot() +
geom_sf(aes(fill = prob5))+
facet_wrap(~class,nrow = 2)