Trigger Analyze
ID, Phone and User

Project of IT Fizo Team

1 Import Library Needed for analyze & viasualization

library(tidyverse)
library(gghighlight)
library(readxl)
library(dplyr)
library(ggplot2)
library(treemapify)
library(ggcorrplot)

2 Import Data

rm(list = ls())
ratio8_12 <- read_excel("Df/ratio8-12.xlsx")
  • Add Columns Ratio_idTriggerLast1d, Ratio_phoneTriggerLast1d, Ratio_userTriggerLast1d and order again by totalAppDay
new_ratio <- ratio8_12 %>%
  mutate(Ratio_idTriggerLast1d = idTriggerDay / totalAppDay) %>%
  mutate(Ratio_phoneTriggerLast1d = phoneTriggerDay / totalAppDay) %>%
  mutate(Ratio_userTriggerLast1d = userTriggerDay / totalAppDay) %>%
  arrange(desc( totalAppDay ))

Optional: Note that the data collect in day 2022-12-8 thoroughly cleaned all the zero(which made dataset bias)

# new_ratio[new_ratio == 0] <-NA
  • A Brief overview of the data set
glimpse(new_ratio)
## Rows: 10,436
## Columns: 38
## $ vnpostusername             <chr> "93.0179", "trilm01", "25.0116", "41.0824",…
## $ idTriggerDay               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ phoneTriggerDay            <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ userTriggerDay             <dbl> 3, 2, 1, 1, 0, 0, 6, 0, 3, 1, 4, 2, 1, 4, 1…
## $ totalAppDay                <dbl> 21, 20, 18, 17, 16, 15, 14, 13, 12, 12, 11,…
## $ totalApp7Day               <dbl> 2, 2, 5, 41, 46, 19, 4, 36, 20, 10, 37, 30,…
## $ totalApp30Day              <dbl> 2, 140, 5, 216, 84, 19, 4, 91, 20, 10, 99, …
## $ idTriggerLast7d            <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0…
## $ phoneTriggerLast7d         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0…
## $ userTriggerLast7d          <dbl> 0, 0, 0, 1, 7, 3, 2, 0, 6, 1, 7, 5, 5, 3, 3…
## $ idTriggerLast30d           <dbl> 0, 1, 0, 3, 0, 0, 0, 1, 0, 0, 4, 0, 0, 0, 0…
## $ phoneTriggerLast30d        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0…
## $ userTriggerLast30d         <dbl> 0, 2, 0, 5, 10, 3, 2, 2, 6, 1, 27, 5, 5, 3,…
## $ idTriggerLast7day          <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0…
## $ phoneTriggerLast7day       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0…
## $ userTriggerLast7day        <dbl> 0, 0, 0, 1, 7, 3, 2, 0, 6, 1, 7, 5, 5, 3, 3…
## $ totalAppLast7Day           <dbl> 2, 2, 5, 41, 46, 19, 4, 36, 20, 10, 37, 30,…
## $ idTriggerLast30day         <dbl> 0, 1, 0, 3, 0, 0, 0, 1, 0, 0, 4, 0, 0, 0, 0…
## $ phoneTriggerLast30day      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0…
## $ userTriggerLast30day       <dbl> 0, 2, 0, 5, 10, 3, 2, 2, 6, 1, 27, 5, 5, 3,…
## $ totalAppLast30Day          <dbl> 2, 140, 5, 216, 84, 19, 4, 91, 20, 10, 99, …
## $ Ratio_idTriggerLast7d      <dbl> 0.00000000, 0.00000000, 0.00000000, 0.00000…
## $ Ratio_phoneTriggerLast7d   <dbl> 0.00000000, 0.00000000, 0.00000000, 0.00000…
## $ Ratio_userTriggerLast7d    <dbl> 0.00000000, 0.00000000, 0.00000000, 0.02439…
## $ Ratio_idTriggerLast30d     <dbl> 0.000000000, 0.007142857, 0.000000000, 0.01…
## $ Ratio_phoneTriggerLast30d  <dbl> 0.000000000, 0.000000000, 0.000000000, 0.00…
## $ Ratio_userTriggerLast30d   <dbl> 0.00000000, 0.01428571, 0.00000000, 0.02314…
## $ Velo_idTriggerLast7day     <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ Velo_phoneTriggerLast7day  <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ Velo_userTriggerLast7day   <dbl> NA, NA, NA, NA, 0, NA, NA, NA, 3, NA, 4, 2,…
## $ Velo_totalAppLast7Day      <dbl> NA, NA, 18.000000, 2.833333, 2.285714, 5.00…
## $ Velo_idTriggerLast30day    <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ Velo_phoneTriggerLast30day <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ Velo_userTriggerLast30day  <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4, …
## $ Velo_totalAppLast30Day     <dbl> NA, 4.000000, NA, 2.428571, 5.333333, 15.00…
## $ Ratio_idTriggerLast1d      <dbl> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0…
## $ Ratio_phoneTriggerLast1d   <dbl> 0.04761905, 0.00000000, 0.00000000, 0.00000…
## $ Ratio_userTriggerLast1d    <dbl> 0.14285714, 0.10000000, 0.05555556, 0.05882…
  • Consider quality of Dataset
sapply(new_ratio, function(x) { x%>% is.na() %>% sum() } )
##             vnpostusername               idTriggerDay 
##                          0                          0 
##            phoneTriggerDay             userTriggerDay 
##                          0                          0 
##                totalAppDay               totalApp7Day 
##                          0                          0 
##              totalApp30Day            idTriggerLast7d 
##                          0                          0 
##         phoneTriggerLast7d          userTriggerLast7d 
##                          0                          0 
##           idTriggerLast30d        phoneTriggerLast30d 
##                          0                          0 
##         userTriggerLast30d          idTriggerLast7day 
##                          0                          0 
##       phoneTriggerLast7day        userTriggerLast7day 
##                          0                          0 
##           totalAppLast7Day         idTriggerLast30day 
##                          0                          0 
##      phoneTriggerLast30day       userTriggerLast30day 
##                          0                          0 
##          totalAppLast30Day      Ratio_idTriggerLast7d 
##                          0                       8049 
##   Ratio_phoneTriggerLast7d    Ratio_userTriggerLast7d 
##                       8049                       8049 
##     Ratio_idTriggerLast30d  Ratio_phoneTriggerLast30d 
##                       6627                       6627 
##   Ratio_userTriggerLast30d     Velo_idTriggerLast7day 
##                       6627                      10433 
##  Velo_phoneTriggerLast7day   Velo_userTriggerLast7day 
##                      10435                      10346 
##      Velo_totalAppLast7Day    Velo_idTriggerLast30day 
##                       9388                      10435 
## Velo_phoneTriggerLast30day  Velo_userTriggerLast30day 
##                      10436                      10404 
##     Velo_totalAppLast30Day      Ratio_idTriggerLast1d 
##                       9530                       9524 
##   Ratio_phoneTriggerLast1d    Ratio_userTriggerLast1d 
##                       9524                       9524

The NA value almost come from calculation method so it acceptable for dropping observation with NA value:

# new_ratio <- new_ratio %>% na.omit()
  • Summarize all statistic’s columns
summary(new_ratio)
##  vnpostusername      idTriggerDay      phoneTriggerDay    userTriggerDay   
##  Length:10436       Min.   :0.000000   Min.   :0.000000   Min.   :0.00000  
##  Class :character   1st Qu.:0.000000   1st Qu.:0.000000   1st Qu.:0.00000  
##  Mode  :character   Median :0.000000   Median :0.000000   Median :0.00000  
##                     Mean   :0.001725   Mean   :0.001246   Mean   :0.02223  
##                     3rd Qu.:0.000000   3rd Qu.:0.000000   3rd Qu.:0.00000  
##                     Max.   :3.000000   Max.   :1.000000   Max.   :6.00000  
##                                                                            
##   totalAppDay       totalApp7Day    totalApp30Day     idTriggerLast7d  
##  Min.   : 0.0000   Min.   :  0.00   Min.   :  0.000   Min.   :0.00000  
##  1st Qu.: 0.0000   1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:0.00000  
##  Median : 0.0000   Median :  0.00   Median :  0.000   Median :0.00000  
##  Mean   : 0.2002   Mean   :  1.24   Mean   :  4.686   Mean   :0.01111  
##  3rd Qu.: 0.0000   3rd Qu.:  0.00   3rd Qu.:  3.000   3rd Qu.:0.00000  
##  Max.   :21.0000   Max.   :110.00   Max.   :485.000   Max.   :8.00000  
##                                                                        
##  phoneTriggerLast7d userTriggerLast7d idTriggerLast30d   phoneTriggerLast30d
##  Min.   :0.000000   Min.   : 0.0000   Min.   : 0.00000   Min.   :0.00000    
##  1st Qu.:0.000000   1st Qu.: 0.0000   1st Qu.: 0.00000   1st Qu.:0.00000    
##  Median :0.000000   Median : 0.0000   Median : 0.00000   Median :0.00000    
##  Mean   :0.005558   Mean   : 0.1382   Mean   : 0.04647   Mean   :0.02156    
##  3rd Qu.:0.000000   3rd Qu.: 0.0000   3rd Qu.: 0.00000   3rd Qu.:0.00000    
##  Max.   :4.000000   Max.   :27.0000   Max.   :16.00000   Max.   :9.00000    
##                                                                             
##  userTriggerLast30d idTriggerLast7day phoneTriggerLast7day userTriggerLast7day
##  Min.   : 0.0000    Min.   :0.00000   Min.   :0.000000     Min.   : 0.0000    
##  1st Qu.: 0.0000    1st Qu.:0.00000   1st Qu.:0.000000     1st Qu.: 0.0000    
##  Median : 0.0000    Median :0.00000   Median :0.000000     Median : 0.0000    
##  Mean   : 0.4704    Mean   :0.01111   Mean   :0.005558     Mean   : 0.1382    
##  3rd Qu.: 0.0000    3rd Qu.:0.00000   3rd Qu.:0.000000     3rd Qu.: 0.0000    
##  Max.   :48.0000    Max.   :8.00000   Max.   :4.000000     Max.   :27.0000    
##                                                                               
##  totalAppLast7Day idTriggerLast30day phoneTriggerLast30day userTriggerLast30day
##  Min.   :  0.00   Min.   : 0.00000   Min.   :0.00000       Min.   : 0.0000     
##  1st Qu.:  0.00   1st Qu.: 0.00000   1st Qu.:0.00000       1st Qu.: 0.0000     
##  Median :  0.00   Median : 0.00000   Median :0.00000       Median : 0.0000     
##  Mean   :  1.24   Mean   : 0.04647   Mean   :0.02156       Mean   : 0.4704     
##  3rd Qu.:  0.00   3rd Qu.: 0.00000   3rd Qu.:0.00000       3rd Qu.: 0.0000     
##  Max.   :110.00   Max.   :16.00000   Max.   :9.00000       Max.   :48.0000     
##                                                                                
##  totalAppLast30Day Ratio_idTriggerLast7d Ratio_phoneTriggerLast7d
##  Min.   :  0.000   Min.   :0.000         Min.   :0.000           
##  1st Qu.:  0.000   1st Qu.:0.000         1st Qu.:0.000           
##  Median :  0.000   Median :0.000         Median :0.000           
##  Mean   :  4.686   Mean   :0.008         Mean   :0.006           
##  3rd Qu.:  3.000   3rd Qu.:0.000         3rd Qu.:0.000           
##  Max.   :485.000   Max.   :1.000         Max.   :1.000           
##                    NA's   :8049          NA's   :8049            
##  Ratio_userTriggerLast7d Ratio_idTriggerLast30d Ratio_phoneTriggerLast30d
##  Min.   :0.000           Min.   :0.000          Min.   :0.000            
##  1st Qu.:0.000           1st Qu.:0.000          1st Qu.:0.000            
##  Median :0.000           Median :0.000          Median :0.000            
##  Mean   :0.103           Mean   :0.009          Mean   :0.006            
##  3rd Qu.:0.100           3rd Qu.:0.000          3rd Qu.:0.000            
##  Max.   :1.000           Max.   :1.000          Max.   :1.000            
##  NA's   :8049            NA's   :6627           NA's   :6627             
##  Ratio_userTriggerLast30d Velo_idTriggerLast7day Velo_phoneTriggerLast7day
##  Min.   :0.000            Min.   :0              Min.   :0                
##  1st Qu.:0.000            1st Qu.:0              1st Qu.:0                
##  Median :0.000            Median :0              Median :0                
##  Mean   :0.100            Mean   :0              Mean   :0                
##  3rd Qu.:0.133            3rd Qu.:0              3rd Qu.:0                
##  Max.   :1.000            Max.   :0              Max.   :0                
##  NA's   :6627             NA's   :10433          NA's   :10435            
##  Velo_userTriggerLast7day Velo_totalAppLast7Day Velo_idTriggerLast30day
##  Min.   :0.000            Min.   : 0.000        Min.   :0              
##  1st Qu.:0.000            1st Qu.: 0.000        1st Qu.:0              
##  Median :0.000            Median : 0.000        Median :0              
##  Mean   :0.511            Mean   : 0.815        Mean   :0              
##  3rd Qu.:1.000            3rd Qu.: 1.000        3rd Qu.:0              
##  Max.   :4.000            Max.   :18.000        Max.   :0              
##  NA's   :10346            NA's   :9388          NA's   :10435          
##  Velo_phoneTriggerLast30day Velo_userTriggerLast30day Velo_totalAppLast30Day
##  Mode:logical               Min.   :0.000             Min.   : 0.000        
##  NA's:10436                 1st Qu.:0.000             1st Qu.: 0.000        
##                             Median :0.000             Median : 0.000        
##                             Mean   :0.656             Mean   : 0.925        
##                             3rd Qu.:1.000             3rd Qu.: 1.000        
##                             Max.   :4.000             Max.   :15.000        
##                             NA's   :10404             NA's   :9530          
##  Ratio_idTriggerLast1d Ratio_phoneTriggerLast1d Ratio_userTriggerLast1d
##  Min.   :0.000         Min.   :0.000            Min.   :0.000          
##  1st Qu.:0.000         1st Qu.:0.000            1st Qu.:0.000          
##  Median :0.000         Median :0.000            Median :0.000          
##  Mean   :0.007         Mean   :0.008            Mean   :0.098          
##  3rd Qu.:0.000         3rd Qu.:0.000            3rd Qu.:0.000          
##  Max.   :0.500         Max.   :1.000            Max.   :1.000          
##  NA's   :9524          NA's   :9524             NA's   :9524
  • TotalApp 8-12
sum(new_ratio[, 'totalAppDay'], na.rm = TRUE)
## [1] 2089

3 Visualization

3.1 Daily

ggplot(new_ratio, aes(Ratio_idTriggerLast1d))+
  geom_histogram(bins = 30)

# Not include 0 value
x <- new_ratio%>%
  select(Ratio_idTriggerLast1d) %>%
  filter(Ratio_idTriggerLast1d>0)

ggplot(x, aes(Ratio_idTriggerLast1d))+
  geom_histogram(bins = 30)

summary(x$Ratio_idTriggerLast1d)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.1000  0.2500  0.5000  0.3818  0.5000  0.5000
# create a treemap of marriage officials
plotdata <- x %>%
  count(Ratio_idTriggerLast1d)


# create a treemap with tile labels
ggplot(plotdata, 
       aes(
         fill = Ratio_idTriggerLast1d, 
         color = "pink",  
         area = n, 
           label = Ratio_idTriggerLast1d),
       na.rm = TRUE) +
  geom_treemap(color = "pink") + 
  geom_treemap_text(colour = "white", 
                    place = "centre",
                    size = 20) +
  labs(title = "Ratio_idTriggerLast1d") +
  theme(legend.position = "none")

ggplot(new_ratio, aes(Ratio_phoneTriggerLast1d))+
  geom_histogram(bins = 30)

# Not include 0 value
x <- new_ratio%>%
  select(Ratio_phoneTriggerLast1d) %>%
  filter(Ratio_phoneTriggerLast1d>0)

ggplot(x, aes(Ratio_phoneTriggerLast1d))+
  geom_histogram(bins = 30)

summary(x$Ratio_phoneTriggerLast1d)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.04762 0.33333 0.50000 0.58132 1.00000 1.00000
ggplot(new_ratio, aes(Ratio_userTriggerLast1d))+
  geom_histogram(bins = 30)

# Not include 0 value
x <- new_ratio%>%
  select(Ratio_userTriggerLast1d) %>%
  filter(Ratio_userTriggerLast1d>0)

ggplot(x, aes(Ratio_userTriggerLast1d))+
  geom_histogram(bins = 30)

# create a treemap of marriage officials
plotdata <- x %>%
  count(Ratio_userTriggerLast1d)


# create a treemap with tile labels
ggplot(plotdata, 
       aes(
         fill = Ratio_userTriggerLast1d, 
         color = "pink",  
         area = n, 
           label = Ratio_userTriggerLast1d),
       na.rm = TRUE) +
  geom_treemap(color = "pink") + 
  geom_treemap_text(colour = "white", 
                    place = "centre",
                    size = 20) +
  labs(title = "Ratio_userTriggerLast1d") +
  theme(legend.position = "none")

summary(x$Ratio_userTriggerLast1d)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.05556 0.27500 0.50000 0.57587 1.00000 1.00000

3.2 Weekly

ggplot(new_ratio, aes(Ratio_idTriggerLast7d))+
  geom_histogram(bins = 30)

# Not include 0 value
x <- new_ratio%>%
  select(Ratio_idTriggerLast7d) %>%
  filter(Ratio_idTriggerLast7d>0)

ggplot(x, aes(Ratio_idTriggerLast7d))+
  geom_histogram(bins = 30)

summary(x$Ratio_idTriggerLast7d)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.01282 0.07900 0.15000 0.21909 0.25000 1.00000
ggplot(new_ratio, aes(Ratio_phoneTriggerLast7d))+
  geom_histogram(bins = 30)

# Not include 0 value
x <- new_ratio%>%
  select(Ratio_phoneTriggerLast7d) %>%
  filter(Ratio_phoneTriggerLast7d>0)

ggplot(x, aes(Ratio_phoneTriggerLast7d))+
  geom_histogram(bins = 30)

summary(x$Ratio_phoneTriggerLast7d)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.02564 0.09091 0.16667 0.31024 0.50000 1.00000
ggplot(new_ratio, aes(Ratio_userTriggerLast7d))+
  geom_histogram(bins = 30)

# Not include 0 value
x <- new_ratio%>%
  select(Ratio_userTriggerLast7d) %>%
  filter(Ratio_userTriggerLast7d>0)

ggplot(x, aes(Ratio_userTriggerLast7d))+
  geom_histogram(bins = 30)

summary(x$Ratio_userTriggerLast7d)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.01818 0.16667 0.27273 0.36118 0.50000 1.00000

3.3 Monthly

ggplot(new_ratio, aes(Ratio_idTriggerLast30d))+
  geom_histogram(bins = 30)

# Not include 0 value
x <- new_ratio%>%
  select(Ratio_idTriggerLast30d) %>%
  filter(Ratio_idTriggerLast30d>0)

threshold <- quantile(x$Ratio_idTriggerLast30d, probs=0.05)
ggplot(x, aes(Ratio_idTriggerLast30d))+
  geom_histogram( bins = 30)+ geom_vline(xintercept=threshold)

ggplot(x, aes(Ratio_idTriggerLast30d))+
  geom_density()+ geom_vline(xintercept=threshold, color="red")

summary(x$Ratio_idTriggerLast30d)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.006173 0.031250 0.064173 0.119690 0.142857 1.000000
ggplot(new_ratio, aes(Ratio_phoneTriggerLast30d))+
  geom_histogram(bins = 30)

# Not include 0 value
x <- new_ratio%>%
  select(Ratio_phoneTriggerLast30d) %>%
  filter(Ratio_phoneTriggerLast30d>0)

threshold <- quantile(x$Ratio_phoneTriggerLast30d, probs=0.05)

ggplot(x, aes(x=Ratio_phoneTriggerLast30d)) + geom_density() + geom_vline(xintercept=threshold)

ggplot(x, aes(Ratio_phoneTriggerLast30d))+
  geom_histogram(bins = 30)+ geom_vline(xintercept=threshold, color = "red")

summary(x$Ratio_phoneTriggerLast30d)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00361 0.03391 0.07692 0.14034 0.16905 1.00000
ggplot(new_ratio, aes(Ratio_userTriggerLast30d))+
  geom_histogram(bins = 30)

# Not include 0 value
x <- new_ratio%>%
  select(Ratio_userTriggerLast30d) %>%
  filter(Ratio_userTriggerLast30d>0)

threshold <- quantile(x$Ratio_userTriggerLast30d, probs=0.05)
ggplot(x, aes(Ratio_userTriggerLast30d))+
  geom_histogram( bins = 30)+ geom_vline(xintercept=threshold)

ggplot(x, aes(Ratio_userTriggerLast30d))+
  geom_density()+ geom_vline(xintercept=threshold, color="red")

summary(x$Ratio_userTriggerLast30d)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.008197 0.090909 0.166667 0.247956 0.333333 1.000000
# create a treemap of marriage officials
plotdata <- x %>%
  count(Ratio_userTriggerLast30d)


# create a treemap with tile labels
ggplot(plotdata, 
       aes(
         fill = Ratio_userTriggerLast30d, 
         color = "pink",  
         area = n, 
           label = Ratio_userTriggerLast30d)) +
  geom_treemap(color = "pink") + 
  geom_treemap_text(colour = "white", 
                    place = "centre",
                    size = 25) +
  labs(title = "Ratio_userTriggerLast30d") +
  theme(legend.position = "none")

4 Correlate Observation

x <- new_ratio%>%
  select(idTriggerDay,idTriggerLast7d,idTriggerLast30day,totalAppDay,Velo_idTriggerLast7day)
df <- select_if(x, is.numeric)
r <- cor(df, use="everything")
round(r,2)
##                        idTriggerDay idTriggerLast7d idTriggerLast30day
## idTriggerDay                   1.00            0.00               0.02
## idTriggerLast7d                0.00            1.00               0.58
## idTriggerLast30day             0.02            0.58               1.00
## totalAppDay                    0.14            0.13               0.18
## Velo_idTriggerLast7day           NA              NA                 NA
##                        totalAppDay Velo_idTriggerLast7day
## idTriggerDay                  0.14                     NA
## idTriggerLast7d               0.13                     NA
## idTriggerLast30day            0.18                     NA
## totalAppDay                   1.00                     NA
## Velo_idTriggerLast7day          NA                      1
ggcorrplot(r)

x <- new_ratio%>%
  select(phoneTriggerDay,phoneTriggerLast7d,phoneTriggerLast30day,totalAppDay,Velo_phoneTriggerLast7day)
df <- select_if(x, is.numeric)
r <- cor(df, use="everything")
round(r,2)
##                           phoneTriggerDay phoneTriggerLast7d
## phoneTriggerDay                      1.00               0.00
## phoneTriggerLast7d                   0.00               1.00
## phoneTriggerLast30day                0.02               0.45
## totalAppDay                          0.14               0.06
## Velo_phoneTriggerLast7day              NA                 NA
##                           phoneTriggerLast30day totalAppDay
## phoneTriggerDay                            0.02        0.14
## phoneTriggerLast7d                         0.45        0.06
## phoneTriggerLast30day                      1.00        0.08
## totalAppDay                                0.08        1.00
## Velo_phoneTriggerLast7day                    NA          NA
##                           Velo_phoneTriggerLast7day
## phoneTriggerDay                                  NA
## phoneTriggerLast7d                               NA
## phoneTriggerLast30day                            NA
## totalAppDay                                      NA
## Velo_phoneTriggerLast7day                         1
ggcorrplot(r)

x <- new_ratio%>%
  select(userTriggerDay,userTriggerLast7d,userTriggerLast30day,totalAppDay,Velo_userTriggerLast7day)
df <- select_if(x, is.numeric)
r <- cor(df, use="everything")
round(r,2)
##                          userTriggerDay userTriggerLast7d userTriggerLast30day
## userTriggerDay                     1.00              0.27                 0.27
## userTriggerLast7d                  0.27              1.00                 0.69
## userTriggerLast30day               0.27              0.69                 1.00
## totalAppDay                        0.54              0.31                 0.28
## Velo_userTriggerLast7day             NA                NA                   NA
##                          totalAppDay Velo_userTriggerLast7day
## userTriggerDay                  0.54                       NA
## userTriggerLast7d               0.31                       NA
## userTriggerLast30day            0.28                       NA
## totalAppDay                     1.00                       NA
## Velo_userTriggerLast7day          NA                        1
ggcorrplot(r)