Dari Persamaan ke Nol Fungsi Bentuk umum dari masalah yang biasanya digunakan dalam perhitungan numerik di komputer adalah bahwa persamaan yang akan diselesaikan benar-benar merupakan fungsi yang akan dibalik. Artinya, untuk perhitungan numerik, masalahnya harus dinyatakan seperti ini:
Anda memiliki fungsi . Anda kebetulan mengetahui bentuk fungsi dan nilai keluaran untuk beberapa nilai masukan yang tidak diketahui . Masalah Anda adalah menemukan input yang diberikan fungsi dan nilai output . f(x)fkamuxxfkamu
Salah satu cara untuk menyelesaikan masalah tersebut adalah dengan mencari invers f.
library(mosaicCalc)
## Loading required package: mosaicCore
## Loading required package: Deriv
## Loading required package: Ryacas
##
## Attaching package: 'Ryacas'
## The following object is masked from 'package:stats':
##
## integrate
## The following objects are masked from 'package:base':
##
## %*%, diag, diag<-, lower.tri, upper.tri
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
Jika kita dapat memplot fungsi untuk rentang , kita dapat dengan mudah menemukan nolnya.
g <- makeFun(sin(x^2)*cos(sqrt(x^4 + 3 )-x^2) - x + 1 ~ x)
slice_plot(g(x) ~ x, domain(x = -3:3)) %>%
gf_hline(yintercept = 0, color = "blue")
bisa mendapatkan lebih banyak detail dengan memperbesar sekitar solusi perkiraan: kamux = 1x = 2
slice_plot(g(x) ~ x, domain(x=1:2)) %>%
gf_hline(yintercept = 0, color = "red")
x=1.6
library(mosaic)
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
findZeros(g(x) ~ x, xlim = range(1, 2))
## x
## 1 1.5576
gambaran tentang solusi:
findZeros(g(x) ~ x, xlim = range(-1000, 1000))
## x
## 1 1.5576
4.1.2 Beberapa solusi Fungsi findZeros( )akan mencoba menemukan beberapa solusi jika ada. Misalnya, persamaan memiliki jumlah solusi tak terhingga.
findZeros( sin(x) - 0.35 ~ x, xlim=range(-20,20) )
## x
## 1 -12.2088
## 2 -9.7823
## 3 -5.9256
## 4 -3.4991
## 5 0.3576
## 6 2.7840
## 7 6.6407
## 8 9.0672
## 9 12.9239
## 10 15.3504
4.1.3 Menyiapkan Masalah Seperti namanya, findZeros( )menemukan fungsi nol. Anda dapat mengatur masalah solusi apa pun dalam formulir ini. Misalnya, Anda ingin menyelesaikan untuk , dengan membiarkan parameter.
g <- makeFun(4 + exp(k*t) - 2^(b*t) ~ b, k=0.00035, t=1)
findZeros( g(b) ~ b , xlim=range(-1000, 1000) )
## b
## 1 2.322
findZeros( g(b, t=2) ~ b, xlim=range(-1000,1000) )
## b
## 1 1.1611
4.1.4 Latihan 1. Selesaikan persamaan untuk . {0.0000,0.1328, 0.2098 ,0.3654,0.4217} dosa(karena(x2)−x)−x=0,5x jawab :
findZeros( sin(cos(x^2) - x) -x - 0.5 ~ x, xlim=range(-10,10))
## x
## 1 0.2098
findZeros( 3*exp(-t/5)*sin(pi*t) ~ t, xlim=range(1,10))
## t
## 1 0
## 2 1
## 3 2
## 4 3
## 5 4
## 6 5
## 7 6
## 8 7
## 9 8
## 10 9
Latihan3. Gunakan findZeros()untuk menemukan nol dari masing-masing polinomial ini: 1. 3x2+7x−10 jawab:
findZeros( 3*x^2 + 7*x - 10 ~ x, xlim=range(-100,100))
## x
## 1 -3.3334
## 2 1.0000
findZeros(2*x^3 - 4*x^2 - 3*x - 10 ~ x, xlim=c(-10,10))
## x
## 1 3.0363
7x4-2x3-4x^2-3x-10
findZeros( 7*x^4 -2*x^3 - 4*x^2 - 3*x - 10 ~ x, xlim=c(-10,10))
## x
## 1 -1.0628
## 2 1.41236x5-7x4-2x3-4x2-3x-10
findZeros( 6*x^5-7*x^4 -2*x^3 - 4*x^2 - 3*x - 10 ~ x, xlim=c(-10,10))
## x
## 1 1.8012Sumber :