Loading libraries

# For Problem 1
library(igraph)
## 
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## The following object is masked from 'package:base':
## 
##     union
library(openintro)
## Loading required package: airports
## Loading required package: cherryblossom
## Loading required package: usdata
library(Matrix)

# For Problem 2
library(OpenImageR)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following objects are masked from 'package:openintro':
## 
##     ethanol, lsegments
## 
## Attaching package: 'caret'
## The following object is masked from 'package:openintro':
## 
##     dotPlot
library(nnet)

# For Problem 3
library(MASS)
## 
## Attaching package: 'MASS'
## The following objects are masked from 'package:openintro':
## 
##     housing, mammals
library(matrixcalc)
## 
## Attaching package: 'matrixcalc'
## The following object is masked from 'package:igraph':
## 
##     %s%
library(GGally)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
# For all Problems
library(ggplot2)
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.3      ✔ forcats 0.5.2 
## ✔ purrr   0.3.5      
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::as_data_frame() masks tibble::as_data_frame(), igraph::as_data_frame()
## ✖ purrr::compose()       masks igraph::compose()
## ✖ tidyr::crossing()      masks igraph::crossing()
## ✖ tidyr::expand()        masks Matrix::expand()
## ✖ dplyr::filter()        masks stats::filter()
## ✖ dplyr::groups()        masks igraph::groups()
## ✖ dplyr::lag()           masks stats::lag()
## ✖ purrr::lift()          masks caret::lift()
## ✖ tidyr::pack()          masks Matrix::pack()
## ✖ dplyr::select()        masks MASS::select()
## ✖ purrr::simplify()      masks igraph::simplify()
## ✖ tidyr::unpack()        masks Matrix::unpack()
library(hrbrthemes)
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
##       Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
##       if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
  1. Playing with PageRank You’ll verify for yourself that PageRank works by performing calculations on a small universe of web pages. Let’s use the 6 page universe that we had in the previous discussion For this directed graph, perform the following calculations in R.

• Form the A matrix. Then, introduce decay and form the B matrix as we did in the course notes. (5 Points)

# create matrix

A <- matrix(c(0, (1/2), (1/2), 0, 0, 0, 0, 0, 0, 0, 0, 0, (1/3), (1/3), 0, 0, (1/3), 0, 0, 0, 0, 0, (1/2), (1/2), 0, 0, 0, (1/2), 0, (1/2), 0, 0, 0, 1, 0, 0), nrow = 6, byrow = T)
A
##           [,1]      [,2] [,3] [,4]      [,5] [,6]
## [1,] 0.0000000 0.5000000  0.5  0.0 0.0000000  0.0
## [2,] 0.0000000 0.0000000  0.0  0.0 0.0000000  0.0
## [3,] 0.3333333 0.3333333  0.0  0.0 0.3333333  0.0
## [4,] 0.0000000 0.0000000  0.0  0.0 0.5000000  0.5
## [5,] 0.0000000 0.0000000  0.0  0.5 0.0000000  0.5
## [6,] 0.0000000 0.0000000  0.0  1.0 0.0000000  0.0

#formatC(A, format = “f”, digits = 4)

Being that the second row is filled with 0’s we are replacing the vector of 1/6 since there are 6 webpages and we have an equal probability of landing on any of the pages.

n <- 6 # number of webpages

# creating new row to replace matrix A second row
row2 <- rep(1/6, n)

# Removing second row from matrix A
A_2 <- A[-2,]

# Adding r into the second row and creating matrix A_2
A_2 <- matrix(rbind(A_2[1,], row2, A_2[- (1), ]), 6)
A_2
##           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]
## [1,] 0.0000000 0.5000000 0.5000000 0.0000000 0.0000000 0.0000000
## [2,] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
## [3,] 0.3333333 0.3333333 0.0000000 0.0000000 0.3333333 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 0.5000000
## [5,] 0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 0.5000000
## [6,] 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000

#A_2 <- A + (apply(A, 1, sum) !=1) * 1 / n #formatC(A_2, format = “f”, digits = 4)

# decay form B matrix
decay <- 0.85 
n <- nrow(A_2)

B <- decay * A_2 + ((1 - decay) / n)
formatC(B, format = "f", digits = 4)
##      [,1]     [,2]     [,3]     [,4]     [,5]     [,6]    
## [1,] "0.0250" "0.4500" "0.4500" "0.0250" "0.0250" "0.0250"
## [2,] "0.1667" "0.1667" "0.1667" "0.1667" "0.1667" "0.1667"
## [3,] "0.3083" "0.3083" "0.0250" "0.0250" "0.3083" "0.0250"
## [4,] "0.0250" "0.0250" "0.0250" "0.0250" "0.4500" "0.4500"
## [5,] "0.0250" "0.0250" "0.0250" "0.4500" "0.0250" "0.4500"
## [6,] "0.0250" "0.0250" "0.0250" "0.8750" "0.0250" "0.0250"

• Start with a uniform rank vector r and perform power iterations on B till convergence. That is, compute the solution r = B^n × r. Attempt this for a sufficiently large n so that r actually converges. (5 Points)

# We will take the second row of 0.167 to perform the iterations on B when r = B^n * r

# We'll do a couple of iterations increasing by 10 starting at 0
n <- 0
r_0 <- matrix.power(t(B), n) %*%  row2
r_0
##           [,1]
## [1,] 0.1666667
## [2,] 0.1666667
## [3,] 0.1666667
## [4,] 0.1666667
## [5,] 0.1666667
## [6,] 0.1666667
n <- 10
r_10 <- matrix.power(t(B), n) %*%  row2
r_10
##            [,1]
## [1,] 0.05205661
## [2,] 0.07428990
## [3,] 0.05782138
## [4,] 0.34797267
## [5,] 0.19975859
## [6,] 0.26810085
n <- 20
r_20 <- matrix.power(t(B), n) %*% row2
r_20
##            [,1]
## [1,] 0.05170616
## [2,] 0.07368173
## [3,] 0.05741406
## [4,] 0.34870083
## [5,] 0.19990313
## [6,] 0.26859408
n <- 30
r_30 <- matrix.power(t(B), n) %*% row2
r_30
##            [,1]
## [1,] 0.05170475
## [2,] 0.07367927
## [3,] 0.05741242
## [4,] 0.34870367
## [5,] 0.19990381
## [6,] 0.26859607
n <- 40
r_40 <- matrix.power(t(B), n) %*% row2
r_40
##            [,1]
## [1,] 0.05170475
## [2,] 0.07367926
## [3,] 0.05741241
## [4,] 0.34870369
## [5,] 0.19990381
## [6,] 0.26859608
n <- 50
r_50 <- matrix.power(t(B), n) %*% row2
r_50
##            [,1]
## [1,] 0.05170475
## [2,] 0.07367926
## [3,] 0.05741241
## [4,] 0.34870369
## [5,] 0.19990381
## [6,] 0.26859608
# By iteration 30 we found the convergence
iter_converg <- matrix.power(t(B), 30) %*% row2

• Compute the eigen-decomposition of B and verify that you indeed get an eigenvalue of 1 as the largest eigenvalue and that its corresponding eigenvector is the same vector that you obtained in the previous power iteration method. Further, this eigenvector has all positive entries and it sums to 1.(10 points)

eigen_decomp <- eigen(B)
eigen_decomp
## eigen() decomposition
## $values
## [1]  1.00000000  0.57619235 -0.42500001 -0.42499999 -0.34991524 -0.08461044
## 
## $vectors
##            [,1]       [,2]          [,3]          [,4]         [,5]
## [1,] -0.4082483 -0.7278031 -5.345224e-01  5.345225e-01 -0.795670150
## [2,] -0.4082483 -0.3721164 -5.216180e-09 -5.216180e-09  0.059710287
## [3,] -0.4082483 -0.5389259  5.345225e-01 -5.345225e-01  0.602762996
## [4,] -0.4082483  0.1174605 -2.672613e-01  2.672612e-01  0.002611877
## [5,] -0.4082483  0.1174605 -2.672613e-01  2.672612e-01  0.002611877
## [6,] -0.4082483  0.1174605  5.345225e-01 -5.345224e-01  0.002611877
##              [,6]
## [1,]  0.486246420
## [2,] -0.673469294
## [3,]  0.556554233
## [4,] -0.009145393
## [5,] -0.009145393
## [6,] -0.009145393
# turning values as numeric and getting the max value of 1
max_value_decomp <- which.max(eigen(B)$values)
print(paste('The largest eigenvalue is', max(max_value_decomp)))
## [1] "The largest eigenvalue is 1"
# corresponding vector of max eigenvalue
eigen_decomp2 <- as.numeric((1/sum(eigen_decomp$vectors[,1]))*eigen_decomp$vectors[,1])
sum(eigen_decomp2)
## [1] 1

• Use the graph package in R and its page.rank method to compute the Page Rank of the graph as given in A. Note that you don’t need to apply decay. The package starts with a connected graph and applies decay internally. Verify that you do get the same PageRank vector as the two approaches above. (10 points)

# Here we are using the library 'igraph' installed at the begining to complete the question

#graph_A <- graph.adjacency(A, weighted = T)
graph_A <- graph_from_adjacency_matrix(A, weighted = T)
plot(graph_A)

# verifying that you get the same PageRank vector as the two approached above
pageRank <- page.rank(graph_A)$vector

results <- (round(iter_converg, 4) == round(pageRank, 4))
results
##      [,1]
## [1,] TRUE
## [2,] TRUE
## [3,] TRUE
## [4,] TRUE
## [5,] TRUE
## [6,] TRUE

Final Problem 2. 40 points.

1.Go to Kaggle.com and build an account if you do not already have one. It is free. 2. Go to https://www.kaggle.com/c/digit-recognizer/overview, accept the rules of the competition, and download the data. You will not be required to submit work to Kaggle, but you do need the data. ’MNIST (“Modified National Institute of Standards and Technology”) is the de facto “hello world” dataset of computer vision. Since its release in 1999, this classic dataset of handwritten images has served as the basis for benchmarking classification algorithms. As new machine learning techniques emerge, MNIST remains a reliable resource for researchers and learners alike.”

# Load data set from computer, file is too large to upload to free github account

# for knitting purposes I am not printing out the entire data set because it is too long. 
train <- read.csv("C:/Users/Ivan/OneDrive/Desktop/train.csv/train.csv")
head(train[1:15], n = 5) # set to load columns 1-10 and 5 rows
##   label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9
## 1     1      0      0      0      0      0      0      0      0      0      0
## 2     0      0      0      0      0      0      0      0      0      0      0
## 3     1      0      0      0      0      0      0      0      0      0      0
## 4     4      0      0      0      0      0      0      0      0      0      0
## 5     0      0      0      0      0      0      0      0      0      0      0
##   pixel10 pixel11 pixel12 pixel13
## 1       0       0       0       0
## 2       0       0       0       0
## 3       0       0       0       0
## 4       0       0       0       0
## 5       0       0       0       0
  1. Using the training.csv file, plot representations of the first 10 images to understand the data format. Go ahead and divide all pixels by 255 to produce values between 0 and 1. (This is equivalent to min-max scaling.) (5 points)
# label is the first column and divide all pixels by 255
labels = train[,1]
train_data <- train[,-1]/255

# dimensions of data frame
dim(train_data)
## [1] 42000   784
# creating a plot to see how one image looks
image1 <- matrix(unlist(train_data[10, -1]), nrow = 28, byrow = T)
## Warning in matrix(unlist(train_data[10, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
image(image1, col = grey.colors(255))

# image must be rotated 
rotate <- function(x) t(apply(x, 2, rev))

# final product; will be using this code to apply it to the first 10 images
image1 <- rotate(matrix(unlist(train_data[10, -1]), nrow = 28, byrow = T))
## Warning in matrix(unlist(train_data[10, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
image(image1, col = grey.colors(255))

# Apply code above to images 1:10 of the whole data set
par(mfrow = c (2, 5))

# images must be rotated
rotate <- function(x) t(apply(x, 2, rev))

# Using a for loop for all 10 images
for (i in 1:10){
  m <- rotate(matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T))
  image(m, col = grey.colors(255))
}
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]

  1. What is the frequency distribution of the numbers in the dataset? (5 points)
train_frequency <- as.data.frame(table(labels)/42000)

# bar graph for frequency distribution
train_frequency %>% 
  ggplot(aes(x = labels, y = Freq, fill = Freq)) +
  geom_bar(stat = 'identity') +
  scale_fill_gradient(low = "blue", high = "red")

table(labels)/42000
## labels
##          0          1          2          3          4          5          6 
## 0.09838095 0.11152381 0.09945238 0.10359524 0.09695238 0.09035714 0.09850000 
##          7          8          9 
## 0.10478571 0.09673810 0.09971429
  1. For each number, provide the mean pixel intensity. What does this tell you? (5 points)
# Using colMeans() I was only getting 0's.
colMeans(train_data)[1:20]
##       pixel0       pixel1       pixel2       pixel3       pixel4       pixel5 
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 
##       pixel6       pixel7       pixel8       pixel9      pixel10      pixel11 
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 
##      pixel12      pixel13      pixel14      pixel15      pixel16      pixel17 
## 1.176471e-05 4.388422e-05 2.016807e-05 8.403361e-07 0.000000e+00 0.000000e+00 
##      pixel18      pixel19 
## 0.000000e+00 0.000000e+00
  1. Reduce the data by using principal components that account for 95% of the variance. How many components did you generate? Use PCA to generate all possible components (100% of the variance). How many components are possible? Why? (5 points)
# covariance
train_cov <- train_data

# pca
train_pca <- prcomp(train_cov)
train_cumvar <- (cumsum(train_pca$sdev^2) / sum(train_pca$sdev^2))

# 95% variance
cumvar_95 <- which.max(train_cumvar >= .95)
print(paste0("At 95% variance there were ", (cumvar_95), " components generated."))
## [1] "At 95% variance there were 154 components generated."
# 100% variance
print(paste0("At 100% variance thereshould be 784 components generated representing each column in the dataset."))
## [1] "At 100% variance thereshould be 784 components generated representing each column in the dataset."
plot(train_cumvar)

  1. Plot the first 10 images generated by PCA. They will appear to be noise. Why? (5 points)
par(mfrow = c (2, 5))

# images must be rotated
rotate <- function(x) t(apply(x, 2, rev))

# Using my for loop it reproduced static only
for (i in 1:10){
 image(1:28, 1:28, array(train_pca$x[,i], dim = c(28, 28)))
}

# Using code from another student you can visualize more of a number that's blurry
for (i in 1:10){
  img <- matrix(train_pca$rotation[1:784], nrow = 28, ncol = 28)
  image(img, useRaster = T, axes = F)
}

  1. Now, select only those images that have labels that are 8’s. Re-run PCA that accounts for all of the variance (100%). Plot the first 10 images. What do you see? (5 points)
# Selecting only the 8's
eights <- train_data %>% 
  filter(labels == 8)
eights <- eights[,2:ncol(eights)]

# Reducing pixels to 255
eights_reduced <- eights / 255
eights_pca <- prcomp(eights_reduced)

# 
eights_cumvar <- (cumsum(eights_pca$sdev^2) / sum(eights_pca$sdev^2))

# 100% variance
eights_100 <- which.max(eights_cumvar >= 1)
eights_100
## [1] 537
plot(eights_cumvar)

par(mfrow = c (2, 5))

# images must be rotated
rotate <- function(x) t(apply(x, 2, rev))

# When using my code, same thing happens as before
for (i in 1:10){
  m <- rotate(matrix(eights_pca$x[,i], nrow = 28, byrow = T))
  image(m, col = grey.colors(255))
}
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]

for (i in 1:10){
  img <- matrix(eights_pca$rotation[1:784], nrow = 28, ncol = 28)
  image(img, useRaster = T, axes = F)
}

  1. An incorrect approach to predicting the images would be to build a linear regression model with y as the digit values and X as the pixel matrix. Instead, we can build a multinomial model that classifies the digits. Build a multinomial model on the entirety of the training set. Then provide its classification accuracy (percent correctly identified) as well as a matrix of observed versus forecast values (confusion matrix). This matrix will be a 10 x 10, and correct classifications will be on the diagonal. (10 points)
# create model
train_label <- as.factor(train$label)
train_data <- train[2:785] / 255
train_data_label <- train$label

model <- nnet::multinom(labels ~., data = train_data, MaxNWts = 10000000)
## # weights:  7860 (7065 variable)
## initial  value 96708.573906 
## iter  10 value 25322.714106
## iter  20 value 20402.086316
## iter  30 value 19312.872829
## iter  40 value 18703.256586
## iter  50 value 18197.815143
## iter  60 value 17732.985798
## iter  70 value 16739.962157
## iter  80 value 14961.658448
## iter  90 value 13446.085942
## iter 100 value 12442.636014
## final  value 12442.636014 
## stopped after 100 iterations
# make the prediction and confusion matrix
prediction_model <- predict(model, train_data)
confusionMatrix(prediction_model, train_label)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1    2    3    4    5    6    7    8    9
##          0 3994    0   19   11    4   35   17    5   19   12
##          1    3 4588   59   32   20   39   28   37  134   18
##          2   11   13 3753   88   17   19   17   37   21   10
##          3    8   12   65 3879    9   91    1    9   91   53
##          4   13    6   60   10 3852   55   35   44   38  136
##          5   33   12   20  162    5 3386   45   10  132   33
##          6   35    3   38   15   22   52 3973    2   19    3
##          7    7    8   54   35    7   28    2 4076   18   87
##          8   20   32   85   78   22   51   17    4 3519   25
##          9    8   10   24   41  114   39    2  177   72 3811
## 
## Overall Statistics
##                                          
##                Accuracy : 0.9245         
##                  95% CI : (0.922, 0.9271)
##     No Information Rate : 0.1115         
##     P-Value [Acc > NIR] : < 2.2e-16      
##                                          
##                   Kappa : 0.9161         
##                                          
##  Mcnemar's Test P-Value : < 2.2e-16      
## 
## Statistics by Class:
## 
##                      Class: 0 Class: 1 Class: 2 Class: 3 Class: 4 Class: 5
## Sensitivity           0.96660   0.9795  0.89849  0.89152  0.94597  0.89223
## Specificity           0.99678   0.9901  0.99384  0.99100  0.98953  0.98817
## Pos Pred Value        0.97036   0.9254  0.94155  0.91963  0.90657  0.88223
## Neg Pred Value        0.99636   0.9974  0.98885  0.98751  0.99417  0.98928
## Prevalence            0.09838   0.1115  0.09945  0.10360  0.09695  0.09036
## Detection Rate        0.09510   0.1092  0.08936  0.09236  0.09171  0.08062
## Detection Prevalence  0.09800   0.1180  0.09490  0.10043  0.10117  0.09138
## Balanced Accuracy     0.98169   0.9848  0.94617  0.94126  0.96775  0.94020
##                      Class: 6 Class: 7 Class: 8 Class: 9
## Sensitivity            0.9604  0.92615  0.86611  0.90998
## Specificity            0.9950  0.99346  0.99120  0.98712
## Pos Pred Value         0.9546  0.94308  0.91331  0.88669
## Neg Pred Value         0.9957  0.99137  0.98574  0.99000
## Prevalence             0.0985  0.10479  0.09674  0.09971
## Detection Rate         0.0946  0.09705  0.08379  0.09074
## Detection Prevalence   0.0991  0.10290  0.09174  0.10233
## Balanced Accuracy      0.9777  0.95981  0.92865  0.94855

F inal Problem 3. 30 points You are to compete in the House Prices: Advanced Regression Techniques competition https://www.kaggle.com/c/house-prices-advanced-regression-techniques . I want you to do the following. Descriptive and Inferential Statistics. Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable. Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not? 5 points

# Read csv file renaming train.csv to house_train
house_train <- read.csv("C:/Users/Ivan/OneDrive/Desktop/train.csv/train.csv", header = T, sep = ",")
head(house_train[1:15], n = 5)
##   label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9
## 1     1      0      0      0      0      0      0      0      0      0      0
## 2     0      0      0      0      0      0      0      0      0      0      0
## 3     1      0      0      0      0      0      0      0      0      0      0
## 4     4      0      0      0      0      0      0      0      0      0      0
## 5     0      0      0      0      0      0      0      0      0      0      0
##   pixel10 pixel11 pixel12 pixel13
## 1       0       0       0       0
## 2       0       0       0       0
## 3       0       0       0       0
## 4       0       0       0       0
## 5       0       0       0       0
# glimpse of data set columns 1 - 10
glimpse(house_train[1:10])
## Rows: 42,000
## Columns: 10
## $ label  <int> 1, 0, 1, 4, 0, 0, 7, 3, 5, 3, 8, 9, 1, 3, 3, 1, 2, 0, 7, 5, 8, …
## $ pixel0 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel1 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel2 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel3 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel4 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel5 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel6 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel7 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel8 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
# summary of data set with filter of numeric values only
house_train %>%
  select_if(is.numeric) %>%
  summary()
##      label           pixel0      pixel1      pixel2      pixel3      pixel4 
##  Min.   :0.000   Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0  
##  1st Qu.:2.000   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0  
##  Median :4.000   Median :0   Median :0   Median :0   Median :0   Median :0  
##  Mean   :4.457   Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :0  
##  3rd Qu.:7.000   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0  
##  Max.   :9.000   Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :0  
##      pixel5      pixel6      pixel7      pixel8      pixel9     pixel10 
##  Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0  
##  1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0  
##  Median :0   Median :0   Median :0   Median :0   Median :0   Median :0  
##  Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :0  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0  
##  Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :0  
##     pixel11     pixel12           pixel13             pixel14        
##  Min.   :0   Min.   :  0.000   Min.   :  0.00000   Min.   :0.00e+00  
##  1st Qu.:0   1st Qu.:  0.000   1st Qu.:  0.00000   1st Qu.:0.00e+00  
##  Median :0   Median :  0.000   Median :  0.00000   Median :0.00e+00  
##  Mean   :0   Mean   :  0.003   Mean   :  0.01119   Mean   :5.14e-03  
##  3rd Qu.:0   3rd Qu.:  0.000   3rd Qu.:  0.00000   3rd Qu.:0.00e+00  
##  Max.   :0   Max.   :116.000   Max.   :254.00000   Max.   :2.16e+02  
##     pixel15            pixel16     pixel17     pixel18     pixel19     pixel20 
##  Min.   :0.000000   Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0  
##  1st Qu.:0.000000   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0  
##  Median :0.000000   Median :0   Median :0   Median :0   Median :0   Median :0  
##  Mean   :0.000214   Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :0  
##  3rd Qu.:0.000000   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0  
##  Max.   :9.000000   Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :0  
##     pixel21     pixel22     pixel23     pixel24     pixel25     pixel26 
##  Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0  
##  1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0  
##  Median :0   Median :0   Median :0   Median :0   Median :0   Median :0  
##  Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :0  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0  
##  Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :0  
##     pixel27     pixel28     pixel29     pixel30     pixel31     pixel32        
##  Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0.00e+00  
##  1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0.00e+00  
##  Median :0   Median :0   Median :0   Median :0   Median :0   Median :0.00e+00  
##  Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :3.81e-04  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0.00e+00  
##  Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :1.60e+01  
##     pixel33            pixel34             pixel35             pixel36        
##  Min.   : 0.00000   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.0000  
##  1st Qu.: 0.00000   1st Qu.:  0.00000   1st Qu.:  0.00000   1st Qu.:  0.0000  
##  Median : 0.00000   Median :  0.00000   Median :  0.00000   Median :  0.0000  
##  Mean   : 0.00131   Mean   :  0.01055   Mean   :  0.02726   Mean   :  0.0509  
##  3rd Qu.: 0.00000   3rd Qu.:  0.00000   3rd Qu.:  0.00000   3rd Qu.:  0.0000  
##  Max.   :47.00000   Max.   :157.00000   Max.   :254.00000   Max.   :255.0000  
##     pixel37            pixel38            pixel39            pixel40        
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.0000   Median :  0.0000   Median :  0.0000   Median :  0.0000  
##  Mean   :  0.0664   Mean   :  0.1296   Mean   :  0.1741   Mean   :  0.1913  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :243.0000   Max.   :255.0000   Max.   :255.0000   Max.   :255.0000  
##     pixel41            pixel42            pixel43            pixel44        
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.0000   Median :  0.0000   Median :  0.0000   Median :  0.0000  
##  Mean   :  0.1906   Mean   :  0.1961   Mean   :  0.1714   Mean   :  0.1645  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :255.0000   Max.   :255.0000   Max.   :255.0000   Max.   :255.0000  
##     pixel45            pixel46            pixel47             pixel48         
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:  0.00000  
##  Median :  0.0000   Median :  0.0000   Median :  0.00000   Median :  0.00000  
##  Mean   :  0.1517   Mean   :  0.1053   Mean   :  0.06079   Mean   :  0.04507  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:  0.00000  
##  Max.   :255.0000   Max.   :255.0000   Max.   :255.00000   Max.   :244.00000  
##     pixel49            pixel50             pixel51            pixel52 
##  Min.   :  0.0000   Min.   :  0.00000   Min.   :0.00e+00   Min.   :0  
##  1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:0.00e+00   1st Qu.:0  
##  Median :  0.0000   Median :  0.00000   Median :0.00e+00   Median :0  
##  Mean   :  0.0154   Mean   :  0.01052   Mean   :5.05e-03   Mean   :0  
##  3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:0.00e+00   3rd Qu.:0  
##  Max.   :255.0000   Max.   :184.00000   Max.   :1.97e+02   Max.   :0  
##     pixel53     pixel54     pixel55     pixel56     pixel57     pixel58        
##  Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   : 0.00000  
##  1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.: 0.00000  
##  Median :0   Median :0   Median :0   Median :0   Median :0   Median : 0.00000  
##  Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   : 0.00152  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.: 0.00000  
##  Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :64.00000  
##     pixel59           pixel60            pixel61            pixel62         
##  Min.   :0.0e+00   Min.   :0.00e+00   Min.   :0.00e+00   Min.   :  0.00000  
##  1st Qu.:0.0e+00   1st Qu.:0.00e+00   1st Qu.:0.00e+00   1st Qu.:  0.00000  
##  Median :0.0e+00   Median :0.00e+00   Median :0.00e+00   Median :  0.00000  
##  Mean   :6.9e-04   Mean   :7.33e-03   Mean   :9.02e-03   Mean   :  0.06112  
##  3rd Qu.:0.0e+00   3rd Qu.:0.00e+00   3rd Qu.:0.00e+00   3rd Qu.:  0.00000  
##  Max.   :2.9e+01   Max.   :1.34e+02   Max.   :1.28e+02   Max.   :234.00000  
##     pixel63            pixel64            pixel65            pixel66        
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.0000   Median :  0.0000   Median :  0.0000   Median :  0.0000  
##  Mean   :  0.1511   Mean   :  0.2959   Mean   :  0.5337   Mean   :  0.8694  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :255.0000   Max.   :255.0000   Max.   :255.0000   Max.   :255.0000  
##     pixel67           pixel68           pixel69           pixel70      
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.000   Median :  0.000   Median :  0.00  
##  Mean   :  1.346   Mean   :  1.981   Mean   :  2.699   Mean   :  3.39  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00  
##  Max.   :255.000   Max.   :255.000   Max.   :255.000   Max.   :255.00  
##     pixel71           pixel72          pixel73           pixel74       
##  Min.   :  0.000   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.000   Median :  0.00   Median :  0.000   Median :  0.000  
##  Mean   :  3.802   Mean   :  3.74   Mean   :  3.333   Mean   :  2.684  
##  3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.000   Max.   :255.00   Max.   :255.000   Max.   :255.000  
##     pixel75           pixel76           pixel77            pixel78        
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.000   Median :  0.000   Median :  0.0000   Median :  0.0000  
##  Mean   :  1.993   Mean   :  1.196   Mean   :  0.6012   Mean   :  0.2938  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :255.000   Max.   :255.000   Max.   :255.0000   Max.   :255.0000  
##     pixel79             pixel80             pixel81            pixel82 
##  Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.0000   Min.   :0  
##  1st Qu.:  0.00000   1st Qu.:  0.00000   1st Qu.:  0.0000   1st Qu.:0  
##  Median :  0.00000   Median :  0.00000   Median :  0.0000   Median :0  
##  Mean   :  0.09848   Mean   :  0.03495   Mean   :  0.0084   Mean   :0  
##  3rd Qu.:  0.00000   3rd Qu.:  0.00000   3rd Qu.:  0.0000   3rd Qu.:0  
##  Max.   :255.00000   Max.   :255.00000   Max.   :165.0000   Max.   :0  
##     pixel83     pixel84     pixel85     pixel86            pixel87        
##  Min.   :0   Min.   :0   Min.   :0   Min.   :0.00e+00   Min.   : 0.00000  
##  1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0.00e+00   1st Qu.: 0.00000  
##  Median :0   Median :0   Median :0   Median :0.00e+00   Median : 0.00000  
##  Mean   :0   Mean   :0   Mean   :0   Mean   :3.62e-03   Mean   : 0.00417  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0.00e+00   3rd Qu.: 0.00000  
##  Max.   :0   Max.   :0   Max.   :0   Max.   :1.41e+02   Max.   :84.00000  
##     pixel88            pixel89             pixel90            pixel91        
##  Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.0000   Median :  0.00000   Median :  0.0000   Median :  0.0000  
##  Mean   :  0.0164   Mean   :  0.08976   Mean   :  0.2358   Mean   :  0.5407  
##  3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :139.0000   Max.   :255.00000   Max.   :255.0000   Max.   :255.0000  
##     pixel92           pixel93           pixel94           pixel95       
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.000   Median :  0.000   Median :  0.000   Median :  0.000  
##  Mean   :  1.193   Mean   :  2.293   Mean   :  3.768   Mean   :  5.714  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.000   Max.   :255.000   Max.   :255.000   Max.   :255.000  
##     pixel96           pixel97          pixel98          pixel99     
##  Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
##  1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0  
##  Median :  0.000   Median :  0.00   Median :  0.00   Median :  0.0  
##  Mean   :  7.751   Mean   : 10.05   Mean   : 12.07   Mean   : 13.4  
##  3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.0  
##  Max.   :255.000   Max.   :255.00   Max.   :255.00   Max.   :255.0  
##     pixel100         pixel101         pixel102          pixel103      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.000   Median :  0.000  
##  Mean   : 13.07   Mean   : 11.57   Mean   :  9.296   Mean   :  6.708  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.000   Max.   :255.000  
##     pixel104         pixel105         pixel106          pixel107       
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.0000  
##  Median :  0.00   Median :  0.00   Median :  0.000   Median :  0.0000  
##  Mean   :  4.14   Mean   :  2.27   Mean   :  1.092   Mean   :  0.4246  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.0000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.000   Max.   :255.0000  
##     pixel108          pixel109            pixel110           pixel111
##  Min.   :  0.000   Min.   :  0.00000   Min.   :0.00e+00   Min.   :0  
##  1st Qu.:  0.000   1st Qu.:  0.00000   1st Qu.:0.00e+00   1st Qu.:0  
##  Median :  0.000   Median :  0.00000   Median :0.00e+00   Median :0  
##  Mean   :  0.168   Mean   :  0.02374   Mean   :2.88e-03   Mean   :0  
##  3rd Qu.:  0.000   3rd Qu.:  0.00000   3rd Qu.:0.00e+00   3rd Qu.:0  
##  Max.   :255.000   Max.   :164.00000   Max.   :1.21e+02   Max.   :0  
##     pixel112    pixel113          pixel114           pixel115        
##  Min.   :0   Min.   : 0.0000   Min.   : 0.00000   Min.   :  0.00000  
##  1st Qu.:0   1st Qu.: 0.0000   1st Qu.: 0.00000   1st Qu.:  0.00000  
##  Median :0   Median : 0.0000   Median : 0.00000   Median :  0.00000  
##  Mean   :0   Mean   : 0.0009   Mean   : 0.00274   Mean   :  0.01607  
##  3rd Qu.:0   3rd Qu.: 0.0000   3rd Qu.: 0.00000   3rd Qu.:  0.00000  
##  Max.   :0   Max.   :38.0000   Max.   :51.00000   Max.   :114.00000  
##     pixel116            pixel117           pixel118         pixel119      
##  Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.00   Min.   :  0.000  
##  1st Qu.:  0.00000   1st Qu.:  0.0000   1st Qu.:  0.00   1st Qu.:  0.000  
##  Median :  0.00000   Median :  0.0000   Median :  0.00   Median :  0.000  
##  Mean   :  0.08826   Mean   :  0.3887   Mean   :  1.03   Mean   :  2.455  
##  3rd Qu.:  0.00000   3rd Qu.:  0.0000   3rd Qu.:  0.00   3rd Qu.:  0.000  
##  Max.   :226.00000   Max.   :255.0000   Max.   :255.00   Max.   :255.000  
##     pixel120          pixel121          pixel122        pixel123     
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.000   Median :  0.0   Median :  0.00  
##  Mean   :  4.953   Mean   :  8.677   Mean   : 13.8   Mean   : 20.33  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0   3rd Qu.:  0.00  
##  Max.   :255.000   Max.   :255.000   Max.   :255.0   Max.   :255.00  
##     pixel124         pixel125         pixel126         pixel127     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 28.04   Mean   : 36.08   Mean   : 42.71   Mean   : 46.09  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.: 10.00   3rd Qu.: 29.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel128         pixel129         pixel130         pixel131     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 44.54   Mean   : 38.95   Mean   : 30.96   Mean   : 22.91  
##  3rd Qu.: 21.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel132         pixel133          pixel134          pixel135    
##  Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0  
##  Median :  0.00   Median :  0.000   Median :  0.000   Median :  0.0  
##  Mean   : 14.87   Mean   :  8.692   Mean   :  4.551   Mean   :  2.1  
##  3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0  
##  Max.   :255.00   Max.   :255.000   Max.   :255.000   Max.   :255.0  
##     pixel136           pixel137           pixel138            pixel139
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00000   Min.   :0  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:0  
##  Median :  0.0000   Median :  0.0000   Median :  0.00000   Median :0  
##  Mean   :  0.8388   Mean   :  0.2028   Mean   :  0.03548   Mean   :0  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:0  
##  Max.   :255.0000   Max.   :254.0000   Max.   :230.00000   Max.   :0  
##     pixel140    pixel141    pixel142           pixel143      
##  Min.   :0   Min.   :0   Min.   : 0.00000   Min.   :  0.000  
##  1st Qu.:0   1st Qu.:0   1st Qu.: 0.00000   1st Qu.:  0.000  
##  Median :0   Median :0   Median : 0.00000   Median :  0.000  
##  Mean   :0   Mean   :0   Mean   : 0.00943   Mean   :  0.048  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.: 0.00000   3rd Qu.:  0.000  
##  Max.   :0   Max.   :0   Max.   :95.00000   Max.   :255.000  
##     pixel144           pixel145          pixel146          pixel147     
##  Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
##  1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00  
##  Median :  0.0000   Median :  0.000   Median :  0.000   Median :  0.00  
##  Mean   :  0.4116   Mean   :  1.438   Mean   :  3.558   Mean   :  7.15  
##  3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00  
##  Max.   :255.0000   Max.   :255.000   Max.   :255.000   Max.   :255.00  
##     pixel148         pixel149         pixel150         pixel151     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 12.93   Mean   : 21.42   Mean   : 32.22   Mean   : 45.36  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.: 27.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel152         pixel153         pixel154        pixel155     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.0   Median :  0.00  
##  Mean   : 60.18   Mean   : 75.01   Mean   : 86.3   Mean   : 91.59  
##  3rd Qu.:114.00   3rd Qu.:175.00   3rd Qu.:213.0   3rd Qu.:225.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.00  
##     pixel156         pixel157        pixel158         pixel159     
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.0   Median :  0.00   Median :  0.00  
##  Mean   : 89.45   Mean   : 80.3   Mean   : 65.76   Mean   : 49.65  
##  3rd Qu.:220.00   3rd Qu.:194.0   3rd Qu.:138.00   3rd Qu.: 51.00  
##  Max.   :255.00   Max.   :255.0   Max.   :255.00   Max.   :255.00  
##     pixel160         pixel161         pixel162         pixel163      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.000  
##  Mean   : 34.39   Mean   : 21.46   Mean   : 12.23   Mean   :  6.375  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.000  
##     pixel164          pixel165           pixel166          pixel167       
##  Min.   :  0.000   Min.   :  0.0000   Min.   :  0.000   Min.   :0.00e+00  
##  1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:0.00e+00  
##  Median :  0.000   Median :  0.0000   Median :  0.000   Median :0.00e+00  
##  Mean   :  2.906   Mean   :  0.7934   Mean   :  0.126   Mean   :4.29e-04  
##  3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:0.00e+00  
##  Max.   :255.000   Max.   :255.0000   Max.   :253.000   Max.   :1.80e+01  
##     pixel168    pixel169          pixel170           pixel171       
##  Min.   :0   Min.   :0.0e+00   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:0   1st Qu.:0.0e+00   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :0   Median :0.0e+00   Median :  0.0000   Median :  0.0000  
##  Mean   :0   Mean   :9.5e-05   Mean   :  0.0231   Mean   :  0.2284  
##  3rd Qu.:0   3rd Qu.:0.0e+00   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :0   Max.   :4.0e+00   Max.   :177.0000   Max.   :255.0000  
##     pixel172          pixel173          pixel174          pixel175     
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.000   Median :  0.000   Median :  0.00  
##  Mean   :  1.155   Mean   :  3.268   Mean   :  7.367   Mean   : 14.11  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00  
##  Max.   :255.000   Max.   :255.000   Max.   :255.000   Max.   :255.00  
##     pixel176         pixel177         pixel178         pixel179  
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0  
##  Mean   : 24.13   Mean   : 37.88   Mean   : 54.01   Mean   : 72  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.: 74.00   3rd Qu.:163  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255  
##     pixel180         pixel181        pixel182        pixel183    
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  7.00   Median : 61.0   Median :112.0   Median :128.0  
##  Mean   : 90.47   Mean   :107.5   Mean   :119.7   Mean   :124.9  
##  3rd Qu.:223.00   3rd Qu.:250.0   3rd Qu.:252.0   3rd Qu.:252.0  
##  Max.   :255.00   Max.   :255.0   Max.   :255.0   Max.   :255.0  
##     pixel184        pixel185        pixel186         pixel187    
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.0  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.0  
##  Median :119.0   Median : 75.0   Median : 14.00   Median :  0.0  
##  Mean   :121.9   Mean   :111.6   Mean   : 95.59   Mean   : 74.6  
##  3rd Qu.:252.0   3rd Qu.:252.0   3rd Qu.:235.00   3rd Qu.:178.0  
##  Max.   :255.0   Max.   :255.0   Max.   :255.00   Max.   :255.0  
##     pixel188         pixel189         pixel190        pixel191     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.0   Median :  0.00  
##  Mean   : 53.74   Mean   : 34.96   Mean   : 20.7   Mean   : 11.12  
##  3rd Qu.: 69.25   3rd Qu.:  0.00   3rd Qu.:  0.0   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.00  
##     pixel192          pixel193          pixel194           pixel195        
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:  0.00000  
##  Median :  0.000   Median :  0.000   Median :  0.0000   Median :  0.00000  
##  Mean   :  5.254   Mean   :  1.773   Mean   :  0.3457   Mean   :  0.02502  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:  0.00000  
##  Max.   :255.000   Max.   :255.000   Max.   :254.0000   Max.   :253.00000  
##     pixel196    pixel197            pixel198           pixel199       
##  Min.   :0   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:0   1st Qu.:  0.00000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :0   Median :  0.00000   Median :  0.0000   Median :  0.0000  
##  Mean   :0   Mean   :  0.01781   Mean   :  0.1125   Mean   :  0.6214  
##  3rd Qu.:0   3rd Qu.:  0.00000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :0   Max.   :128.00000   Max.   :254.0000   Max.   :255.0000  
##     pixel200          pixel201          pixel202         pixel203     
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.000   Median :  0.00   Median :  0.00  
##  Mean   :  2.452   Mean   :  5.981   Mean   : 12.39   Mean   : 22.36  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.000   Max.   :255.000   Max.   :255.00   Max.   :255.00  
##     pixel204        pixel205         pixel206         pixel207     
##  Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.0   Median :  0.00   Median :  0.00   Median : 28.00  
##  Mean   : 36.6   Mean   : 54.74   Mean   : 74.79   Mean   : 95.42  
##  3rd Qu.:  0.0   3rd Qu.: 80.00   3rd Qu.:170.00   3rd Qu.:226.00  
##  Max.   :255.0   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel208      pixel209        pixel210        pixel211        pixel212    
##  Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median : 85   Median :130.0   Median :152.0   Median :156.0   Median :149.0  
##  Mean   :113   Mean   :126.3   Mean   :133.6   Mean   :135.5   Mean   :132.9  
##  3rd Qu.:250   3rd Qu.:252.0   3rd Qu.:253.0   3rd Qu.:253.0   3rd Qu.:252.0  
##  Max.   :255   Max.   :255.0   Max.   :255.0   Max.   :255.0   Max.   :255.0  
##     pixel213      pixel214        pixel215         pixel216     
##  Min.   :  0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :130   Median : 84.0   Median : 14.00   Median :  0.00  
##  Mean   :126   Mean   :112.7   Mean   : 92.73   Mean   : 68.89  
##  3rd Qu.:252   3rd Qu.:251.0   3rd Qu.:227.00   3rd Qu.:152.00  
##  Max.   :255   Max.   :255.0   Max.   :255.00   Max.   :255.00  
##     pixel217         pixel218         pixel219         pixel220      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.000  
##  Mean   : 46.21   Mean   : 27.63   Mean   : 14.79   Mean   :  6.777  
##  3rd Qu.: 31.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.000  
##     pixel221          pixel222           pixel223            pixel224       
##  Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   : 0.00000  
##  1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.: 0.00000  
##  Median :  0.000   Median :  0.0000   Median :  0.00000   Median : 0.00000  
##  Mean   :  2.381   Mean   :  0.4858   Mean   :  0.02155   Mean   : 0.00126  
##  3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.: 0.00000  
##  Max.   :255.000   Max.   :255.0000   Max.   :196.00000   Max.   :53.00000  
##     pixel225            pixel226           pixel227          pixel228      
##  Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.00000   1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.00000   Median :  0.0000   Median :  0.000   Median :  0.000  
##  Mean   :  0.06662   Mean   :  0.3836   Mean   :  1.401   Mean   :  3.971  
##  3rd Qu.:  0.00000   3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.00000   Max.   :255.0000   Max.   :255.000   Max.   :255.000  
##     pixel229          pixel230         pixel231         pixel232     
##  Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   :  8.704   Mean   : 16.91   Mean   : 29.64   Mean   : 47.38  
##  3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.: 36.00  
##  Max.   :255.000   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel233         pixel234         pixel235        pixel236    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  0.00   Median : 15.00   Median : 72.0   Median :113.0  
##  Mean   : 69.18   Mean   : 92.12   Mean   :110.2   Mean   :120.6  
##  3rd Qu.:152.25   3rd Qu.:224.00   3rd Qu.:249.0   3rd Qu.:252.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.0  
##     pixel237        pixel238        pixel239      pixel240        pixel241    
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :124.0   Median :121.0   Median :117   Median :117.0   Median :115.0  
##  Mean   :123.9   Mean   :123.2   Mean   :122   Mean   :122.2   Mean   :121.8  
##  3rd Qu.:252.0   3rd Qu.:252.0   3rd Qu.:252   3rd Qu.:252.0   3rd Qu.:252.0  
##  Max.   :255.0   Max.   :255.0   Max.   :255   Max.   :255.0   Max.   :255.0  
##     pixel242        pixel243        pixel244         pixel245     
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median : 94.0   Median : 34.0   Median :  0.00   Median :  0.00  
##  Mean   :116.1   Mean   :100.2   Mean   : 76.63   Mean   : 52.02  
##  3rd Qu.:252.0   3rd Qu.:240.0   3rd Qu.:188.00   3rd Qu.: 62.00  
##  Max.   :255.0   Max.   :255.0   Max.   :255.00   Max.   :255.00  
##     pixel246         pixel247         pixel248          pixel249      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.000   Median :  0.000  
##  Mean   : 31.16   Mean   : 15.89   Mean   :  6.913   Mean   :  2.481  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.000   Max.   :255.000  
##     pixel250           pixel251            pixel252           pixel253        
##  Min.   :  0.0000   Min.   :  0.00000   Min.   :0.00e+00   Min.   :  0.00000  
##  1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:0.00e+00   1st Qu.:  0.00000  
##  Median :  0.0000   Median :  0.00000   Median :0.00e+00   Median :  0.00000  
##  Mean   :  0.4845   Mean   :  0.01774   Mean   :9.55e-03   Mean   :  0.09826  
##  3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:0.00e+00   3rd Qu.:  0.00000  
##  Max.   :254.0000   Max.   :190.00000   Max.   :1.84e+02   Max.   :254.00000  
##     pixel254           pixel255          pixel256          pixel257      
##  Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.0000   Median :  0.000   Median :  0.000   Median :  0.000  
##  Mean   :  0.5517   Mean   :  1.805   Mean   :  4.648   Mean   :  9.881  
##  3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.0000   Max.   :255.000   Max.   :255.000   Max.   :255.000  
##     pixel258         pixel259         pixel260         pixel261     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 19.54   Mean   : 34.52   Mean   : 55.56   Mean   : 79.87  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.: 79.00   3rd Qu.:196.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel262      pixel263        pixel264        pixel265        pixel266     
##  Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median : 36   Median : 76.0   Median : 73.0   Median : 52.0   Median : 36.00  
##  Mean   :101   Mean   :111.9   Mean   :111.1   Mean   :104.1   Mean   : 98.53  
##  3rd Qu.:241   3rd Qu.:251.0   3rd Qu.:250.0   3rd Qu.:243.0   3rd Qu.:235.00  
##  Max.   :255   Max.   :255.0   Max.   :255.0   Max.   :255.0   Max.   :255.00  
##     pixel267         pixel268        pixel269        pixel270    
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median : 37.00   Median : 55.0   Median : 76.0   Median : 75.0  
##  Mean   : 98.87   Mean   :103.9   Mean   :110.7   Mean   :111.3  
##  3rd Qu.:234.00   3rd Qu.:241.0   3rd Qu.:250.0   3rd Qu.:251.0  
##  Max.   :255.00   Max.   :255.0   Max.   :255.0   Max.   :255.0  
##     pixel271         pixel272         pixel273        pixel274     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median : 30.00   Median :  0.00   Median :  0.0   Median :  0.00  
##  Mean   : 99.14   Mean   : 76.66   Mean   : 52.1   Mean   : 30.89  
##  3rd Qu.:239.00   3rd Qu.:188.00   3rd Qu.: 60.0   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.00  
##     pixel275         pixel276          pixel277          pixel278       
##  Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
##  1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0000  
##  Median :  0.00   Median :  0.000   Median :  0.000   Median :  0.0000  
##  Mean   : 15.04   Mean   :  5.851   Mean   :  1.838   Mean   :  0.3306  
##  3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0000  
##  Max.   :255.00   Max.   :255.000   Max.   :255.000   Max.   :254.0000  
##     pixel279            pixel280            pixel281            pixel282       
##  Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.0000  
##  1st Qu.:  0.00000   1st Qu.:  0.00000   1st Qu.:  0.00000   1st Qu.:  0.0000  
##  Median :  0.00000   Median :  0.00000   Median :  0.00000   Median :  0.0000  
##  Mean   :  0.03129   Mean   :  0.01488   Mean   :  0.09914   Mean   :  0.5403  
##  3rd Qu.:  0.00000   3rd Qu.:  0.00000   3rd Qu.:  0.00000   3rd Qu.:  0.0000  
##  Max.   :220.00000   Max.   :226.00000   Max.   :255.00000   Max.   :255.0000  
##     pixel283          pixel284          pixel285          pixel286     
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.000   Median :  0.000   Median :  0.00  
##  Mean   :  1.709   Mean   :  4.309   Mean   :  9.806   Mean   : 20.48  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00  
##  Max.   :255.000   Max.   :255.000   Max.   :255.000   Max.   :255.00  
##     pixel287         pixel288         pixel289         pixel290    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median : 37.5  
##  Mean   : 37.33   Mean   : 60.88   Mean   : 85.24   Mean   :101.8  
##  3rd Qu.:  0.00   3rd Qu.:113.00   3rd Qu.:213.00   3rd Qu.:243.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.0  
##     pixel291        pixel292         pixel293         pixel294     
##  Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median : 45.0   Median : 21.00   Median :  3.00   Median :  0.00  
##  Mean   :103.6   Mean   : 93.18   Mean   : 82.03   Mean   : 78.92  
##  3rd Qu.:244.0   3rd Qu.:224.00   3rd Qu.:192.00   3rd Qu.:183.00  
##  Max.   :255.0   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel295         pixel296         pixel297        pixel298    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  3.00   Median : 25.00   Median : 54.0   Median : 60.0  
##  Mean   : 83.99   Mean   : 93.76   Mean   :104.5   Mean   :106.5  
##  3rd Qu.:201.00   3rd Qu.:223.00   3rd Qu.:243.0   3rd Qu.:246.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.0  
##     pixel299         pixel300         pixel301         pixel302     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median : 14.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 94.19   Mean   : 71.39   Mean   : 47.89   Mean   : 28.21  
##  3rd Qu.:232.00   3rd Qu.:165.00   3rd Qu.: 34.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel303        pixel304          pixel305          pixel306       
##  Min.   :  0.0   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
##  1st Qu.:  0.0   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0000  
##  Median :  0.0   Median :  0.000   Median :  0.000   Median :  0.0000  
##  Mean   : 13.5   Mean   :  4.627   Mean   :  1.157   Mean   :  0.2201  
##  3rd Qu.:  0.0   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0000  
##  Max.   :255.0   Max.   :255.000   Max.   :255.000   Max.   :254.0000  
##     pixel307            pixel308           pixel309            pixel310       
##  Min.   :  0.00000   Min.   :0.00e+00   Min.   :  0.00000   Min.   :  0.0000  
##  1st Qu.:  0.00000   1st Qu.:0.00e+00   1st Qu.:  0.00000   1st Qu.:  0.0000  
##  Median :  0.00000   Median :0.00e+00   Median :  0.00000   Median :  0.0000  
##  Mean   :  0.03067   Mean   :6.33e-03   Mean   :  0.06705   Mean   :  0.4398  
##  3rd Qu.:  0.00000   3rd Qu.:0.00e+00   3rd Qu.:  0.00000   3rd Qu.:  0.0000  
##  Max.   :243.00000   Max.   :1.50e+02   Max.   :254.00000   Max.   :255.0000  
##     pixel311          pixel312          pixel313          pixel314     
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.000   Median :  0.000   Median :  0.00  
##  Mean   :  1.288   Mean   :  3.567   Mean   :  9.441   Mean   : 21.09  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00  
##  Max.   :255.000   Max.   :255.000   Max.   :255.000   Max.   :255.00  
##     pixel315         pixel316         pixel317         pixel318     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median : 30.00  
##  Mean   : 40.07   Mean   : 65.19   Mean   : 88.65   Mean   : 99.96  
##  3rd Qu.:  5.00   3rd Qu.:134.00   3rd Qu.:221.00   3rd Qu.:241.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel319         pixel320         pixel321         pixel322     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median : 20.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 94.94   Mean   : 81.14   Mean   : 72.99   Mean   : 76.01  
##  3rd Qu.:230.00   3rd Qu.:192.00   3rd Qu.:160.00   3rd Qu.:178.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel323        pixel324         pixel325      pixel326        pixel327    
##  Min.   :  0.0   Min.   :  0.00   Min.   :  0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  2.0   Median : 37.00   Median : 66   Median : 57.0   Median :  1.0  
##  Mean   : 85.6   Mean   : 97.82   Mean   :108   Mean   :105.7   Mean   : 88.7  
##  3rd Qu.:211.0   3rd Qu.:232.00   3rd Qu.:245   3rd Qu.:246.0   3rd Qu.:222.0  
##  Max.   :255.0   Max.   :255.00   Max.   :255   Max.   :255.0   Max.   :255.0  
##     pixel328         pixel329         pixel330         pixel331     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 64.59   Mean   : 42.46   Mean   : 25.37   Mean   : 12.66  
##  3rd Qu.:131.00   3rd Qu.: 10.00   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel332         pixel333           pixel334           pixel335       
##  Min.   :  0.00   Min.   :  0.0000   Min.   :  0.0000   Min.   :0.00e+00  
##  1st Qu.:  0.00   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:0.00e+00  
##  Median :  0.00   Median :  0.0000   Median :  0.0000   Median :0.00e+00  
##  Mean   :  4.13   Mean   :  0.6492   Mean   :  0.1351   Mean   :9.64e-03  
##  3rd Qu.:  0.00   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:0.00e+00  
##  Max.   :255.00   Max.   :255.0000   Max.   :253.0000   Max.   :1.12e+02  
##     pixel336           pixel337            pixel338           pixel339       
##  Min.   :0.00e+00   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:0.00e+00   1st Qu.:  0.00000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :0.00e+00   Median :  0.00000   Median :  0.0000   Median :  0.0000  
##  Mean   :3.88e-03   Mean   :  0.03502   Mean   :  0.2666   Mean   :  0.8958  
##  3rd Qu.:0.00e+00   3rd Qu.:  0.00000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :1.63e+02   Max.   :255.00000   Max.   :255.0000   Max.   :255.0000  
##     pixel340          pixel341          pixel342         pixel343     
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.000   Median :  0.00   Median :  0.00  
##  Mean   :  2.978   Mean   :  9.557   Mean   : 22.85   Mean   : 44.02  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.: 17.25  
##  Max.   :255.000   Max.   :255.000   Max.   :255.00   Max.   :255.00  
##     pixel344        pixel345         pixel346         pixel347     
##  Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.0   Median :  1.00   Median : 26.00   Median :  9.00  
##  Mean   : 69.6   Mean   : 91.09   Mean   : 98.91   Mean   : 91.42  
##  3rd Qu.:158.0   3rd Qu.:229.00   3rd Qu.:240.00   3rd Qu.:225.00  
##  Max.   :255.0   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel348         pixel349        pixel350         pixel351    
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.0  
##  Median :  0.00   Median :  0.0   Median :  0.00   Median : 39.0  
##  Mean   : 79.76   Mean   : 79.7   Mean   : 89.51   Mean   :102.1  
##  3rd Qu.:190.00   3rd Qu.:188.0   3rd Qu.:228.00   3rd Qu.:247.0  
##  Max.   :255.00   Max.   :255.0   Max.   :255.00   Max.   :255.0  
##     pixel352        pixel353        pixel354        pixel355     
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median : 89.0   Median :103.0   Median : 62.0   Median :  0.00  
##  Mean   :113.9   Mean   :118.5   Mean   :107.8   Mean   : 84.27  
##  3rd Qu.:250.0   3rd Qu.:252.0   3rd Qu.:249.0   3rd Qu.:207.00  
##  Max.   :255.0   Max.   :255.0   Max.   :255.0   Max.   :255.00  
##     pixel356         pixel357         pixel358         pixel359     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 58.37   Mean   : 38.36   Mean   : 23.99   Mean   : 12.95  
##  3rd Qu.: 99.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel360          pixel361           pixel362            pixel363       
##  Min.   :  0.000   Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.0000  
##  1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:  0.0000  
##  Median :  0.000   Median :  0.0000   Median :  0.00000   Median :  0.0000  
##  Mean   :  4.459   Mean   :  0.4759   Mean   :  0.07445   Mean   :  0.0109  
##  3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:  0.0000  
##  Max.   :255.000   Max.   :255.0000   Max.   :252.00000   Max.   :110.0000  
##     pixel364          pixel365           pixel366           pixel367       
##  Min.   :0.0e+00   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:0.0e+00   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :0.0e+00   Median :  0.0000   Median :  0.0000   Median :  0.0000  
##  Mean   :7.6e-04   Mean   :  0.0135   Mean   :  0.1292   Mean   :  0.6131  
##  3rd Qu.:0.0e+00   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :3.2e+01   Max.   :253.0000   Max.   :255.0000   Max.   :255.0000  
##     pixel368          pixel369        pixel370        pixel371     
##  Min.   :  0.000   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.0   Median :  0.0   Median :  0.00  
##  Mean   :  2.815   Mean   : 10.7   Mean   : 25.7   Mean   : 47.93  
##  3rd Qu.:  0.000   3rd Qu.:  0.0   3rd Qu.:  0.0   3rd Qu.: 34.00  
##  Max.   :255.000   Max.   :255.0   Max.   :255.0   Max.   :255.00  
##     pixel372         pixel373         pixel374         pixel375     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  2.00   Median : 21.00   Median :  9.00  
##  Mean   : 72.83   Mean   : 91.76   Mean   : 97.15   Mean   : 91.12  
##  3rd Qu.:173.00   3rd Qu.:230.00   3rd Qu.:237.00   3rd Qu.:226.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel376         pixel377         pixel378        pixel379    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  6.00   Median : 29.00   Median : 64.0   Median :124.0  
##  Mean   : 86.84   Mean   : 96.88   Mean   :111.5   Mean   :124.5  
##  3rd Qu.:213.00   3rd Qu.:232.00   3rd Qu.:252.0   3rd Qu.:252.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.0  
##     pixel380        pixel381        pixel382        pixel383     
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median :144.0   Median :135.0   Median : 64.0   Median :  0.00  
##  Mean   :130.7   Mean   :127.5   Mean   :109.5   Mean   : 81.27  
##  3rd Qu.:252.0   3rd Qu.:252.0   3rd Qu.:251.0   3rd Qu.:194.00  
##  Max.   :255.0   Max.   :255.0   Max.   :255.0   Max.   :255.00  
##     pixel384         pixel385         pixel386         pixel387    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.0  
##  Mean   : 55.37   Mean   : 37.48   Mean   : 24.29   Mean   : 13.9  
##  3rd Qu.: 82.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.0  
##     pixel388          pixel389          pixel390            pixel391        
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.00000   Min.   :  0.00000  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00000   1st Qu.:  0.00000  
##  Median :  0.000   Median :  0.000   Median :  0.00000   Median :  0.00000  
##  Mean   :  5.257   Mean   :  0.616   Mean   :  0.07252   Mean   :  0.01288  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00000   3rd Qu.:  0.00000  
##  Max.   :255.000   Max.   :255.000   Max.   :252.00000   Max.   :247.00000  
##     pixel392    pixel393          pixel394            pixel395       
##  Min.   :0   Min.   :  0.000   Min.   :  0.00000   Min.   :  0.0000  
##  1st Qu.:0   1st Qu.:  0.000   1st Qu.:  0.00000   1st Qu.:  0.0000  
##  Median :0   Median :  0.000   Median :  0.00000   Median :  0.0000  
##  Mean   :0   Mean   :  0.005   Mean   :  0.05248   Mean   :  0.4321  
##  3rd Qu.:0   3rd Qu.:  0.000   3rd Qu.:  0.00000   3rd Qu.:  0.0000  
##  Max.   :0   Max.   :188.000   Max.   :254.00000   Max.   :255.0000  
##     pixel396          pixel397         pixel398         pixel399     
##  Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   :  2.936   Mean   : 12.36   Mean   : 28.52   Mean   : 50.57  
##  3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.: 48.00  
##  Max.   :255.000   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel400         pixel401         pixel402         pixel403     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median : 15.00   Median : 16.00  
##  Mean   : 73.58   Mean   : 89.73   Mean   : 94.56   Mean   : 92.68  
##  3rd Qu.:180.00   3rd Qu.:228.00   3rd Qu.:233.00   3rd Qu.:226.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel404         pixel405      pixel406        pixel407        pixel408    
##  Min.   :  0.00   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median : 35.00   Median : 92   Median :144.0   Median :173.0   Median :164.0  
##  Mean   : 97.16   Mean   :115   Mean   :130.1   Mean   :139.8   Mean   :137.4  
##  3rd Qu.:231.00   3rd Qu.:252   3rd Qu.:253.0   3rd Qu.:253.0   3rd Qu.:253.0  
##  Max.   :255.00   Max.   :255   Max.   :255.0   Max.   :255.0   Max.   :255.0  
##     pixel409        pixel410        pixel411         pixel412     
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :141.0   Median : 60.0   Median :  0.00   Median :  0.00  
##  Mean   :128.7   Mean   :107.7   Mean   : 79.75   Mean   : 56.31  
##  3rd Qu.:252.0   3rd Qu.:250.0   3rd Qu.:191.00   3rd Qu.: 86.00  
##  Max.   :255.0   Max.   :255.0   Max.   :255.00   Max.   :255.00  
##     pixel413         pixel414         pixel415         pixel416      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.000  
##  Mean   : 39.24   Mean   : 25.75   Mean   : 14.86   Mean   :  5.844  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.000  
##     pixel417           pixel418            pixel419           pixel420
##  Min.   :  0.0000   Min.   :  0.00000   Min.   : 0.00000   Min.   :0  
##  1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.: 0.00000   1st Qu.:0  
##  Median :  0.0000   Median :  0.00000   Median : 0.00000   Median :0  
##  Mean   :  0.8296   Mean   :  0.07433   Mean   : 0.00193   Mean   :0  
##  3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.: 0.00000   3rd Qu.:0  
##  Max.   :255.0000   Max.   :209.00000   Max.   :51.00000   Max.   :0  
##     pixel421    pixel422            pixel423           pixel424      
##  Min.   :0   Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.000  
##  1st Qu.:0   1st Qu.:  0.00000   1st Qu.:  0.0000   1st Qu.:  0.000  
##  Median :0   Median :  0.00000   Median :  0.0000   Median :  0.000  
##  Mean   :0   Mean   :  0.03567   Mean   :  0.4788   Mean   :  3.477  
##  3rd Qu.:0   3rd Qu.:  0.00000   3rd Qu.:  0.0000   3rd Qu.:  0.000  
##  Max.   :0   Max.   :254.00000   Max.   :255.0000   Max.   :255.000  
##     pixel425         pixel426         pixel427         pixel428    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.0  
##  Mean   : 14.31   Mean   : 30.78   Mean   : 51.02   Mean   : 71.1  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.: 48.00   3rd Qu.:169.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.0  
##     pixel429         pixel430         pixel431         pixel432    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0  
##  Median :  0.00   Median :  7.00   Median : 19.00   Median : 56.0  
##  Mean   : 85.14   Mean   : 90.78   Mean   : 93.73   Mean   :104.6  
##  3rd Qu.:216.00   3rd Qu.:224.00   3rd Qu.:227.00   3rd Qu.:242.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.0  
##     pixel433        pixel434        pixel435        pixel436      pixel437    
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.0  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0   1st Qu.:  0.0  
##  Median :121.0   Median :167.0   Median :170.0   Median :149   Median :116.0  
##  Mean   :123.1   Mean   :135.5   Mean   :139.1   Mean   :132   Mean   :121.7  
##  3rd Qu.:252.0   3rd Qu.:253.0   3rd Qu.:253.0   3rd Qu.:253   3rd Qu.:252.0  
##  Max.   :255.0   Max.   :255.0   Max.   :255.0   Max.   :255   Max.   :255.0  
##     pixel438        pixel439         pixel440         pixel441     
##  Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median : 42.0   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   :101.9   Mean   : 78.86   Mean   : 58.85   Mean   : 41.73  
##  3rd Qu.:241.0   3rd Qu.:191.00   3rd Qu.:103.00   3rd Qu.:  2.00  
##  Max.   :255.0   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel442         pixel443        pixel444          pixel445      
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.0   Median :  0.000   Median :  0.000  
##  Mean   : 27.17   Mean   : 15.1   Mean   :  5.895   Mean   :  1.058  
##  3rd Qu.:  0.00   3rd Qu.:  0.0   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.0   Max.   :255.000   Max.   :255.000  
##     pixel446           pixel447            pixel448    pixel449       
##  Min.   :  0.0000   Min.   :  0.00000   Min.   :0   Min.   : 0.00000  
##  1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:0   1st Qu.: 0.00000  
##  Median :  0.0000   Median :  0.00000   Median :0   Median : 0.00000  
##  Mean   :  0.1438   Mean   :  0.01098   Mean   :0   Mean   : 0.00188  
##  3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:0   3rd Qu.: 0.00000  
##  Max.   :255.0000   Max.   :190.00000   Max.   :0   Max.   :47.00000  
##     pixel450           pixel451           pixel452          pixel453     
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.00  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.00  
##  Median :  0.0000   Median :  0.0000   Median :  0.000   Median :  0.00  
##  Mean   :  0.0666   Mean   :  0.6474   Mean   :  4.449   Mean   : 16.35  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.00  
##  Max.   :254.0000   Max.   :255.0000   Max.   :255.000   Max.   :255.00  
##     pixel454         pixel455         pixel456        pixel457    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  0.00   Median :  0.00   Median :  0.0   Median :  0.0  
##  Mean   : 32.25   Mean   : 49.76   Mean   : 66.2   Mean   : 77.7  
##  3rd Qu.:  0.00   3rd Qu.: 40.00   3rd Qu.:140.0   3rd Qu.:192.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.0  
##     pixel458         pixel459         pixel460        pixel461    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  0.00   Median :  7.00   Median : 39.0   Median : 87.0  
##  Mean   : 83.55   Mean   : 88.88   Mean   :100.5   Mean   :115.4  
##  3rd Qu.:206.00   3rd Qu.:218.00   3rd Qu.:240.0   3rd Qu.:252.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.0  
##     pixel462      pixel463        pixel464        pixel465        pixel466     
##  Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median :129   Median :133.0   Median :111.0   Median : 75.0   Median : 27.00  
##  Mean   :126   Mean   :127.5   Mean   :121.3   Mean   :111.4   Mean   : 95.93  
##  3rd Qu.:253   3rd Qu.:253.0   3rd Qu.:252.0   3rd Qu.:251.0   3rd Qu.:229.00  
##  Max.   :255   Max.   :255.0   Max.   :255.0   Max.   :255.0   Max.   :255.00  
##     pixel467         pixel468         pixel469         pixel470     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 78.36   Mean   : 60.52   Mean   : 42.63   Mean   : 27.05  
##  3rd Qu.:191.00   3rd Qu.:113.00   3rd Qu.:  6.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel471         pixel472         pixel473          pixel474       
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.0000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.0000  
##  Median :  0.00   Median :  0.00   Median :  0.000   Median :  0.0000  
##  Mean   : 14.34   Mean   :  5.59   Mean   :  1.243   Mean   :  0.1886  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.0000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.000   Max.   :254.0000  
##     pixel475            pixel476    pixel477           pixel478       
##  Min.   :  0.00000   Min.   :0   Min.   : 0.00000   Min.   :  0.0000  
##  1st Qu.:  0.00000   1st Qu.:0   1st Qu.: 0.00000   1st Qu.:  0.0000  
##  Median :  0.00000   Median :0   Median : 0.00000   Median :  0.0000  
##  Mean   :  0.02012   Mean   :0   Mean   : 0.00371   Mean   :  0.1051  
##  3rd Qu.:  0.00000   3rd Qu.:0   3rd Qu.: 0.00000   3rd Qu.:  0.0000  
##  Max.   :223.00000   Max.   :0   Max.   :71.00000   Max.   :254.0000  
##     pixel479           pixel480          pixel481         pixel482     
##  Min.   :  0.0000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.0000   Median :  0.000   Median :  0.00   Median :  0.00  
##  Mean   :  0.9673   Mean   :  5.888   Mean   : 18.16   Mean   : 33.28  
##  3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.0000   Max.   :255.000   Max.   :255.00   Max.   :255.00  
##     pixel483         pixel484         pixel485        pixel486     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.0   Median :  0.00  
##  Mean   : 48.02   Mean   : 60.62   Mean   : 69.4   Mean   : 74.59  
##  3rd Qu.: 32.00   3rd Qu.:110.00   3rd Qu.:156.0   3rd Qu.:177.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.00  
##     pixel487         pixel488         pixel489        pixel490    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  0.00   Median :  0.00   Median : 35.0   Median : 76.0  
##  Mean   : 80.26   Mean   : 88.92   Mean   :101.2   Mean   :112.1  
##  3rd Qu.:196.00   3rd Qu.:226.00   3rd Qu.:245.0   3rd Qu.:252.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.0   Max.   :255.0  
##     pixel491        pixel492        pixel493        pixel494     
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median : 88.0   Median : 81.0   Median : 56.0   Median : 18.00  
##  Mean   :115.4   Mean   :112.6   Mean   :105.2   Mean   : 93.53  
##  3rd Qu.:252.0   3rd Qu.:252.0   3rd Qu.:244.0   3rd Qu.:227.00  
##  Max.   :255.0   Max.   :255.0   Max.   :255.0   Max.   :255.00  
##     pixel495         pixel496         pixel497         pixel498     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 78.66   Mean   : 60.41   Mean   : 41.52   Mean   : 25.25  
##  3rd Qu.:194.00   3rd Qu.:113.00   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel499         pixel500          pixel501          pixel502       
##  Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
##  1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0000  
##  Median :  0.00   Median :  0.000   Median :  0.000   Median :  0.0000  
##  Mean   : 12.82   Mean   :  5.052   Mean   :  1.328   Mean   :  0.2043  
##  3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0000  
##  Max.   :255.00   Max.   :255.000   Max.   :255.000   Max.   :253.0000  
##     pixel503           pixel504           pixel505           pixel506       
##  Min.   :  0.0000   Min.   : 0.00000   Min.   :0.00e+00   Min.   :  0.0000  
##  1st Qu.:  0.0000   1st Qu.: 0.00000   1st Qu.:0.00e+00   1st Qu.:  0.0000  
##  Median :  0.0000   Median : 0.00000   Median :0.00e+00   Median :  0.0000  
##  Mean   :  0.0181   Mean   : 0.00264   Mean   :5.33e-03   Mean   :  0.1716  
##  3rd Qu.:  0.0000   3rd Qu.: 0.00000   3rd Qu.:0.00e+00   3rd Qu.:  0.0000  
##  Max.   :121.0000   Max.   :60.00000   Max.   :1.26e+02   Max.   :255.0000  
##     pixel507          pixel508          pixel509         pixel510     
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.000   Median :  0.00   Median :  0.00  
##  Mean   :  1.509   Mean   :  7.523   Mean   : 20.15   Mean   : 34.72  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.000   Max.   :255.000   Max.   :255.00   Max.   :255.00  
##     pixel511        pixel512         pixel513         pixel514     
##  Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.0   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 48.3   Mean   : 58.56   Mean   : 65.86   Mean   : 71.46  
##  3rd Qu.: 32.0   3rd Qu.: 98.00   3rd Qu.:137.00   3rd Qu.:168.00  
##  Max.   :255.0   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel515         pixel516         pixel517         pixel518    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.0  
##  Median :  0.00   Median :  0.00   Median : 16.00   Median : 54.0  
##  Mean   : 76.27   Mean   : 82.62   Mean   : 94.35   Mean   :106.1  
##  3rd Qu.:189.00   3rd Qu.:206.00   3rd Qu.:232.00   3rd Qu.:250.0  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.0  
##     pixel519        pixel520        pixel521      pixel522        pixel523    
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median : 80.0   Median : 81.0   Median : 58   Median : 15.0   Median :  0.0  
##  Mean   :112.6   Mean   :112.2   Mean   :106   Mean   : 94.6   Mean   : 78.1  
##  3rd Qu.:252.0   3rd Qu.:250.0   3rd Qu.:244   3rd Qu.:232.0   3rd Qu.:194.2  
##  Max.   :255.0   Max.   :255.0   Max.   :255   Max.   :255.0   Max.   :255.0  
##     pixel524         pixel525        pixel526         pixel527     
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.0   Median :  0.00   Median :  0.00  
##  Mean   : 57.81   Mean   : 38.4   Mean   : 22.68   Mean   : 11.29  
##  3rd Qu.: 94.00   3rd Qu.:  0.0   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.0   Max.   :255.00   Max.   :255.00  
##     pixel528          pixel529          pixel530           pixel531       
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.000   Median :  0.000   Median :  0.0000   Median :  0.0000  
##  Mean   :  4.453   Mean   :  1.246   Mean   :  0.1621   Mean   :  0.0111  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :255.000   Max.   :255.000   Max.   :255.0000   Max.   :151.0000  
##     pixel532    pixel533           pixel534           pixel535      
##  Min.   :0   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000  
##  1st Qu.:0   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.000  
##  Median :0   Median :  0.0000   Median :  0.0000   Median :  0.000  
##  Mean   :0   Mean   :  0.0096   Mean   :  0.2757   Mean   :  2.037  
##  3rd Qu.:0   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.000  
##  Max.   :0   Max.   :255.0000   Max.   :255.0000   Max.   :255.000  
##     pixel536          pixel537         pixel538         pixel539     
##  Min.   :  0.000   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   :  8.624   Mean   : 21.59   Mean   : 36.88   Mean   : 51.12  
##  3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.: 48.00  
##  Max.   :255.000   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel540         pixel541         pixel542         pixel543     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 62.61   Mean   : 71.28   Mean   : 77.61   Mean   : 82.16  
##  3rd Qu.:124.00   3rd Qu.:168.00   3rd Qu.:192.00   3rd Qu.:209.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel544         pixel545        pixel546        pixel547    
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  3.00   Median : 36.0   Median : 77.0   Median :103.0  
##  Mean   : 89.26   Mean   :100.3   Mean   :112.4   Mean   :118.6  
##  3rd Qu.:226.00   3rd Qu.:242.0   3rd Qu.:252.0   3rd Qu.:252.0  
##  Max.   :255.00   Max.   :255.0   Max.   :255.0   Max.   :255.0  
##     pixel548        pixel549        pixel550         pixel551     
##  Min.   :  0.0   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :100.0   Median : 64.0   Median : 10.00   Median :  0.00  
##  Mean   :117.2   Mean   :108.7   Mean   : 93.43   Mean   : 73.22  
##  3rd Qu.:252.0   3rd Qu.:249.0   3rd Qu.:232.00   3rd Qu.:174.00  
##  Max.   :255.0   Max.   :255.0   Max.   :255.00   Max.   :255.00  
##     pixel552         pixel553         pixel554         pixel555     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 51.85   Mean   : 33.29   Mean   : 18.95   Mean   :  9.13  
##  3rd Qu.: 57.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel556          pixel557          pixel558           pixel559       
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000   Min.   :0.00e+00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:0.00e+00  
##  Median :  0.000   Median :  0.000   Median :  0.0000   Median :0.00e+00  
##  Mean   :  3.536   Mean   :  1.026   Mean   :  0.1598   Mean   :5.43e-03  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:0.00e+00  
##  Max.   :255.000   Max.   :255.000   Max.   :253.0000   Max.   :1.28e+02  
##     pixel560    pixel561           pixel562           pixel563      
##  Min.   :0   Min.   :0.00e+00   Min.   :  0.0000   Min.   :  0.000  
##  1st Qu.:0   1st Qu.:0.00e+00   1st Qu.:  0.0000   1st Qu.:  0.000  
##  Median :0   Median :0.00e+00   Median :  0.0000   Median :  0.000  
##  Mean   :0   Mean   :9.17e-03   Mean   :  0.3236   Mean   :  2.294  
##  3rd Qu.:0   3rd Qu.:0.00e+00   3rd Qu.:  0.0000   3rd Qu.:  0.000  
##  Max.   :0   Max.   :1.78e+02   Max.   :255.0000   Max.   :255.000  
##     pixel564          pixel565         pixel566        pixel567     
##  Min.   :  0.000   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.00   Median :  0.0   Median :  0.00  
##  Mean   :  8.577   Mean   : 20.66   Mean   : 36.9   Mean   : 53.74  
##  3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.0   3rd Qu.: 64.00  
##  Max.   :255.000   Max.   :255.00   Max.   :255.0   Max.   :255.00  
##     pixel568         pixel569         pixel570         pixel571     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median : 22.00  
##  Mean   : 68.99   Mean   : 81.35   Mean   : 90.21   Mean   : 97.62  
##  3rd Qu.:159.00   3rd Qu.:207.00   3rd Qu.:229.00   3rd Qu.:241.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel572        pixel573      pixel574        pixel575        pixel576    
##  Min.   :  0.0   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.0   1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median : 56.0   Median : 96   Median :128.0   Median :129.0   Median :109.0  
##  Mean   :106.2   Mean   :117   Mean   :125.6   Mean   :126.7   Mean   :119.7  
##  3rd Qu.:250.0   3rd Qu.:252   3rd Qu.:252.0   3rd Qu.:253.0   3rd Qu.:252.0  
##  Max.   :255.0   Max.   :255   Max.   :255.0   Max.   :255.0   Max.   :255.0  
##     pixel577        pixel578         pixel579        pixel580     
##  Min.   :  0.0   Min.   :  0.00   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median : 53.0   Median :  0.00   Median :  0.0   Median :  0.00  
##  Mean   :105.3   Mean   : 85.09   Mean   : 62.3   Mean   : 41.47  
##  3rd Qu.:246.0   3rd Qu.:213.00   3rd Qu.:122.0   3rd Qu.:  5.00  
##  Max.   :255.0   Max.   :255.00   Max.   :255.0   Max.   :255.00  
##     pixel581         pixel582         pixel583          pixel584      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.000   Median :  0.000  
##  Mean   : 25.23   Mean   : 13.66   Mean   :  6.501   Mean   :  2.634  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.000   Max.   :255.000  
##     pixel585          pixel586           pixel587           pixel588      
##  Min.   :  0.000   Min.   :  0.0000   Min.   : 0.00000   Min.   :0.0e+00  
##  1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.: 0.00000   1st Qu.:0.0e+00  
##  Median :  0.000   Median :  0.0000   Median : 0.00000   Median :0.0e+00  
##  Mean   :  0.755   Mean   :  0.1042   Mean   : 0.00119   Mean   :7.6e-04  
##  3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.: 0.00000   3rd Qu.:0.0e+00  
##  Max.   :255.000   Max.   :255.0000   Max.   :50.00000   Max.   :3.2e+01  
##     pixel589           pixel590           pixel591          pixel592      
##  Min.   :0.00e+00   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:0.00e+00   1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :0.00e+00   Median :  0.0000   Median :  0.000   Median :  0.000  
##  Mean   :7.07e-03   Mean   :  0.2723   Mean   :  1.907   Mean   :  6.756  
##  3rd Qu.:0.00e+00   3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :1.07e+02   Max.   :255.0000   Max.   :255.000   Max.   :255.000  
##     pixel593         pixel594         pixel595         pixel596     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 16.95   Mean   : 32.56   Mean   : 51.39   Mean   : 70.45  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.: 50.00   3rd Qu.:169.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel597         pixel598      pixel599        pixel600        pixel601    
##  Min.   :  0.00   Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.0  
##  Median :  0.00   Median : 32   Median : 82.0   Median :117.0   Median :144.0  
##  Mean   : 87.45   Mean   :101   Mean   :112.4   Mean   :122.6   Mean   :130.8  
##  3rd Qu.:226.00   3rd Qu.:246   3rd Qu.:252.0   3rd Qu.:252.0   3rd Qu.:252.0  
##  Max.   :255.00   Max.   :255   Max.   :255.0   Max.   :255.0   Max.   :255.0  
##     pixel602      pixel603        pixel604        pixel605     
##  Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median :151   Median :130.0   Median : 81.0   Median : 10.00  
##  Mean   :133   Mean   :126.3   Mean   :111.6   Mean   : 90.95  
##  3rd Qu.:253   3rd Qu.:252.0   3rd Qu.:250.0   3rd Qu.:222.25  
##  Max.   :255   Max.   :255.0   Max.   :255.0   Max.   :255.00  
##     pixel606         pixel607         pixel608         pixel609     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 67.71   Mean   : 46.19   Mean   : 28.82   Mean   : 16.23  
##  3rd Qu.:145.00   3rd Qu.: 28.00   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel610          pixel611          pixel612          pixel613       
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.0000  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.0000  
##  Median :  0.000   Median :  0.000   Median :  0.000   Median :  0.0000  
##  Mean   :  8.397   Mean   :  4.122   Mean   :  1.635   Mean   :  0.4292  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.0000  
##  Max.   :255.000   Max.   :255.000   Max.   :255.000   Max.   :255.0000  
##     pixel614            pixel615          pixel616           pixel617       
##  Min.   :  0.00000   Min.   :0.0e+00   Min.   :0.00e+00   Min.   :0.00e+00  
##  1st Qu.:  0.00000   1st Qu.:0.0e+00   1st Qu.:0.00e+00   1st Qu.:0.00e+00  
##  Median :  0.00000   Median :0.0e+00   Median :0.00e+00   Median :0.00e+00  
##  Mean   :  0.06571   Mean   :9.3e-04   Mean   :7.38e-04   Mean   :3.33e-04  
##  3rd Qu.:  0.00000   3rd Qu.:0.0e+00   3rd Qu.:0.00e+00   3rd Qu.:0.00e+00  
##  Max.   :251.00000   Max.   :3.9e+01   Max.   :3.10e+01   Max.   :1.00e+01  
##     pixel618           pixel619          pixel620         pixel621     
##  Min.   :  0.0000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.0000   Median :  0.000   Median :  0.00   Median :  0.00  
##  Mean   :  0.1705   Mean   :  1.158   Mean   :  4.03   Mean   : 10.91  
##  3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.0000   Max.   :255.000   Max.   :255.00   Max.   :255.00  
##     pixel622         pixel623         pixel624         pixel625     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 23.26   Mean   : 40.24   Mean   : 60.69   Mean   : 80.79  
##  3rd Qu.:  0.00   3rd Qu.:  2.00   3rd Qu.:114.00   3rd Qu.:208.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel626         pixel627      pixel628        pixel629      pixel630    
##  Min.   :  0.00   Min.   :  0   Min.   :  0.0   Min.   :  0   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0   1st Qu.:  0.0   1st Qu.:  0   1st Qu.:  0.0  
##  Median : 17.00   Median : 79   Median :121.0   Median :130   Median :118.0  
##  Mean   : 98.92   Mean   :113   Mean   :122.7   Mean   :126   Mean   :121.9  
##  3rd Qu.:245.00   3rd Qu.:252   3rd Qu.:252.0   3rd Qu.:252   3rd Qu.:252.0  
##  Max.   :255.00   Max.   :255   Max.   :255.0   Max.   :255   Max.   :255.0  
##     pixel631        pixel632         pixel633         pixel634     
##  Min.   :  0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median : 65.0   Median :  4.00   Median :  0.00   Median :  0.00  
##  Mean   :108.5   Mean   : 89.06   Mean   : 66.84   Mean   : 45.73  
##  3rd Qu.:250.0   3rd Qu.:218.00   3rd Qu.:142.00   3rd Qu.: 30.00  
##  Max.   :255.0   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel635         pixel636         pixel637          pixel638      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.000   Median :  0.000  
##  Mean   : 28.86   Mean   : 16.69   Mean   :  8.914   Mean   :  4.548  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.000   Max.   :255.000  
##     pixel639          pixel640           pixel641           pixel642        
##  Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00000  
##  1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.00000  
##  Median :  0.000   Median :  0.0000   Median :  0.0000   Median :  0.00000  
##  Mean   :  2.102   Mean   :  0.7971   Mean   :  0.2019   Mean   :  0.02333  
##  3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.00000  
##  Max.   :255.000   Max.   :255.0000   Max.   :253.0000   Max.   :225.00000  
##     pixel643           pixel644    pixel645    pixel646        
##  Min.   : 0.00000   Min.   :0   Min.   :0   Min.   :  0.00000  
##  1st Qu.: 0.00000   1st Qu.:0   1st Qu.:0   1st Qu.:  0.00000  
##  Median : 0.00000   Median :0   Median :0   Median :  0.00000  
##  Mean   : 0.00171   Mean   :0   Mean   :0   Mean   :  0.06069  
##  3rd Qu.: 0.00000   3rd Qu.:0   3rd Qu.:0   3rd Qu.:  0.00000  
##  Max.   :72.00000   Max.   :0   Max.   :0   Max.   :217.00000  
##     pixel647           pixel648          pixel649          pixel650     
##  Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
##  1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00  
##  Median :  0.0000   Median :  0.000   Median :  0.000   Median :  0.00  
##  Mean   :  0.4729   Mean   :  1.809   Mean   :  5.026   Mean   : 12.01  
##  3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00  
##  Max.   :255.0000   Max.   :255.000   Max.   :255.000   Max.   :255.00  
##     pixel651         pixel652         pixel653         pixel654     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 23.71   Mean   : 39.84   Mean   : 58.29   Mean   : 76.57  
##  3rd Qu.:  0.00   3rd Qu.:  5.00   3rd Qu.:104.00   3rd Qu.:184.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel655         pixel656        pixel657         pixel658     
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median : 27.0   Median : 30.00   Median :  6.00  
##  Mean   : 91.62   Mean   : 99.9   Mean   : 99.82   Mean   : 91.57  
##  3rd Qu.:228.00   3rd Qu.:241.0   3rd Qu.:240.00   3rd Qu.:222.00  
##  Max.   :255.00   Max.   :255.0   Max.   :255.00   Max.   :255.00  
##     pixel659         pixel660         pixel661         pixel662     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 76.47   Mean   : 58.16   Mean   : 40.59   Mean   : 25.69  
##  3rd Qu.:178.00   3rd Qu.:103.00   3rd Qu.: 12.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel663         pixel664          pixel665          pixel666      
##  Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.000   Median :  0.000   Median :  0.000  
##  Mean   : 15.21   Mean   :  8.414   Mean   :  4.275   Mean   :  2.105  
##  3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.000   Max.   :255.000   Max.   :255.000  
##     pixel667           pixel668           pixel669            pixel670        
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:  0.00000  
##  Median :  0.0000   Median :  0.0000   Median :  0.00000   Median :  0.00000  
##  Mean   :  0.9506   Mean   :  0.3095   Mean   :  0.06471   Mean   :  0.01238  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:  0.00000  
##  Max.   :255.0000   Max.   :255.0000   Max.   :241.00000   Max.   :150.00000  
##     pixel671    pixel672    pixel673    pixel674            pixel675       
##  Min.   :0   Min.   :0   Min.   :0   Min.   :  0.00000   Min.   :  0.0000  
##  1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:  0.00000   1st Qu.:  0.0000  
##  Median :0   Median :0   Median :0   Median :  0.00000   Median :  0.0000  
##  Mean   :0   Mean   :0   Mean   :0   Mean   :  0.01805   Mean   :  0.1389  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:  0.00000   3rd Qu.:  0.0000  
##  Max.   :0   Max.   :0   Max.   :0   Max.   :253.00000   Max.   :253.0000  
##     pixel676           pixel677          pixel678          pixel679      
##  Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.0000   Median :  0.000   Median :  0.000   Median :  0.000  
##  Mean   :  0.5567   Mean   :  1.637   Mean   :  4.152   Mean   :  8.925  
##  3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.0000   Max.   :255.000   Max.   :255.000   Max.   :255.000  
##     pixel680         pixel681        pixel682         pixel683    
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.0  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.0  
##  Median :  0.00   Median :  0.0   Median :  0.00   Median :  0.0  
##  Mean   : 16.42   Mean   : 26.4   Mean   : 37.14   Mean   : 46.2  
##  3rd Qu.:  0.00   3rd Qu.:  0.0   3rd Qu.:  0.00   3rd Qu.: 25.0  
##  Max.   :255.00   Max.   :255.0   Max.   :255.00   Max.   :255.0  
##     pixel684         pixel685         pixel686         pixel687     
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.00  
##  Mean   : 51.24   Mean   : 51.04   Mean   : 45.93   Mean   : 37.29  
##  3rd Qu.: 64.00   3rd Qu.: 63.00   3rd Qu.: 31.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.00  
##     pixel688         pixel689         pixel690         pixel691      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.000  
##  Mean   : 28.02   Mean   : 19.44   Mean   : 12.16   Mean   :  7.313  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.00   Max.   :255.00   Max.   :255.000  
##     pixel692      pixel693          pixel694           pixel695       
##  Min.   :  0   Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0   1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0   Median :  0.000   Median :  0.0000   Median :  0.0000  
##  Mean   :  4   Mean   :  1.992   Mean   :  0.9327   Mean   :  0.4042  
##  3rd Qu.:  0   3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :255   Max.   :255.000   Max.   :255.0000   Max.   :255.0000  
##     pixel696           pixel697            pixel698           pixel699
##  Min.   :  0.0000   Min.   :  0.00000   Min.   : 0.00000   Min.   :0  
##  1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.: 0.00000   1st Qu.:0  
##  Median :  0.0000   Median :  0.00000   Median : 0.00000   Median :0  
##  Mean   :  0.1003   Mean   :  0.02307   Mean   : 0.00276   Mean   :0  
##  3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.: 0.00000   3rd Qu.:0  
##  Max.   :254.0000   Max.   :241.00000   Max.   :98.00000   Max.   :0  
##     pixel700    pixel701    pixel702           pixel703       
##  Min.   :0   Min.   :0   Min.   : 0.00000   Min.   :  0.0000  
##  1st Qu.:0   1st Qu.:0   1st Qu.: 0.00000   1st Qu.:  0.0000  
##  Median :0   Median :0   Median : 0.00000   Median :  0.0000  
##  Mean   :0   Mean   :0   Mean   : 0.00224   Mean   :  0.0209  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.: 0.00000   3rd Qu.:  0.0000  
##  Max.   :0   Max.   :0   Max.   :42.00000   Max.   :254.0000  
##     pixel704           pixel705           pixel706          pixel707      
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.0000   Median :  0.0000   Median :  0.000   Median :  0.000  
##  Mean   :  0.1489   Mean   :  0.4729   Mean   :  1.306   Mean   :  2.991  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.0000   Max.   :255.0000   Max.   :255.000   Max.   :255.000  
##     pixel708          pixel709          pixel710         pixel711     
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.000   Median :  0.000   Median :  0.00   Median :  0.00  
##  Mean   :  5.843   Mean   :  9.439   Mean   : 13.48   Mean   : 16.56  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.000   Max.   :255.000   Max.   :255.00   Max.   :255.00  
##     pixel712         pixel713        pixel714         pixel715     
##  Min.   :  0.00   Min.   :  0.0   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.00   1st Qu.:  0.00  
##  Median :  0.00   Median :  0.0   Median :  0.00   Median :  0.00  
##  Mean   : 18.13   Mean   : 17.9   Mean   : 16.11   Mean   : 13.64  
##  3rd Qu.:  0.00   3rd Qu.:  0.0   3rd Qu.:  0.00   3rd Qu.:  0.00  
##  Max.   :255.00   Max.   :255.0   Max.   :255.00   Max.   :255.00  
##     pixel716         pixel717          pixel718          pixel719      
##  Min.   :  0.00   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.000   Median :  0.000   Median :  0.000  
##  Mean   : 10.89   Mean   :  8.055   Mean   :  5.334   Mean   :  3.186  
##  3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.00   Max.   :255.000   Max.   :255.000   Max.   :255.000  
##     pixel720          pixel721           pixel722           pixel723       
##  Min.   :  0.000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.000   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.000   Median :  0.0000   Median :  0.0000   Median :  0.0000  
##  Mean   :  1.721   Mean   :  0.8351   Mean   :  0.3787   Mean   :  0.1461  
##  3rd Qu.:  0.000   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :255.000   Max.   :255.0000   Max.   :255.0000   Max.   :255.0000  
##     pixel724           pixel725           pixel726           pixel727
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :0.00e+00   Min.   :0  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:0.00e+00   1st Qu.:0  
##  Median :  0.0000   Median :  0.0000   Median :0.00e+00   Median :0  
##  Mean   :  0.0244   Mean   :  0.0051   Mean   :2.48e-03   Mean   :0  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:0.00e+00   3rd Qu.:0  
##  Max.   :196.0000   Max.   :127.0000   Max.   :1.04e+02   Max.   :0  
##     pixel728    pixel729    pixel730    pixel731    pixel732        
##  Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :  0.00000  
##  1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:  0.00000  
##  Median :0   Median :0   Median :0   Median :0   Median :  0.00000  
##  Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :  0.03505  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:  0.00000  
##  Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :255.00000  
##     pixel733           pixel734           pixel735          pixel736      
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.0000   Median :  0.0000   Median :  0.000   Median :  0.000  
##  Mean   :  0.1397   Mean   :  0.5031   Mean   :  1.146   Mean   :  2.162  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.0000   Max.   :255.0000   Max.   :255.000   Max.   :255.000  
##     pixel737          pixel738          pixel739          pixel740      
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.000   Median :  0.000   Median :  0.000   Median :  0.000  
##  Mean   :  3.243   Mean   :  4.637   Mean   :  5.979   Mean   :  6.605  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.000   Max.   :255.000   Max.   :255.000   Max.   :255.000  
##     pixel741          pixel742          pixel743          pixel744      
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.000   Min.   :  0.000  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.000  
##  Median :  0.000   Median :  0.000   Median :  0.000   Median :  0.000  
##  Mean   :  6.444   Mean   :  5.681   Mean   :  4.657   Mean   :  3.773  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000  
##  Max.   :255.000   Max.   :255.000   Max.   :255.000   Max.   :255.000  
##     pixel745          pixel746          pixel747         pixel748       
##  Min.   :  0.000   Min.   :  0.000   Min.   :  0.00   Min.   :  0.0000  
##  1st Qu.:  0.000   1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.0000  
##  Median :  0.000   Median :  0.000   Median :  0.00   Median :  0.0000  
##  Mean   :  2.749   Mean   :  1.796   Mean   :  1.09   Mean   :  0.5632  
##  3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.0000  
##  Max.   :255.000   Max.   :255.000   Max.   :255.00   Max.   :255.0000  
##     pixel749           pixel750            pixel751            pixel752       
##  Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000   Min.   :0.00e+00  
##  1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:  0.00000   1st Qu.:0.00e+00  
##  Median :  0.0000   Median :  0.00000   Median :  0.00000   Median :0.00e+00  
##  Mean   :  0.2396   Mean   :  0.09352   Mean   :  0.02483   Mean   :8.57e-04  
##  3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:  0.00000   3rd Qu.:0.00e+00  
##  Max.   :255.0000   Max.   :255.00000   Max.   :253.00000   Max.   :2.80e+01  
##     pixel753          pixel754    pixel755    pixel756    pixel757    pixel758
##  Min.   : 0.0000   Min.   :0   Min.   :0   Min.   :0   Min.   :0   Min.   :0  
##  1st Qu.: 0.0000   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0  
##  Median : 0.0000   Median :0   Median :0   Median :0   Median :0   Median :0  
##  Mean   : 0.0014   Mean   :0   Mean   :0   Mean   :0   Mean   :0   Mean   :0  
##  3rd Qu.: 0.0000   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0  
##  Max.   :59.0000   Max.   :0   Max.   :0   Max.   :0   Max.   :0   Max.   :0  
##     pixel759    pixel760    pixel761           pixel762        
##  Min.   :0   Min.   :0   Min.   :0.00e+00   Min.   :  0.00000  
##  1st Qu.:0   1st Qu.:0   1st Qu.:0.00e+00   1st Qu.:  0.00000  
##  Median :0   Median :0   Median :0.00e+00   Median :  0.00000  
##  Mean   :0   Mean   :0   Mean   :6.14e-03   Mean   :  0.03583  
##  3rd Qu.:0   3rd Qu.:0   3rd Qu.:0.00e+00   3rd Qu.:  0.00000  
##  Max.   :0   Max.   :0   Max.   :1.77e+02   Max.   :231.00000  
##     pixel763            pixel764           pixel765           pixel766       
##  Min.   :  0.00000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.00000   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.00000   Median :  0.0000   Median :  0.0000   Median :  0.0000  
##  Mean   :  0.08236   Mean   :  0.1149   Mean   :  0.1787   Mean   :  0.3014  
##  3rd Qu.:  0.00000   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :253.00000   Max.   :254.0000   Max.   :254.0000   Max.   :255.0000  
##     pixel767           pixel768           pixel769           pixel770       
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.0000   Median :  0.0000   Median :  0.0000   Median :  0.0000  
##  Mean   :  0.4136   Mean   :  0.5137   Mean   :  0.5588   Mean   :  0.6779  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :255.0000   Max.   :255.0000   Max.   :255.0000   Max.   :255.0000  
##     pixel771           pixel772           pixel773           pixel774       
##  Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000   Min.   :  0.0000  
##  1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000   1st Qu.:  0.0000  
##  Median :  0.0000   Median :  0.0000   Median :  0.0000   Median :  0.0000  
##  Mean   :  0.6028   Mean   :  0.4892   Mean   :  0.3402   Mean   :  0.2193  
##  3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000   3rd Qu.:  0.0000  
##  Max.   :255.0000   Max.   :255.0000   Max.   :255.0000   Max.   :254.0000  
##     pixel775           pixel776            pixel777            pixel778        
##  Min.   :  0.0000   Min.   :  0.00000   Min.   :  0.00000   Min.   :  0.00000  
##  1st Qu.:  0.0000   1st Qu.:  0.00000   1st Qu.:  0.00000   1st Qu.:  0.00000  
##  Median :  0.0000   Median :  0.00000   Median :  0.00000   Median :  0.00000  
##  Mean   :  0.1171   Mean   :  0.05902   Mean   :  0.02019   Mean   :  0.01724  
##  3rd Qu.:  0.0000   3rd Qu.:  0.00000   3rd Qu.:  0.00000   3rd Qu.:  0.00000  
##  Max.   :254.0000   Max.   :253.00000   Max.   :253.00000   Max.   :254.00000  
##     pixel779           pixel780    pixel781    pixel782    pixel783
##  Min.   : 0.00000   Min.   :0   Min.   :0   Min.   :0   Min.   :0  
##  1st Qu.: 0.00000   1st Qu.:0   1st Qu.:0   1st Qu.:0   1st Qu.:0  
##  Median : 0.00000   Median :0   Median :0   Median :0   Median :0  
##  Mean   : 0.00286   Mean   :0   Mean   :0   Mean   :0   Mean   :0  
##  3rd Qu.: 0.00000   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0   3rd Qu.:0  
##  Max.   :62.00000   Max.   :0   Max.   :0   Max.   :0   Max.   :0
# plot to see overview of label
house_train%>%
  ggplot( aes(x = label)) +
    geom_histogram( binwidth = 0.5,  fill = "blue", color = "#e9ecef", alpha = 10) +
    ggtitle("Histogram of 'label'") +
    theme_ipsum() +
    theme(
      plot.title = element_text(size = 15)
    )
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database

## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database

## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

# selecting random columns to create a Correlogram
house_train%>%
ggpairs(columns = 44:53, ggplot2::aes(colour = 'label')) 

colnames(house_train)
##   [1] "label"    "pixel0"   "pixel1"   "pixel2"   "pixel3"   "pixel4"  
##   [7] "pixel5"   "pixel6"   "pixel7"   "pixel8"   "pixel9"   "pixel10" 
##  [13] "pixel11"  "pixel12"  "pixel13"  "pixel14"  "pixel15"  "pixel16" 
##  [19] "pixel17"  "pixel18"  "pixel19"  "pixel20"  "pixel21"  "pixel22" 
##  [25] "pixel23"  "pixel24"  "pixel25"  "pixel26"  "pixel27"  "pixel28" 
##  [31] "pixel29"  "pixel30"  "pixel31"  "pixel32"  "pixel33"  "pixel34" 
##  [37] "pixel35"  "pixel36"  "pixel37"  "pixel38"  "pixel39"  "pixel40" 
##  [43] "pixel41"  "pixel42"  "pixel43"  "pixel44"  "pixel45"  "pixel46" 
##  [49] "pixel47"  "pixel48"  "pixel49"  "pixel50"  "pixel51"  "pixel52" 
##  [55] "pixel53"  "pixel54"  "pixel55"  "pixel56"  "pixel57"  "pixel58" 
##  [61] "pixel59"  "pixel60"  "pixel61"  "pixel62"  "pixel63"  "pixel64" 
##  [67] "pixel65"  "pixel66"  "pixel67"  "pixel68"  "pixel69"  "pixel70" 
##  [73] "pixel71"  "pixel72"  "pixel73"  "pixel74"  "pixel75"  "pixel76" 
##  [79] "pixel77"  "pixel78"  "pixel79"  "pixel80"  "pixel81"  "pixel82" 
##  [85] "pixel83"  "pixel84"  "pixel85"  "pixel86"  "pixel87"  "pixel88" 
##  [91] "pixel89"  "pixel90"  "pixel91"  "pixel92"  "pixel93"  "pixel94" 
##  [97] "pixel95"  "pixel96"  "pixel97"  "pixel98"  "pixel99"  "pixel100"
## [103] "pixel101" "pixel102" "pixel103" "pixel104" "pixel105" "pixel106"
## [109] "pixel107" "pixel108" "pixel109" "pixel110" "pixel111" "pixel112"
## [115] "pixel113" "pixel114" "pixel115" "pixel116" "pixel117" "pixel118"
## [121] "pixel119" "pixel120" "pixel121" "pixel122" "pixel123" "pixel124"
## [127] "pixel125" "pixel126" "pixel127" "pixel128" "pixel129" "pixel130"
## [133] "pixel131" "pixel132" "pixel133" "pixel134" "pixel135" "pixel136"
## [139] "pixel137" "pixel138" "pixel139" "pixel140" "pixel141" "pixel142"
## [145] "pixel143" "pixel144" "pixel145" "pixel146" "pixel147" "pixel148"
## [151] "pixel149" "pixel150" "pixel151" "pixel152" "pixel153" "pixel154"
## [157] "pixel155" "pixel156" "pixel157" "pixel158" "pixel159" "pixel160"
## [163] "pixel161" "pixel162" "pixel163" "pixel164" "pixel165" "pixel166"
## [169] "pixel167" "pixel168" "pixel169" "pixel170" "pixel171" "pixel172"
## [175] "pixel173" "pixel174" "pixel175" "pixel176" "pixel177" "pixel178"
## [181] "pixel179" "pixel180" "pixel181" "pixel182" "pixel183" "pixel184"
## [187] "pixel185" "pixel186" "pixel187" "pixel188" "pixel189" "pixel190"
## [193] "pixel191" "pixel192" "pixel193" "pixel194" "pixel195" "pixel196"
## [199] "pixel197" "pixel198" "pixel199" "pixel200" "pixel201" "pixel202"
## [205] "pixel203" "pixel204" "pixel205" "pixel206" "pixel207" "pixel208"
## [211] "pixel209" "pixel210" "pixel211" "pixel212" "pixel213" "pixel214"
## [217] "pixel215" "pixel216" "pixel217" "pixel218" "pixel219" "pixel220"
## [223] "pixel221" "pixel222" "pixel223" "pixel224" "pixel225" "pixel226"
## [229] "pixel227" "pixel228" "pixel229" "pixel230" "pixel231" "pixel232"
## [235] "pixel233" "pixel234" "pixel235" "pixel236" "pixel237" "pixel238"
## [241] "pixel239" "pixel240" "pixel241" "pixel242" "pixel243" "pixel244"
## [247] "pixel245" "pixel246" "pixel247" "pixel248" "pixel249" "pixel250"
## [253] "pixel251" "pixel252" "pixel253" "pixel254" "pixel255" "pixel256"
## [259] "pixel257" "pixel258" "pixel259" "pixel260" "pixel261" "pixel262"
## [265] "pixel263" "pixel264" "pixel265" "pixel266" "pixel267" "pixel268"
## [271] "pixel269" "pixel270" "pixel271" "pixel272" "pixel273" "pixel274"
## [277] "pixel275" "pixel276" "pixel277" "pixel278" "pixel279" "pixel280"
## [283] "pixel281" "pixel282" "pixel283" "pixel284" "pixel285" "pixel286"
## [289] "pixel287" "pixel288" "pixel289" "pixel290" "pixel291" "pixel292"
## [295] "pixel293" "pixel294" "pixel295" "pixel296" "pixel297" "pixel298"
## [301] "pixel299" "pixel300" "pixel301" "pixel302" "pixel303" "pixel304"
## [307] "pixel305" "pixel306" "pixel307" "pixel308" "pixel309" "pixel310"
## [313] "pixel311" "pixel312" "pixel313" "pixel314" "pixel315" "pixel316"
## [319] "pixel317" "pixel318" "pixel319" "pixel320" "pixel321" "pixel322"
## [325] "pixel323" "pixel324" "pixel325" "pixel326" "pixel327" "pixel328"
## [331] "pixel329" "pixel330" "pixel331" "pixel332" "pixel333" "pixel334"
## [337] "pixel335" "pixel336" "pixel337" "pixel338" "pixel339" "pixel340"
## [343] "pixel341" "pixel342" "pixel343" "pixel344" "pixel345" "pixel346"
## [349] "pixel347" "pixel348" "pixel349" "pixel350" "pixel351" "pixel352"
## [355] "pixel353" "pixel354" "pixel355" "pixel356" "pixel357" "pixel358"
## [361] "pixel359" "pixel360" "pixel361" "pixel362" "pixel363" "pixel364"
## [367] "pixel365" "pixel366" "pixel367" "pixel368" "pixel369" "pixel370"
## [373] "pixel371" "pixel372" "pixel373" "pixel374" "pixel375" "pixel376"
## [379] "pixel377" "pixel378" "pixel379" "pixel380" "pixel381" "pixel382"
## [385] "pixel383" "pixel384" "pixel385" "pixel386" "pixel387" "pixel388"
## [391] "pixel389" "pixel390" "pixel391" "pixel392" "pixel393" "pixel394"
## [397] "pixel395" "pixel396" "pixel397" "pixel398" "pixel399" "pixel400"
## [403] "pixel401" "pixel402" "pixel403" "pixel404" "pixel405" "pixel406"
## [409] "pixel407" "pixel408" "pixel409" "pixel410" "pixel411" "pixel412"
## [415] "pixel413" "pixel414" "pixel415" "pixel416" "pixel417" "pixel418"
## [421] "pixel419" "pixel420" "pixel421" "pixel422" "pixel423" "pixel424"
## [427] "pixel425" "pixel426" "pixel427" "pixel428" "pixel429" "pixel430"
## [433] "pixel431" "pixel432" "pixel433" "pixel434" "pixel435" "pixel436"
## [439] "pixel437" "pixel438" "pixel439" "pixel440" "pixel441" "pixel442"
## [445] "pixel443" "pixel444" "pixel445" "pixel446" "pixel447" "pixel448"
## [451] "pixel449" "pixel450" "pixel451" "pixel452" "pixel453" "pixel454"
## [457] "pixel455" "pixel456" "pixel457" "pixel458" "pixel459" "pixel460"
## [463] "pixel461" "pixel462" "pixel463" "pixel464" "pixel465" "pixel466"
## [469] "pixel467" "pixel468" "pixel469" "pixel470" "pixel471" "pixel472"
## [475] "pixel473" "pixel474" "pixel475" "pixel476" "pixel477" "pixel478"
## [481] "pixel479" "pixel480" "pixel481" "pixel482" "pixel483" "pixel484"
## [487] "pixel485" "pixel486" "pixel487" "pixel488" "pixel489" "pixel490"
## [493] "pixel491" "pixel492" "pixel493" "pixel494" "pixel495" "pixel496"
## [499] "pixel497" "pixel498" "pixel499" "pixel500" "pixel501" "pixel502"
## [505] "pixel503" "pixel504" "pixel505" "pixel506" "pixel507" "pixel508"
## [511] "pixel509" "pixel510" "pixel511" "pixel512" "pixel513" "pixel514"
## [517] "pixel515" "pixel516" "pixel517" "pixel518" "pixel519" "pixel520"
## [523] "pixel521" "pixel522" "pixel523" "pixel524" "pixel525" "pixel526"
## [529] "pixel527" "pixel528" "pixel529" "pixel530" "pixel531" "pixel532"
## [535] "pixel533" "pixel534" "pixel535" "pixel536" "pixel537" "pixel538"
## [541] "pixel539" "pixel540" "pixel541" "pixel542" "pixel543" "pixel544"
## [547] "pixel545" "pixel546" "pixel547" "pixel548" "pixel549" "pixel550"
## [553] "pixel551" "pixel552" "pixel553" "pixel554" "pixel555" "pixel556"
## [559] "pixel557" "pixel558" "pixel559" "pixel560" "pixel561" "pixel562"
## [565] "pixel563" "pixel564" "pixel565" "pixel566" "pixel567" "pixel568"
## [571] "pixel569" "pixel570" "pixel571" "pixel572" "pixel573" "pixel574"
## [577] "pixel575" "pixel576" "pixel577" "pixel578" "pixel579" "pixel580"
## [583] "pixel581" "pixel582" "pixel583" "pixel584" "pixel585" "pixel586"
## [589] "pixel587" "pixel588" "pixel589" "pixel590" "pixel591" "pixel592"
## [595] "pixel593" "pixel594" "pixel595" "pixel596" "pixel597" "pixel598"
## [601] "pixel599" "pixel600" "pixel601" "pixel602" "pixel603" "pixel604"
## [607] "pixel605" "pixel606" "pixel607" "pixel608" "pixel609" "pixel610"
## [613] "pixel611" "pixel612" "pixel613" "pixel614" "pixel615" "pixel616"
## [619] "pixel617" "pixel618" "pixel619" "pixel620" "pixel621" "pixel622"
## [625] "pixel623" "pixel624" "pixel625" "pixel626" "pixel627" "pixel628"
## [631] "pixel629" "pixel630" "pixel631" "pixel632" "pixel633" "pixel634"
## [637] "pixel635" "pixel636" "pixel637" "pixel638" "pixel639" "pixel640"
## [643] "pixel641" "pixel642" "pixel643" "pixel644" "pixel645" "pixel646"
## [649] "pixel647" "pixel648" "pixel649" "pixel650" "pixel651" "pixel652"
## [655] "pixel653" "pixel654" "pixel655" "pixel656" "pixel657" "pixel658"
## [661] "pixel659" "pixel660" "pixel661" "pixel662" "pixel663" "pixel664"
## [667] "pixel665" "pixel666" "pixel667" "pixel668" "pixel669" "pixel670"
## [673] "pixel671" "pixel672" "pixel673" "pixel674" "pixel675" "pixel676"
## [679] "pixel677" "pixel678" "pixel679" "pixel680" "pixel681" "pixel682"
## [685] "pixel683" "pixel684" "pixel685" "pixel686" "pixel687" "pixel688"
## [691] "pixel689" "pixel690" "pixel691" "pixel692" "pixel693" "pixel694"
## [697] "pixel695" "pixel696" "pixel697" "pixel698" "pixel699" "pixel700"
## [703] "pixel701" "pixel702" "pixel703" "pixel704" "pixel705" "pixel706"
## [709] "pixel707" "pixel708" "pixel709" "pixel710" "pixel711" "pixel712"
## [715] "pixel713" "pixel714" "pixel715" "pixel716" "pixel717" "pixel718"
## [721] "pixel719" "pixel720" "pixel721" "pixel722" "pixel723" "pixel724"
## [727] "pixel725" "pixel726" "pixel727" "pixel728" "pixel729" "pixel730"
## [733] "pixel731" "pixel732" "pixel733" "pixel734" "pixel735" "pixel736"
## [739] "pixel737" "pixel738" "pixel739" "pixel740" "pixel741" "pixel742"
## [745] "pixel743" "pixel744" "pixel745" "pixel746" "pixel747" "pixel748"
## [751] "pixel749" "pixel750" "pixel751" "pixel752" "pixel753" "pixel754"
## [757] "pixel755" "pixel756" "pixel757" "pixel758" "pixel759" "pixel760"
## [763] "pixel761" "pixel762" "pixel763" "pixel764" "pixel765" "pixel766"
## [769] "pixel767" "pixel768" "pixel769" "pixel770" "pixel771" "pixel772"
## [775] "pixel773" "pixel774" "pixel775" "pixel776" "pixel777" "pixel778"
## [781] "pixel779" "pixel780" "pixel781" "pixel782" "pixel783"
# plot for label and pixel781
house_train %>%
ggplot(aes(x = label, y = pixel781, color = pixel0)) + 
    geom_point(size = 3) +
    geom_smooth(method = "lm", color = 'red') +
    theme_ipsum()
## `geom_smooth()` using formula = 'y ~ x'
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

# plot for label and pixel227
house_train %>%
ggplot(aes(x = label, y = pixel227, color = pixel621)) + 
    geom_point(size = 3) +
    geom_smooth(method = "lm", color = 'red') +
    theme_ipsum()
## `geom_smooth()` using formula = 'y ~ x'
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

cor_house <- house_train %>%
  dplyr::select(label, pixel227, pixel621)
cor_m <- cor(cor_house)
cor_m
##                label    pixel227    pixel621
## label     1.00000000  0.03833434 -0.14340160
## pixel227  0.03833434  1.00000000 -0.01371602
## pixel621 -0.14340160 -0.01371602  1.00000000
cor.test(house_train$label, house_train$pixel227, conf.level = 0.8)
## 
##  Pearson's product-moment correlation
## 
## data:  house_train$label and house_train$pixel227
## t = 7.8618, df = 41998, p-value = 3.877e-15
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.03208856 0.04457713
## sample estimates:
##        cor 
## 0.03833434
cor.test(house_train$label, house_train$pixel222, conf.level = 0.8)
## 
##  Pearson's product-moment correlation
## 
## data:  house_train$label and house_train$pixel222
## t = 4.2464, df = 41998, p-value = 2.177e-05
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.01446476 0.02696634
## sample estimates:
##        cor 
## 0.02071636
cor.test(house_train$pixel222, house_train$pixel227, conf.level = 0.8)
## 
##  Pearson's product-moment correlation
## 
## data:  house_train$pixel222 and house_train$pixel227
## t = -0.97887, df = 41998, p-value = 0.3277
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  -0.011029594  0.001477067
## sample estimates:
##         cor 
## -0.00477645

Linear Algebra and Correlation. Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix. 5 points

# invert correlation matrix from above
invert_cor <- solve(cor_m)
invert_cor
##                label    pixel227  pixel621
## label     1.02237661 -0.03718822 0.1461004
## pixel227 -0.03718822  1.00154086 0.0084043
## pixel621  0.14610036  0.00840430 1.0210663
# precision
precision_cor <- round(cor_m %*% invert_cor)
precision_cor
##          label pixel227 pixel621
## label        1        0        0
## pixel227     0        1        0
## pixel621     0        0        1
# LU decomposition
lu_decom_cor <- lu.decomposition(cor_m)
lu_decom_cor
## $L
##             [,1]         [,2] [,3]
## [1,]  1.00000000  0.000000000    0
## [2,]  0.03833434  1.000000000    0
## [3,] -0.14340160 -0.008230905    1
## 
## $U
##      [,1]       [,2]        [,3]
## [1,]    1 0.03833434 -0.14340160
## [2,]    0 0.99853048 -0.00821881
## [3,]    0 0.00000000  0.97936833

Calculus-Based Probability & Statistics. Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/Rdevel/library/MASS/html/fitdistr.html ). Find the optimal value of λ for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, λ)). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss. 10 points

# Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary.

house_train%>%
  filter(pixel437 < 350) %>%
  ggplot( aes(x = pixel437)) +
    geom_histogram( binwidth = 15,  fill = "purple", color = "#e9ecef", alpha = 0.9) +
    ggtitle("Histogram of 'pixel437'") +
    theme_ipsum() +
    theme(
      plot.title = element_text(size=15)
    )
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

# exponential distribution
expon_pixel437 <- fitdistr(house_train$pixel437, 'exponential')

# lambda
lamb_pixel437 <- expon_pixel437$estimate
lamb_pixel437
##        rate 
## 0.008216964
# sample of 1000

exp_samp <- rexp(1000, lamb_pixel437)
summary(exp_samp)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##   0.0176  34.0550  80.1771 119.8788 172.2020 871.2335
# Plot histogram and compare it with original histogram
hist(exp_samp, main = "Histogram of Exponential Sample of 'pixel437'")

# 5th and 95th percentiles
lower <- qexp(0.05, lamb_pixel437)
lower
## [1] 6.242366
upper <- qexp(0.95, lamb_pixel437)
upper
## [1] 364.579
# empirical 5th and 95th percentile
quantile(house_train$pixel437, c(0.05, 0.95))
##  5% 95% 
##   0 254
print(paste('The 5th percentile is 0.00 and the 95th percentile is 175.05.'))
## [1] "The 5th percentile is 0.00 and the 95th percentile is 175.05."

Modeling. Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score. 10 points

# selection columns that are numeric only
house_train2 <- house_train %>% 
  dplyr::select_if(is.numeric)

# Check for missing values in data 
colSums(is.na(house_train2))
##    label   pixel0   pixel1   pixel2   pixel3   pixel4   pixel5   pixel6 
##        0        0        0        0        0        0        0        0 
##   pixel7   pixel8   pixel9  pixel10  pixel11  pixel12  pixel13  pixel14 
##        0        0        0        0        0        0        0        0 
##  pixel15  pixel16  pixel17  pixel18  pixel19  pixel20  pixel21  pixel22 
##        0        0        0        0        0        0        0        0 
##  pixel23  pixel24  pixel25  pixel26  pixel27  pixel28  pixel29  pixel30 
##        0        0        0        0        0        0        0        0 
##  pixel31  pixel32  pixel33  pixel34  pixel35  pixel36  pixel37  pixel38 
##        0        0        0        0        0        0        0        0 
##  pixel39  pixel40  pixel41  pixel42  pixel43  pixel44  pixel45  pixel46 
##        0        0        0        0        0        0        0        0 
##  pixel47  pixel48  pixel49  pixel50  pixel51  pixel52  pixel53  pixel54 
##        0        0        0        0        0        0        0        0 
##  pixel55  pixel56  pixel57  pixel58  pixel59  pixel60  pixel61  pixel62 
##        0        0        0        0        0        0        0        0 
##  pixel63  pixel64  pixel65  pixel66  pixel67  pixel68  pixel69  pixel70 
##        0        0        0        0        0        0        0        0 
##  pixel71  pixel72  pixel73  pixel74  pixel75  pixel76  pixel77  pixel78 
##        0        0        0        0        0        0        0        0 
##  pixel79  pixel80  pixel81  pixel82  pixel83  pixel84  pixel85  pixel86 
##        0        0        0        0        0        0        0        0 
##  pixel87  pixel88  pixel89  pixel90  pixel91  pixel92  pixel93  pixel94 
##        0        0        0        0        0        0        0        0 
##  pixel95  pixel96  pixel97  pixel98  pixel99 pixel100 pixel101 pixel102 
##        0        0        0        0        0        0        0        0 
## pixel103 pixel104 pixel105 pixel106 pixel107 pixel108 pixel109 pixel110 
##        0        0        0        0        0        0        0        0 
## pixel111 pixel112 pixel113 pixel114 pixel115 pixel116 pixel117 pixel118 
##        0        0        0        0        0        0        0        0 
## pixel119 pixel120 pixel121 pixel122 pixel123 pixel124 pixel125 pixel126 
##        0        0        0        0        0        0        0        0 
## pixel127 pixel128 pixel129 pixel130 pixel131 pixel132 pixel133 pixel134 
##        0        0        0        0        0        0        0        0 
## pixel135 pixel136 pixel137 pixel138 pixel139 pixel140 pixel141 pixel142 
##        0        0        0        0        0        0        0        0 
## pixel143 pixel144 pixel145 pixel146 pixel147 pixel148 pixel149 pixel150 
##        0        0        0        0        0        0        0        0 
## pixel151 pixel152 pixel153 pixel154 pixel155 pixel156 pixel157 pixel158 
##        0        0        0        0        0        0        0        0 
## pixel159 pixel160 pixel161 pixel162 pixel163 pixel164 pixel165 pixel166 
##        0        0        0        0        0        0        0        0 
## pixel167 pixel168 pixel169 pixel170 pixel171 pixel172 pixel173 pixel174 
##        0        0        0        0        0        0        0        0 
## pixel175 pixel176 pixel177 pixel178 pixel179 pixel180 pixel181 pixel182 
##        0        0        0        0        0        0        0        0 
## pixel183 pixel184 pixel185 pixel186 pixel187 pixel188 pixel189 pixel190 
##        0        0        0        0        0        0        0        0 
## pixel191 pixel192 pixel193 pixel194 pixel195 pixel196 pixel197 pixel198 
##        0        0        0        0        0        0        0        0 
## pixel199 pixel200 pixel201 pixel202 pixel203 pixel204 pixel205 pixel206 
##        0        0        0        0        0        0        0        0 
## pixel207 pixel208 pixel209 pixel210 pixel211 pixel212 pixel213 pixel214 
##        0        0        0        0        0        0        0        0 
## pixel215 pixel216 pixel217 pixel218 pixel219 pixel220 pixel221 pixel222 
##        0        0        0        0        0        0        0        0 
## pixel223 pixel224 pixel225 pixel226 pixel227 pixel228 pixel229 pixel230 
##        0        0        0        0        0        0        0        0 
## pixel231 pixel232 pixel233 pixel234 pixel235 pixel236 pixel237 pixel238 
##        0        0        0        0        0        0        0        0 
## pixel239 pixel240 pixel241 pixel242 pixel243 pixel244 pixel245 pixel246 
##        0        0        0        0        0        0        0        0 
## pixel247 pixel248 pixel249 pixel250 pixel251 pixel252 pixel253 pixel254 
##        0        0        0        0        0        0        0        0 
## pixel255 pixel256 pixel257 pixel258 pixel259 pixel260 pixel261 pixel262 
##        0        0        0        0        0        0        0        0 
## pixel263 pixel264 pixel265 pixel266 pixel267 pixel268 pixel269 pixel270 
##        0        0        0        0        0        0        0        0 
## pixel271 pixel272 pixel273 pixel274 pixel275 pixel276 pixel277 pixel278 
##        0        0        0        0        0        0        0        0 
## pixel279 pixel280 pixel281 pixel282 pixel283 pixel284 pixel285 pixel286 
##        0        0        0        0        0        0        0        0 
## pixel287 pixel288 pixel289 pixel290 pixel291 pixel292 pixel293 pixel294 
##        0        0        0        0        0        0        0        0 
## pixel295 pixel296 pixel297 pixel298 pixel299 pixel300 pixel301 pixel302 
##        0        0        0        0        0        0        0        0 
## pixel303 pixel304 pixel305 pixel306 pixel307 pixel308 pixel309 pixel310 
##        0        0        0        0        0        0        0        0 
## pixel311 pixel312 pixel313 pixel314 pixel315 pixel316 pixel317 pixel318 
##        0        0        0        0        0        0        0        0 
## pixel319 pixel320 pixel321 pixel322 pixel323 pixel324 pixel325 pixel326 
##        0        0        0        0        0        0        0        0 
## pixel327 pixel328 pixel329 pixel330 pixel331 pixel332 pixel333 pixel334 
##        0        0        0        0        0        0        0        0 
## pixel335 pixel336 pixel337 pixel338 pixel339 pixel340 pixel341 pixel342 
##        0        0        0        0        0        0        0        0 
## pixel343 pixel344 pixel345 pixel346 pixel347 pixel348 pixel349 pixel350 
##        0        0        0        0        0        0        0        0 
## pixel351 pixel352 pixel353 pixel354 pixel355 pixel356 pixel357 pixel358 
##        0        0        0        0        0        0        0        0 
## pixel359 pixel360 pixel361 pixel362 pixel363 pixel364 pixel365 pixel366 
##        0        0        0        0        0        0        0        0 
## pixel367 pixel368 pixel369 pixel370 pixel371 pixel372 pixel373 pixel374 
##        0        0        0        0        0        0        0        0 
## pixel375 pixel376 pixel377 pixel378 pixel379 pixel380 pixel381 pixel382 
##        0        0        0        0        0        0        0        0 
## pixel383 pixel384 pixel385 pixel386 pixel387 pixel388 pixel389 pixel390 
##        0        0        0        0        0        0        0        0 
## pixel391 pixel392 pixel393 pixel394 pixel395 pixel396 pixel397 pixel398 
##        0        0        0        0        0        0        0        0 
## pixel399 pixel400 pixel401 pixel402 pixel403 pixel404 pixel405 pixel406 
##        0        0        0        0        0        0        0        0 
## pixel407 pixel408 pixel409 pixel410 pixel411 pixel412 pixel413 pixel414 
##        0        0        0        0        0        0        0        0 
## pixel415 pixel416 pixel417 pixel418 pixel419 pixel420 pixel421 pixel422 
##        0        0        0        0        0        0        0        0 
## pixel423 pixel424 pixel425 pixel426 pixel427 pixel428 pixel429 pixel430 
##        0        0        0        0        0        0        0        0 
## pixel431 pixel432 pixel433 pixel434 pixel435 pixel436 pixel437 pixel438 
##        0        0        0        0        0        0        0        0 
## pixel439 pixel440 pixel441 pixel442 pixel443 pixel444 pixel445 pixel446 
##        0        0        0        0        0        0        0        0 
## pixel447 pixel448 pixel449 pixel450 pixel451 pixel452 pixel453 pixel454 
##        0        0        0        0        0        0        0        0 
## pixel455 pixel456 pixel457 pixel458 pixel459 pixel460 pixel461 pixel462 
##        0        0        0        0        0        0        0        0 
## pixel463 pixel464 pixel465 pixel466 pixel467 pixel468 pixel469 pixel470 
##        0        0        0        0        0        0        0        0 
## pixel471 pixel472 pixel473 pixel474 pixel475 pixel476 pixel477 pixel478 
##        0        0        0        0        0        0        0        0 
## pixel479 pixel480 pixel481 pixel482 pixel483 pixel484 pixel485 pixel486 
##        0        0        0        0        0        0        0        0 
## pixel487 pixel488 pixel489 pixel490 pixel491 pixel492 pixel493 pixel494 
##        0        0        0        0        0        0        0        0 
## pixel495 pixel496 pixel497 pixel498 pixel499 pixel500 pixel501 pixel502 
##        0        0        0        0        0        0        0        0 
## pixel503 pixel504 pixel505 pixel506 pixel507 pixel508 pixel509 pixel510 
##        0        0        0        0        0        0        0        0 
## pixel511 pixel512 pixel513 pixel514 pixel515 pixel516 pixel517 pixel518 
##        0        0        0        0        0        0        0        0 
## pixel519 pixel520 pixel521 pixel522 pixel523 pixel524 pixel525 pixel526 
##        0        0        0        0        0        0        0        0 
## pixel527 pixel528 pixel529 pixel530 pixel531 pixel532 pixel533 pixel534 
##        0        0        0        0        0        0        0        0 
## pixel535 pixel536 pixel537 pixel538 pixel539 pixel540 pixel541 pixel542 
##        0        0        0        0        0        0        0        0 
## pixel543 pixel544 pixel545 pixel546 pixel547 pixel548 pixel549 pixel550 
##        0        0        0        0        0        0        0        0 
## pixel551 pixel552 pixel553 pixel554 pixel555 pixel556 pixel557 pixel558 
##        0        0        0        0        0        0        0        0 
## pixel559 pixel560 pixel561 pixel562 pixel563 pixel564 pixel565 pixel566 
##        0        0        0        0        0        0        0        0 
## pixel567 pixel568 pixel569 pixel570 pixel571 pixel572 pixel573 pixel574 
##        0        0        0        0        0        0        0        0 
## pixel575 pixel576 pixel577 pixel578 pixel579 pixel580 pixel581 pixel582 
##        0        0        0        0        0        0        0        0 
## pixel583 pixel584 pixel585 pixel586 pixel587 pixel588 pixel589 pixel590 
##        0        0        0        0        0        0        0        0 
## pixel591 pixel592 pixel593 pixel594 pixel595 pixel596 pixel597 pixel598 
##        0        0        0        0        0        0        0        0 
## pixel599 pixel600 pixel601 pixel602 pixel603 pixel604 pixel605 pixel606 
##        0        0        0        0        0        0        0        0 
## pixel607 pixel608 pixel609 pixel610 pixel611 pixel612 pixel613 pixel614 
##        0        0        0        0        0        0        0        0 
## pixel615 pixel616 pixel617 pixel618 pixel619 pixel620 pixel621 pixel622 
##        0        0        0        0        0        0        0        0 
## pixel623 pixel624 pixel625 pixel626 pixel627 pixel628 pixel629 pixel630 
##        0        0        0        0        0        0        0        0 
## pixel631 pixel632 pixel633 pixel634 pixel635 pixel636 pixel637 pixel638 
##        0        0        0        0        0        0        0        0 
## pixel639 pixel640 pixel641 pixel642 pixel643 pixel644 pixel645 pixel646 
##        0        0        0        0        0        0        0        0 
## pixel647 pixel648 pixel649 pixel650 pixel651 pixel652 pixel653 pixel654 
##        0        0        0        0        0        0        0        0 
## pixel655 pixel656 pixel657 pixel658 pixel659 pixel660 pixel661 pixel662 
##        0        0        0        0        0        0        0        0 
## pixel663 pixel664 pixel665 pixel666 pixel667 pixel668 pixel669 pixel670 
##        0        0        0        0        0        0        0        0 
## pixel671 pixel672 pixel673 pixel674 pixel675 pixel676 pixel677 pixel678 
##        0        0        0        0        0        0        0        0 
## pixel679 pixel680 pixel681 pixel682 pixel683 pixel684 pixel685 pixel686 
##        0        0        0        0        0        0        0        0 
## pixel687 pixel688 pixel689 pixel690 pixel691 pixel692 pixel693 pixel694 
##        0        0        0        0        0        0        0        0 
## pixel695 pixel696 pixel697 pixel698 pixel699 pixel700 pixel701 pixel702 
##        0        0        0        0        0        0        0        0 
## pixel703 pixel704 pixel705 pixel706 pixel707 pixel708 pixel709 pixel710 
##        0        0        0        0        0        0        0        0 
## pixel711 pixel712 pixel713 pixel714 pixel715 pixel716 pixel717 pixel718 
##        0        0        0        0        0        0        0        0 
## pixel719 pixel720 pixel721 pixel722 pixel723 pixel724 pixel725 pixel726 
##        0        0        0        0        0        0        0        0 
## pixel727 pixel728 pixel729 pixel730 pixel731 pixel732 pixel733 pixel734 
##        0        0        0        0        0        0        0        0 
## pixel735 pixel736 pixel737 pixel738 pixel739 pixel740 pixel741 pixel742 
##        0        0        0        0        0        0        0        0 
## pixel743 pixel744 pixel745 pixel746 pixel747 pixel748 pixel749 pixel750 
##        0        0        0        0        0        0        0        0 
## pixel751 pixel752 pixel753 pixel754 pixel755 pixel756 pixel757 pixel758 
##        0        0        0        0        0        0        0        0 
## pixel759 pixel760 pixel761 pixel762 pixel763 pixel764 pixel765 pixel766 
##        0        0        0        0        0        0        0        0 
## pixel767 pixel768 pixel769 pixel770 pixel771 pixel772 pixel773 pixel774 
##        0        0        0        0        0        0        0        0 
## pixel775 pixel776 pixel777 pixel778 pixel779 pixel780 pixel781 pixel782 
##        0        0        0        0        0        0        0        0 
## pixel783 
##        0
model_house <- lm(pixel310 ~., house_train2)
summary(model_house)
## 
## Call:
## lm(formula = pixel310 ~ ., data = house_train2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -95.502  -0.211  -0.004   0.191 138.818 
## 
## Coefficients: (80 not defined because of singularities)
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.318e-02  8.020e-02   0.663 0.507282    
## label        9.889e-03  9.705e-03   1.019 0.308265    
## pixel0              NA         NA      NA       NA    
## pixel1              NA         NA      NA       NA    
## pixel2              NA         NA      NA       NA    
## pixel3              NA         NA      NA       NA    
## pixel4              NA         NA      NA       NA    
## pixel5              NA         NA      NA       NA    
## pixel6              NA         NA      NA       NA    
## pixel7              NA         NA      NA       NA    
## pixel8              NA         NA      NA       NA    
## pixel9              NA         NA      NA       NA    
## pixel10             NA         NA      NA       NA    
## pixel11             NA         NA      NA       NA    
## pixel12      2.283e-03  5.398e-02   0.042 0.966272    
## pixel13     -8.690e-04  1.887e-02  -0.046 0.963261    
## pixel14             NA         NA      NA       NA    
## pixel15             NA         NA      NA       NA    
## pixel16             NA         NA      NA       NA    
## pixel17             NA         NA      NA       NA    
## pixel18             NA         NA      NA       NA    
## pixel19             NA         NA      NA       NA    
## pixel20             NA         NA      NA       NA    
## pixel21             NA         NA      NA       NA    
## pixel22             NA         NA      NA       NA    
## pixel23             NA         NA      NA       NA    
## pixel24             NA         NA      NA       NA    
## pixel25             NA         NA      NA       NA    
## pixel26             NA         NA      NA       NA    
## pixel27             NA         NA      NA       NA    
## pixel28             NA         NA      NA       NA    
## pixel29             NA         NA      NA       NA    
## pixel30             NA         NA      NA       NA    
## pixel31             NA         NA      NA       NA    
## pixel32      2.037e-01  2.202e+00   0.093 0.926291    
## pixel33     -6.785e-02  7.462e-01  -0.091 0.927550    
## pixel34      1.177e-03  5.340e-02   0.022 0.982410    
## pixel35     -1.803e-04  2.260e-02  -0.008 0.993636    
## pixel36     -1.521e-04  8.962e-03  -0.017 0.986461    
## pixel37     -1.006e-06  8.905e-03   0.000 0.999910    
## pixel38     -6.120e-04  6.240e-03  -0.098 0.921873    
## pixel39      1.744e-04  5.608e-03   0.031 0.975190    
## pixel40     -1.930e-04  5.014e-03  -0.038 0.969304    
## pixel41      1.190e-04  5.368e-03   0.022 0.982314    
## pixel42     -2.795e-04  5.308e-03  -0.053 0.958001    
## pixel43     -2.042e-04  4.886e-03  -0.042 0.966661    
## pixel44     -4.036e-04  5.206e-03  -0.078 0.938209    
## pixel45      1.695e-04  5.497e-03   0.031 0.975406    
## pixel46     -5.777e-04  5.940e-03  -0.097 0.922524    
## pixel47     -5.645e-04  8.828e-03  -0.064 0.949015    
## pixel48      3.692e-04  1.067e-02   0.035 0.972385    
## pixel49     -1.340e-03  2.303e-02  -0.058 0.953586    
## pixel50      2.647e-03  3.347e-02   0.079 0.936957    
## pixel51     -1.300e-03  3.087e-02  -0.042 0.966404    
## pixel52             NA         NA      NA       NA    
## pixel53             NA         NA      NA       NA    
## pixel54             NA         NA      NA       NA    
## pixel55             NA         NA      NA       NA    
## pixel56             NA         NA      NA       NA    
## pixel57             NA         NA      NA       NA    
## pixel58     -8.889e-02  8.989e-01  -0.099 0.921232    
## pixel59      1.897e-03  2.099e-01   0.009 0.992791    
## pixel60      3.289e-04  1.958e-02   0.017 0.986601    
## pixel61      5.639e-05  2.728e-02   0.002 0.998351    
## pixel62     -1.570e-04  1.162e-02  -0.014 0.989216    
## pixel63      9.277e-04  7.291e-03   0.127 0.898752    
## pixel64      1.288e-04  4.906e-03   0.026 0.979053    
## pixel65     -6.152e-04  3.909e-03  -0.157 0.874953    
## pixel66      1.875e-04  3.095e-03   0.061 0.951689    
## pixel67      2.585e-04  2.544e-03   0.102 0.919066    
## pixel68      1.353e-04  2.108e-03   0.064 0.948829    
## pixel69      3.785e-04  1.859e-03   0.204 0.838669    
## pixel70      6.631e-05  1.695e-03   0.039 0.968787    
## pixel71      3.068e-04  1.604e-03   0.191 0.848334    
## pixel72      1.039e-04  1.599e-03   0.065 0.948188    
## pixel73     -8.745e-05  1.653e-03  -0.053 0.957822    
## pixel74      2.752e-04  1.817e-03   0.151 0.879612    
## pixel75      1.027e-04  2.062e-03   0.050 0.960269    
## pixel76     -1.285e-04  2.649e-03  -0.049 0.961308    
## pixel77      5.848e-04  3.714e-03   0.157 0.874893    
## pixel78     -8.306e-04  5.114e-03  -0.162 0.870987    
## pixel79      1.470e-03  8.936e-03   0.165 0.869306    
## pixel80     -2.727e-03  1.604e-02  -0.170 0.865037    
## pixel81      7.974e-03  3.131e-02   0.255 0.798977    
## pixel82             NA         NA      NA       NA    
## pixel83             NA         NA      NA       NA    
## pixel84             NA         NA      NA       NA    
## pixel85             NA         NA      NA       NA    
## pixel86      3.877e-02  4.073e-01   0.095 0.924163    
## pixel87      2.624e-03  6.014e-02   0.044 0.965202    
## pixel88      3.573e-03  1.793e-02   0.199 0.842077    
## pixel89      1.149e-03  8.127e-03   0.141 0.887597    
## pixel90     -3.824e-04  6.297e-03  -0.061 0.951574    
## pixel91     -5.452e-04  4.545e-03  -0.120 0.904516    
## pixel92     -3.195e-04  2.930e-03  -0.109 0.913163    
## pixel93      3.713e-04  2.307e-03   0.161 0.872139    
## pixel94     -1.575e-04  1.910e-03  -0.082 0.934269    
## pixel95      1.607e-04  1.658e-03   0.097 0.922798    
## pixel96     -5.167e-05  1.452e-03  -0.036 0.971624    
## pixel97     -1.501e-05  1.288e-03  -0.012 0.990702    
## pixel98      4.463e-05  1.178e-03   0.038 0.969783    
## pixel99     -1.421e-04  1.099e-03  -0.129 0.897110    
## pixel100     2.769e-04  1.090e-03   0.254 0.799562    
## pixel101     1.677e-04  1.107e-03   0.151 0.879590    
## pixel102    -2.740e-04  1.206e-03  -0.227 0.820302    
## pixel103     1.579e-04  1.384e-03   0.114 0.909174    
## pixel104     4.215e-05  1.670e-03   0.025 0.979863    
## pixel105    -4.801e-04  2.129e-03  -0.226 0.821578    
## pixel106     5.564e-04  3.017e-03   0.184 0.853696    
## pixel107    -1.487e-04  4.267e-03  -0.035 0.972192    
## pixel108     6.075e-04  5.809e-03   0.105 0.916706    
## pixel109    -1.825e-03  1.627e-02  -0.112 0.910691    
## pixel110     2.869e-03  3.124e-02   0.092 0.926840    
## pixel111            NA         NA      NA       NA    
## pixel112            NA         NA      NA       NA    
## pixel113     4.899e-04  9.390e-02   0.005 0.995838    
## pixel114    -6.789e-03  6.495e-02  -0.105 0.916754    
## pixel115     2.372e-03  2.265e-02   0.105 0.916587    
## pixel116    -1.746e-03  7.491e-03  -0.233 0.815702    
## pixel117     1.023e-03  4.147e-03   0.247 0.805198    
## pixel118     7.176e-05  3.138e-03   0.023 0.981756    
## pixel119     2.800e-05  2.296e-03   0.012 0.990270    
## pixel120     8.963e-05  1.790e-03   0.050 0.960062    
## pixel121    -4.355e-04  1.421e-03  -0.307 0.759171    
## pixel122     1.505e-04  1.167e-03   0.129 0.897338    
## pixel123    -1.732e-04  9.879e-04  -0.175 0.860831    
## pixel124    -7.636e-05  8.517e-04  -0.090 0.928560    
## pixel125     1.008e-04  7.510e-04   0.134 0.893227    
## pixel126    -1.125e-04  6.839e-04  -0.164 0.869400    
## pixel127     1.178e-04  6.513e-04   0.181 0.856493    
## pixel128    -1.237e-04  6.531e-04  -0.189 0.849845    
## pixel129     3.597e-05  6.745e-04   0.053 0.957475    
## pixel130    -1.415e-04  7.334e-04  -0.193 0.846992    
## pixel131     5.930e-05  8.010e-04   0.074 0.940984    
## pixel132    -9.643e-05  9.230e-04  -0.104 0.916791    
## pixel133     1.175e-04  1.134e-03   0.104 0.917445    
## pixel134    -3.717e-05  1.446e-03  -0.026 0.979488    
## pixel135     5.771e-05  2.028e-03   0.028 0.977302    
## pixel136    -2.289e-04  2.951e-03  -0.078 0.938171    
## pixel137     5.992e-05  5.225e-03   0.011 0.990851    
## pixel138    -5.573e-04  9.450e-03  -0.059 0.952978    
## pixel139            NA         NA      NA       NA    
## pixel140            NA         NA      NA       NA    
## pixel141            NA         NA      NA       NA    
## pixel142    -2.637e-03  2.097e-02  -0.126 0.899928    
## pixel143    -2.077e-03  1.177e-02  -0.176 0.859953    
## pixel144     1.357e-03  4.222e-03   0.321 0.747981    
## pixel145    -1.362e-03  2.663e-03  -0.511 0.609118    
## pixel146    -3.963e-04  1.927e-03  -0.206 0.837037    
## pixel147     3.805e-06  1.507e-03   0.003 0.997985    
## pixel148     2.683e-04  1.191e-03   0.225 0.821746    
## pixel149     3.061e-05  9.766e-04   0.031 0.974995    
## pixel150     4.779e-05  8.254e-04   0.058 0.953830    
## pixel151     2.448e-04  7.446e-04   0.329 0.742301    
## pixel152    -3.572e-05  6.789e-04  -0.053 0.958036    
## pixel153     4.243e-05  6.289e-04   0.067 0.946217    
## pixel154     2.077e-04  5.935e-04   0.350 0.726336    
## pixel155     1.038e-04  5.697e-04   0.182 0.855483    
## pixel156     2.899e-04  5.593e-04   0.518 0.604264    
## pixel157     2.144e-04  5.600e-04   0.383 0.701827    
## pixel158     1.062e-04  5.786e-04   0.184 0.854333    
## pixel159     2.489e-05  6.276e-04   0.040 0.968360    
## pixel160     1.119e-04  7.060e-04   0.159 0.874027    
## pixel161     5.863e-05  8.344e-04   0.070 0.943986    
## pixel162     1.185e-04  1.034e-03   0.115 0.908791    
## pixel163    -1.166e-04  1.366e-03  -0.085 0.931988    
## pixel164     7.790e-05  1.802e-03   0.043 0.965528    
## pixel165     3.891e-04  2.871e-03   0.136 0.892180    
## pixel166    -1.083e-04  5.757e-03  -0.019 0.984992    
## pixel167     4.218e-03  2.072e-01   0.020 0.983759    
## pixel168            NA         NA      NA       NA    
## pixel169    -6.525e-01  9.014e-01  -0.724 0.469151    
## pixel170     7.192e-03  1.454e-02   0.495 0.620785    
## pixel171     5.665e-03  4.919e-03   1.152 0.249470    
## pixel172     1.916e-03  2.820e-03   0.679 0.496848    
## pixel173     3.644e-04  1.877e-03   0.194 0.846052    
## pixel174     1.863e-03  1.445e-03   1.289 0.197553    
## pixel175    -2.320e-05  1.112e-03  -0.021 0.983352    
## pixel176    -1.142e-04  9.185e-04  -0.124 0.901039    
## pixel177     6.014e-04  7.767e-04   0.774 0.438744    
## pixel178    -5.848e-05  6.846e-04  -0.085 0.931923    
## pixel179    -2.101e-04  6.275e-04  -0.335 0.737749    
## pixel180     3.355e-04  5.992e-04   0.560 0.575532    
## pixel181     7.810e-05  5.770e-04   0.135 0.892331    
## pixel182    -1.357e-04  5.618e-04  -0.242 0.809104    
## pixel183    -5.239e-04  5.490e-04  -0.954 0.339912    
## pixel184    -2.298e-04  5.396e-04  -0.426 0.670228    
## pixel185    -2.169e-04  5.339e-04  -0.406 0.684543    
## pixel186     2.577e-04  5.441e-04   0.474 0.635747    
## pixel187     3.342e-04  5.773e-04   0.579 0.562679    
## pixel188     3.122e-06  6.435e-04   0.005 0.996129    
## pixel189     2.544e-04  7.565e-04   0.336 0.736614    
## pixel190    -1.138e-04  9.253e-04  -0.123 0.902150    
## pixel191     3.014e-04  1.186e-03   0.254 0.799378    
## pixel192    -8.855e-05  1.496e-03  -0.059 0.952810    
## pixel193     1.695e-05  2.012e-03   0.008 0.993277    
## pixel194    -5.078e-04  3.598e-03  -0.141 0.887787    
## pixel195    -5.776e-04  1.599e-02  -0.036 0.971174    
## pixel196            NA         NA      NA       NA    
## pixel197     9.702e-02  1.942e-02   4.996 5.88e-07 ***
## pixel198    -9.236e-03  7.118e-03  -1.298 0.194409    
## pixel199    -1.420e-02  3.674e-03  -3.863 0.000112 ***
## pixel200    -1.872e-03  2.135e-03  -0.876 0.380785    
## pixel201    -8.905e-04  1.587e-03  -0.561 0.574697    
## pixel202    -1.874e-03  1.181e-03  -1.587 0.112462    
## pixel203     5.517e-04  9.448e-04   0.584 0.559305    
## pixel204    -7.404e-04  7.804e-04  -0.949 0.342705    
## pixel205    -1.034e-03  6.710e-04  -1.541 0.123222    
## pixel206     3.529e-04  5.987e-04   0.589 0.555537    
## pixel207    -5.491e-04  5.624e-04  -0.976 0.328895    
## pixel208    -2.044e-04  5.501e-04  -0.372 0.710155    
## pixel209    -2.365e-04  5.458e-04  -0.433 0.664779    
## pixel210     7.901e-05  5.382e-04   0.147 0.883295    
## pixel211     5.006e-04  5.255e-04   0.953 0.340752    
## pixel212     3.161e-04  5.163e-04   0.612 0.540362    
## pixel213     2.655e-04  5.145e-04   0.516 0.605847    
## pixel214    -5.563e-04  5.260e-04  -1.058 0.290159    
## pixel215    -5.058e-04  5.557e-04  -0.910 0.362690    
## pixel216    -4.651e-04  6.182e-04  -0.752 0.451831    
## pixel217     6.472e-05  7.166e-04   0.090 0.928039    
## pixel218    -2.206e-04  8.739e-04  -0.252 0.800689    
## pixel219     4.491e-04  1.088e-03   0.413 0.679866    
## pixel220    -2.293e-05  1.339e-03  -0.017 0.986334    
## pixel221     2.382e-04  1.782e-03   0.134 0.893651    
## pixel222     2.303e-04  3.112e-03   0.074 0.941000    
## pixel223    -4.014e-05  1.779e-02  -0.002 0.998200    
## pixel224    -3.900e-03  6.687e-02  -0.058 0.953487    
## pixel225    -2.356e-02  1.155e-02  -2.041 0.041298 *  
## pixel226     6.209e-02  4.243e-03  14.632  < 2e-16 ***
## pixel227     9.325e-03  2.931e-03   3.181 0.001467 ** 
## pixel228     1.478e-03  1.858e-03   0.796 0.426295    
## pixel229    -1.421e-04  1.399e-03  -0.102 0.919097    
## pixel230     5.495e-04  1.080e-03   0.509 0.610906    
## pixel231    -7.910e-05  8.675e-04  -0.091 0.927343    
## pixel232     8.838e-04  7.237e-04   1.221 0.222001    
## pixel233     1.783e-04  6.251e-04   0.285 0.775405    
## pixel234     5.843e-04  5.791e-04   1.009 0.313025    
## pixel235     1.036e-04  5.545e-04   0.187 0.851752    
## pixel236    -2.993e-04  5.492e-04  -0.545 0.585704    
## pixel237     2.271e-04  5.423e-04   0.419 0.675304    
## pixel238     9.493e-05  5.356e-04   0.177 0.859310    
## pixel239    -7.073e-04  5.283e-04  -1.339 0.180650    
## pixel240    -2.556e-05  5.218e-04  -0.049 0.960931    
## pixel241    -4.753e-04  5.178e-04  -0.918 0.358670    
## pixel242     7.020e-04  5.297e-04   1.325 0.185061    
## pixel243     1.349e-04  5.585e-04   0.242 0.809153    
## pixel244     3.105e-04  6.168e-04   0.503 0.614670    
## pixel245    -3.708e-05  7.088e-04  -0.052 0.958277    
## pixel246     8.651e-05  8.608e-04   0.100 0.919954    
## pixel247    -2.521e-04  1.066e-03  -0.237 0.813025    
## pixel248    -2.535e-04  1.339e-03  -0.189 0.849801    
## pixel249    -1.384e-05  1.786e-03  -0.008 0.993815    
## pixel250    -5.348e-04  3.233e-03  -0.165 0.868640    
## pixel251     1.593e-03  1.233e-02   0.129 0.897224    
## pixel252     3.526e+00  2.085e-01  16.908  < 2e-16 ***
## pixel253     3.245e-03  9.410e-03   0.345 0.730221    
## pixel254    -2.158e-01  4.209e-03 -51.281  < 2e-16 ***
## pixel255     2.060e-02  2.783e-03   7.403 1.36e-13 ***
## pixel256    -2.949e-03  1.838e-03  -1.605 0.108596    
## pixel257     1.129e-03  1.395e-03   0.809 0.418367    
## pixel258     8.451e-04  1.045e-03   0.809 0.418749    
## pixel259     2.589e-04  8.396e-04   0.308 0.757852    
## pixel260     1.322e-05  6.986e-04   0.019 0.984899    
## pixel261    -3.414e-04  6.157e-04  -0.555 0.579167    
## pixel262    -5.759e-04  5.756e-04  -1.000 0.317078    
## pixel263     8.241e-04  5.586e-04   1.475 0.140176    
## pixel264     3.567e-04  5.541e-04   0.644 0.519757    
## pixel265    -1.156e-05  5.466e-04  -0.021 0.983129    
## pixel266     4.381e-04  5.386e-04   0.813 0.416044    
## pixel267    -2.756e-04  5.356e-04  -0.515 0.606892    
## pixel268     8.381e-04  5.294e-04   1.583 0.113391    
## pixel269    -2.168e-04  5.330e-04  -0.407 0.684237    
## pixel270    -5.611e-04  5.481e-04  -1.024 0.305997    
## pixel271     5.343e-04  5.770e-04   0.926 0.354460    
## pixel272    -6.595e-05  6.374e-04  -0.103 0.917585    
## pixel273     1.128e-03  7.381e-04   1.528 0.126470    
## pixel274    -8.187e-04  8.761e-04  -0.935 0.350017    
## pixel275     9.744e-04  1.100e-03   0.886 0.375510    
## pixel276    -4.956e-04  1.471e-03  -0.337 0.736106    
## pixel277     1.821e-04  2.018e-03   0.090 0.928101    
## pixel278     1.206e-04  3.718e-03   0.032 0.974118    
## pixel279    -2.341e-03  1.350e-02  -0.173 0.862261    
## pixel280    -4.104e+00  2.221e-01 -18.475  < 2e-16 ***
## pixel281    -5.914e-02  7.717e-03  -7.664 1.84e-14 ***
## pixel282     5.490e-01  3.625e-03 151.438  < 2e-16 ***
## pixel283    -9.059e-02  2.740e-03 -33.059  < 2e-16 ***
## pixel284     8.500e-03  1.927e-03   4.411 1.03e-05 ***
## pixel285    -3.500e-03  1.348e-03  -2.596 0.009444 ** 
## pixel286    -1.124e-04  1.035e-03  -0.109 0.913495    
## pixel287    -3.252e-04  8.310e-04  -0.391 0.695543    
## pixel288     2.535e-04  6.947e-04   0.365 0.715217    
## pixel289     5.260e-04  6.188e-04   0.850 0.395285    
## pixel290    -2.436e-04  5.804e-04  -0.420 0.674686    
## pixel291    -7.206e-04  5.613e-04  -1.284 0.199210    
## pixel292    -3.331e-04  5.532e-04  -0.602 0.547002    
## pixel293    -2.517e-04  5.530e-04  -0.455 0.649073    
## pixel294     3.957e-04  5.583e-04   0.709 0.478457    
## pixel295     4.931e-04  5.561e-04   0.887 0.375272    
## pixel296    -1.525e-03  5.464e-04  -2.791 0.005264 ** 
## pixel297     1.441e-03  5.393e-04   2.671 0.007562 ** 
## pixel298     7.341e-04  5.559e-04   1.321 0.186599    
## pixel299    -1.083e-03  5.889e-04  -1.839 0.065929 .  
## pixel300     2.490e-04  6.569e-04   0.379 0.704708    
## pixel301     3.892e-05  7.699e-04   0.051 0.959685    
## pixel302    -1.967e-03  9.335e-04  -2.107 0.035100 *  
## pixel303     1.712e-03  1.178e-03   1.453 0.146224    
## pixel304    -6.361e-04  1.680e-03  -0.379 0.705022    
## pixel305     3.781e-04  2.447e-03   0.154 0.877220    
## pixel306    -4.550e-05  4.590e-03  -0.010 0.992090    
## pixel307     2.525e-03  1.531e-02   0.165 0.868955    
## pixel308     1.007e+01  4.879e-01  20.630  < 2e-16 ***
## pixel309     2.873e-01  1.092e-02  26.319  < 2e-16 ***
## pixel311     2.007e-01  2.992e-03  67.081  < 2e-16 ***
## pixel312    -1.904e-02  2.060e-03  -9.245  < 2e-16 ***
## pixel313     7.387e-03  1.397e-03   5.286 1.26e-07 ***
## pixel314    -2.818e-04  1.047e-03  -0.269 0.787949    
## pixel315     2.151e-04  8.276e-04   0.260 0.794960    
## pixel316    -3.762e-04  6.940e-04  -0.542 0.587800    
## pixel317    -7.437e-04  6.236e-04  -1.193 0.233034    
## pixel318     8.611e-04  5.814e-04   1.481 0.138567    
## pixel319     3.305e-04  5.623e-04   0.588 0.556762    
## pixel320     1.278e-04  5.571e-04   0.229 0.818559    
## pixel321     3.787e-04  5.598e-04   0.676 0.498785    
## pixel322    -1.058e-03  5.691e-04  -1.859 0.062980 .  
## pixel323     8.097e-04  5.651e-04   1.433 0.151913    
## pixel324     5.723e-04  5.472e-04   1.046 0.295648    
## pixel325    -1.529e-03  5.403e-04  -2.830 0.004661 ** 
## pixel326     3.707e-04  5.578e-04   0.665 0.506320    
## pixel327     5.554e-04  5.953e-04   0.933 0.350815    
## pixel328    -7.548e-04  6.630e-04  -1.138 0.254973    
## pixel329     1.629e-03  7.916e-04   2.058 0.039622 *  
## pixel330    -1.227e-03  1.000e-03  -1.227 0.219749    
## pixel331     1.383e-03  1.277e-03   1.084 0.278552    
## pixel332    -9.204e-04  1.870e-03  -0.492 0.622632    
## pixel333     5.533e-04  3.337e-03   0.166 0.868297    
## pixel334    -7.241e-04  6.329e-03  -0.114 0.908911    
## pixel335    -6.609e-03  2.776e-02  -0.238 0.811829    
## pixel336    -8.705e+00  4.489e-01 -19.393  < 2e-16 ***
## pixel337    -2.422e-01  1.604e-02 -15.100  < 2e-16 ***
## pixel338     7.867e-01  4.602e-03 170.933  < 2e-16 ***
## pixel339    -3.692e-02  3.697e-03  -9.986  < 2e-16 ***
## pixel340     1.882e-03  2.258e-03   0.833 0.404658    
## pixel341    -7.400e-03  1.425e-03  -5.193 2.08e-07 ***
## pixel342    -9.178e-04  1.052e-03  -0.873 0.382847    
## pixel343    -3.119e-04  8.256e-04  -0.378 0.705631    
## pixel344     1.283e-04  6.979e-04   0.184 0.854171    
## pixel345     6.120e-04  6.179e-04   0.991 0.321926    
## pixel346    -9.480e-04  5.776e-04  -1.641 0.100760    
## pixel347     2.613e-04  5.588e-04   0.468 0.640030    
## pixel348    -7.067e-04  5.563e-04  -1.270 0.203919    
## pixel349    -1.540e-06  5.566e-04  -0.003 0.997793    
## pixel350     8.646e-04  5.763e-04   1.500 0.133533    
## pixel351    -1.199e-03  5.602e-04  -2.140 0.032394 *  
## pixel352    -1.035e-04  5.362e-04  -0.193 0.847015    
## pixel353     5.901e-04  5.307e-04   1.112 0.266220    
## pixel354    -3.041e-04  5.503e-04  -0.553 0.580480    
## pixel355     3.646e-04  5.916e-04   0.616 0.537658    
## pixel356     3.389e-04  6.638e-04   0.510 0.609743    
## pixel357    -6.653e-04  8.097e-04  -0.822 0.411252    
## pixel358     2.376e-05  1.059e-03   0.022 0.982095    
## pixel359     3.618e-04  1.359e-03   0.266 0.790097    
## pixel360    -6.313e-04  1.896e-03  -0.333 0.739136    
## pixel361     3.271e-04  3.987e-03   0.082 0.934618    
## pixel362     4.166e-04  7.716e-03   0.054 0.956940    
## pixel363     3.476e-03  2.401e-02   0.145 0.884889    
## pixel364     1.385e-03  1.106e-01   0.013 0.990007    
## pixel365     6.210e-01  4.263e-02  14.566  < 2e-16 ***
## pixel366    -5.723e-01  8.083e-03 -70.804  < 2e-16 ***
## pixel367    -2.668e-02  4.645e-03  -5.744 9.34e-09 ***
## pixel368     1.026e-03  2.364e-03   0.434 0.664113    
## pixel369     5.816e-03  1.428e-03   4.074 4.64e-05 ***
## pixel370     1.925e-03  1.040e-03   1.852 0.064058 .  
## pixel371     5.745e-04  8.295e-04   0.693 0.488545    
## pixel372     2.727e-04  6.859e-04   0.398 0.690884    
## pixel373    -4.251e-05  6.041e-04  -0.070 0.943899    
## pixel374     4.690e-04  5.675e-04   0.826 0.408593    
## pixel375    -2.240e-04  5.590e-04  -0.401 0.688625    
## pixel376     6.073e-04  5.523e-04   1.099 0.271574    
## pixel377    -3.201e-04  5.609e-04  -0.571 0.568197    
## pixel378    -1.494e-04  5.686e-04  -0.263 0.792764    
## pixel379     7.528e-04  5.402e-04   1.394 0.163445    
## pixel380     1.620e-04  5.171e-04   0.313 0.754006    
## pixel381    -1.500e-04  5.236e-04  -0.286 0.774600    
## pixel382     3.572e-05  5.435e-04   0.066 0.947600    
## pixel383    -1.492e-04  5.818e-04  -0.256 0.797593    
## pixel384     7.540e-06  6.624e-04   0.011 0.990918    
## pixel385     3.429e-04  8.231e-04   0.417 0.677020    
## pixel386    -5.628e-04  1.058e-03  -0.532 0.594849    
## pixel387     9.030e-04  1.382e-03   0.653 0.513500    
## pixel388    -6.867e-04  1.836e-03  -0.374 0.708337    
## pixel389     3.687e-04  3.688e-03   0.100 0.920368    
## pixel390    -1.358e-05  7.854e-03  -0.002 0.998620    
## pixel391    -5.545e-04  1.508e-02  -0.037 0.970672    
## pixel392            NA         NA      NA       NA    
## pixel393    -1.389e+00  5.498e-02 -25.268  < 2e-16 ***
## pixel394     3.852e-01  1.108e-02  34.772  < 2e-16 ***
## pixel395     1.561e-02  4.848e-03   3.220 0.001284 ** 
## pixel396     9.253e-04  2.254e-03   0.411 0.681393    
## pixel397    -4.088e-03  1.338e-03  -3.056 0.002246 ** 
## pixel398    -2.083e-03  9.973e-04  -2.089 0.036759 *  
## pixel399    -4.735e-04  8.089e-04  -0.585 0.558267    
## pixel400    -4.459e-04  6.713e-04  -0.664 0.506514    
## pixel401    -2.796e-04  5.920e-04  -0.472 0.636742    
## pixel402    -4.007e-04  5.623e-04  -0.712 0.476172    
## pixel403     1.578e-04  5.522e-04   0.286 0.775035    
## pixel404    -5.505e-04  5.529e-04  -0.996 0.319429    
## pixel405     5.104e-04  5.706e-04   0.895 0.371057    
## pixel406    -5.502e-04  5.598e-04  -0.983 0.325702    
## pixel407    -7.616e-05  5.190e-04  -0.147 0.883338    
## pixel408    -4.031e-05  5.085e-04  -0.079 0.936827    
## pixel409    -4.289e-04  5.215e-04  -0.822 0.410905    
## pixel410     1.661e-04  5.402e-04   0.308 0.758422    
## pixel411    -3.798e-04  5.789e-04  -0.656 0.511740    
## pixel412     1.069e-03  6.726e-04   1.589 0.112114    
## pixel413    -1.012e-03  8.297e-04  -1.220 0.222460    
## pixel414    -7.306e-05  1.039e-03  -0.070 0.943947    
## pixel415     4.393e-04  1.347e-03   0.326 0.744363    
## pixel416    -3.128e-04  1.802e-03  -0.174 0.862177    
## pixel417     2.201e-04  3.256e-03   0.068 0.946093    
## pixel418    -9.234e-04  9.704e-03  -0.095 0.924192    
## pixel419    -3.790e-03  1.452e-01  -0.026 0.979167    
## pixel420            NA         NA      NA       NA    
## pixel421            NA         NA      NA       NA    
## pixel422    -3.427e-02  1.315e-02  -2.606 0.009163 ** 
## pixel423    -1.513e-02  4.681e-03  -3.233 0.001225 ** 
## pixel424    -2.235e-03  2.069e-03  -1.081 0.279912    
## pixel425     1.459e-03  1.233e-03   1.183 0.236753    
## pixel426     8.380e-04  9.499e-04   0.882 0.377701    
## pixel427     1.684e-04  7.751e-04   0.217 0.828007    
## pixel428    -1.855e-04  6.613e-04  -0.280 0.779102    
## pixel429     1.416e-04  6.015e-04   0.235 0.813930    
## pixel430    -1.411e-04  5.744e-04  -0.246 0.806007    
## pixel431     4.482e-04  5.669e-04   0.791 0.429153    
## pixel432    -1.769e-04  5.700e-04  -0.310 0.756321    
## pixel433    -1.040e-04  5.742e-04  -0.181 0.856280    
## pixel434     2.914e-04  5.487e-04   0.531 0.595434    
## pixel435    -9.862e-05  5.091e-04  -0.194 0.846403    
## pixel436    -4.020e-05  5.107e-04  -0.079 0.937256    
## pixel437    -2.041e-04  5.270e-04  -0.387 0.698595    
## pixel438     6.527e-04  5.403e-04   1.208 0.227028    
## pixel439    -2.475e-04  5.929e-04  -0.417 0.676318    
## pixel440    -9.600e-04  6.851e-04  -1.401 0.161173    
## pixel441     6.505e-04  8.387e-04   0.776 0.437946    
## pixel442     4.142e-04  1.037e-03   0.399 0.689696    
## pixel443     1.561e-04  1.290e-03   0.121 0.903723    
## pixel444    -6.294e-04  1.752e-03  -0.359 0.719367    
## pixel445     2.017e-04  3.007e-03   0.067 0.946515    
## pixel446     2.882e-04  6.491e-03   0.044 0.964593    
## pixel447     1.566e-03  4.018e-02   0.039 0.968902    
## pixel448            NA         NA      NA       NA    
## pixel449    -2.025e-02  6.415e-02  -0.316 0.752254    
## pixel450     1.363e-02  1.283e-02   1.062 0.288385    
## pixel451     5.505e-03  4.165e-03   1.322 0.186218    
## pixel452     7.120e-04  1.806e-03   0.394 0.693416    
## pixel453     7.666e-05  1.168e-03   0.066 0.947671    
## pixel454    -4.378e-04  9.232e-04  -0.474 0.635393    
## pixel455     3.290e-04  7.619e-04   0.432 0.665873    
## pixel456    -3.269e-05  6.624e-04  -0.049 0.960641    
## pixel457     1.068e-04  6.149e-04   0.174 0.862098    
## pixel458    -3.466e-04  5.975e-04  -0.580 0.561890    
## pixel459    -2.667e-04  5.896e-04  -0.452 0.651034    
## pixel460     2.456e-04  5.860e-04   0.419 0.675186    
## pixel461    -1.939e-04  5.739e-04  -0.338 0.735523    
## pixel462    -2.023e-04  5.388e-04  -0.375 0.707326    
## pixel463    -3.814e-04  5.189e-04  -0.735 0.462387    
## pixel464     4.287e-04  5.282e-04   0.812 0.417030    
## pixel465     4.319e-05  5.314e-04   0.081 0.935224    
## pixel466    -6.094e-05  5.516e-04  -0.110 0.912028    
## pixel467    -1.440e-04  6.146e-04  -0.234 0.814779    
## pixel468     1.099e-03  6.989e-04   1.572 0.115989    
## pixel469    -3.787e-04  8.340e-04  -0.454 0.649812    
## pixel470    -1.101e-03  1.027e-03  -1.072 0.283699    
## pixel471     1.004e-03  1.266e-03   0.793 0.427799    
## pixel472    -2.615e-04  1.643e-03  -0.159 0.873530    
## pixel473     2.196e-04  2.752e-03   0.080 0.936410    
## pixel474    -9.943e-05  5.607e-03  -0.018 0.985853    
## pixel475     1.034e-03  1.973e-02   0.052 0.958191    
## pixel476            NA         NA      NA       NA    
## pixel477     8.905e-02  7.338e-02   1.213 0.224961    
## pixel478    -9.301e-03  9.733e-03  -0.956 0.339304    
## pixel479     7.180e-04  3.502e-03   0.205 0.837540    
## pixel480     3.707e-04  1.629e-03   0.228 0.819944    
## pixel481     2.418e-04  1.103e-03   0.219 0.826568    
## pixel482    -6.425e-04  8.952e-04  -0.718 0.472886    
## pixel483     2.021e-04  7.529e-04   0.268 0.788322    
## pixel484    -1.883e-04  6.715e-04  -0.280 0.779180    
## pixel485     3.999e-05  6.318e-04   0.063 0.949537    
## pixel486     1.403e-05  6.180e-04   0.023 0.981881    
## pixel487     9.027e-05  6.070e-04   0.149 0.881781    
## pixel488     7.480e-05  5.983e-04   0.125 0.900504    
## pixel489     3.596e-04  5.722e-04   0.628 0.529727    
## pixel490    -1.055e-04  5.389e-04  -0.196 0.844864    
## pixel491     6.004e-04  5.293e-04   1.134 0.256678    
## pixel492    -5.030e-04  5.359e-04  -0.939 0.347943    
## pixel493    -3.048e-04  5.440e-04  -0.560 0.575296    
## pixel494     4.135e-04  5.703e-04   0.725 0.468426    
## pixel495    -7.782e-05  6.296e-04  -0.124 0.901628    
## pixel496    -2.380e-04  7.111e-04  -0.335 0.737867    
## pixel497     7.408e-04  8.228e-04   0.900 0.367948    
## pixel498    -3.300e-04  1.001e-03  -0.330 0.741772    
## pixel499     6.073e-04  1.238e-03   0.491 0.623630    
## pixel500    -8.179e-04  1.592e-03  -0.514 0.607403    
## pixel501     4.399e-04  2.446e-03   0.180 0.857257    
## pixel502     2.224e-05  4.856e-03   0.005 0.996345    
## pixel503    -5.064e-04  1.893e-02  -0.027 0.978653    
## pixel504    -1.760e-03  4.500e-02  -0.039 0.968808    
## pixel505    -5.200e-01  1.521e-01  -3.418 0.000630 ***
## pixel506     2.627e-03  6.936e-03   0.379 0.704880    
## pixel507    -8.045e-04  3.023e-03  -0.266 0.790173    
## pixel508    -6.907e-04  1.571e-03  -0.440 0.660159    
## pixel509     6.106e-04  1.077e-03   0.567 0.570706    
## pixel510     1.105e-04  8.772e-04   0.126 0.899789    
## pixel511     1.933e-04  7.511e-04   0.257 0.796905    
## pixel512     4.058e-05  6.704e-04   0.061 0.951730    
## pixel513    -1.334e-04  6.326e-04  -0.211 0.833035    
## pixel514    -2.320e-04  6.158e-04  -0.377 0.706410    
## pixel515    -8.836e-05  6.083e-04  -0.145 0.884514    
## pixel516     1.002e-04  5.917e-04   0.169 0.865541    
## pixel517    -1.899e-04  5.691e-04  -0.334 0.738602    
## pixel518    -6.882e-04  5.503e-04  -1.251 0.211057    
## pixel519     7.275e-05  5.396e-04   0.135 0.892743    
## pixel520     2.133e-04  5.375e-04   0.397 0.691416    
## pixel521     4.232e-04  5.551e-04   0.762 0.445839    
## pixel522    -2.770e-05  5.910e-04  -0.047 0.962621    
## pixel523    -5.694e-05  6.402e-04  -0.089 0.929129    
## pixel524    -1.342e-04  7.174e-04  -0.187 0.851586    
## pixel525    -5.505e-04  8.330e-04  -0.661 0.508695    
## pixel526     5.100e-04  1.013e-03   0.503 0.614620    
## pixel527     1.208e-04  1.253e-03   0.096 0.923143    
## pixel528    -1.885e-04  1.615e-03  -0.117 0.907090    
## pixel529     2.645e-04  2.397e-03   0.110 0.912162    
## pixel530    -7.190e-05  5.624e-03  -0.013 0.989799    
## pixel531     1.520e-03  2.611e-02   0.058 0.953585    
## pixel532            NA         NA      NA       NA    
## pixel533     2.510e-01  7.601e-02   3.301 0.000963 ***
## pixel534     3.234e-03  6.280e-03   0.515 0.606577    
## pixel535     8.336e-04  2.598e-03   0.321 0.748322    
## pixel536    -2.977e-04  1.514e-03  -0.197 0.844076    
## pixel537    -4.617e-04  1.045e-03  -0.442 0.658731    
## pixel538    -2.487e-04  8.630e-04  -0.288 0.773240    
## pixel539     2.553e-05  7.386e-04   0.035 0.972426    
## pixel540    -1.500e-04  6.618e-04  -0.227 0.820691    
## pixel541     1.940e-04  6.153e-04   0.315 0.752495    
## pixel542     1.282e-04  6.037e-04   0.212 0.831801    
## pixel543    -3.239e-04  5.954e-04  -0.544 0.586444    
## pixel544     7.668e-06  5.806e-04   0.013 0.989464    
## pixel545    -2.235e-04  5.634e-04  -0.397 0.691601    
## pixel546     8.502e-04  5.506e-04   1.544 0.122555    
## pixel547    -2.549e-04  5.424e-04  -0.470 0.638438    
## pixel548    -2.982e-04  5.488e-04  -0.543 0.586914    
## pixel549    -3.317e-06  5.693e-04  -0.006 0.995351    
## pixel550    -1.056e-04  6.060e-04  -0.174 0.861700    
## pixel551     3.807e-04  6.518e-04   0.584 0.559238    
## pixel552    -3.130e-04  7.415e-04  -0.422 0.672904    
## pixel553    -9.372e-04  8.717e-04  -1.075 0.282339    
## pixel554     5.241e-04  1.059e-03   0.495 0.620604    
## pixel555     2.629e-04  1.328e-03   0.198 0.843118    
## pixel556    -3.254e-04  1.799e-03  -0.181 0.856437    
## pixel557     2.306e-04  2.776e-03   0.083 0.933795    
## pixel558    -1.488e-04  5.408e-03  -0.028 0.978041    
## pixel559     3.783e-05  3.585e-02   0.001 0.999158    
## pixel560            NA         NA      NA       NA    
## pixel561     5.568e-03  4.571e-02   0.122 0.903046    
## pixel562    -5.254e-03  6.127e-03  -0.857 0.391188    
## pixel563    -1.517e-04  2.438e-03  -0.062 0.950399    
## pixel564    -7.802e-04  1.484e-03  -0.526 0.599149    
## pixel565    -2.669e-05  1.041e-03  -0.026 0.979552    
## pixel566     3.121e-04  8.520e-04   0.366 0.714091    
## pixel567    -2.046e-04  7.337e-04  -0.279 0.780338    
## pixel568     1.607e-04  6.506e-04   0.247 0.804967    
## pixel569    -1.996e-04  6.040e-04  -0.330 0.741050    
## pixel570     1.925e-04  5.812e-04   0.331 0.740427    
## pixel571     9.113e-05  5.707e-04   0.160 0.873132    
## pixel572    -8.506e-05  5.631e-04  -0.151 0.879939    
## pixel573     1.802e-04  5.551e-04   0.325 0.745382    
## pixel574    -8.176e-04  5.484e-04  -1.491 0.135987    
## pixel575     7.544e-04  5.439e-04   1.387 0.165441    
## pixel576     1.158e-04  5.576e-04   0.208 0.835438    
## pixel577    -2.679e-04  5.834e-04  -0.459 0.646113    
## pixel578     2.355e-04  6.213e-04   0.379 0.704724    
## pixel579     8.805e-05  6.832e-04   0.129 0.897449    
## pixel580     3.552e-04  7.916e-04   0.449 0.653690    
## pixel581     4.876e-04  9.402e-04   0.519 0.604056    
## pixel582    -7.978e-04  1.177e-03  -0.678 0.497883    
## pixel583     7.347e-04  1.502e-03   0.489 0.624731    
## pixel584    -5.979e-04  2.011e-03  -0.297 0.766184    
## pixel585     3.016e-04  3.196e-03   0.094 0.924815    
## pixel586     7.632e-04  6.795e-03   0.112 0.910578    
## pixel587     8.909e-04  7.112e-02   0.013 0.990006    
## pixel588     1.669e+00  6.843e-01   2.439 0.014744 *  
## pixel589    -4.499e-03  5.771e-02  -0.078 0.937854    
## pixel590     2.644e-03  5.708e-03   0.463 0.643242    
## pixel591    -4.390e-05  2.574e-03  -0.017 0.986391    
## pixel592     1.278e-03  1.547e-03   0.826 0.408551    
## pixel593     4.125e-04  1.089e-03   0.379 0.704952    
## pixel594    -4.513e-04  8.580e-04  -0.526 0.598924    
## pixel595     3.547e-04  7.335e-04   0.484 0.628697    
## pixel596    -2.994e-04  6.554e-04  -0.457 0.647784    
## pixel597     7.919e-05  6.050e-04   0.131 0.895862    
## pixel598    -2.269e-04  5.761e-04  -0.394 0.693614    
## pixel599     5.239e-05  5.563e-04   0.094 0.924967    
## pixel600    -2.949e-04  5.486e-04  -0.538 0.590887    
## pixel601     6.765e-04  5.520e-04   1.226 0.220336    
## pixel602    -5.019e-04  5.505e-04  -0.912 0.361888    
## pixel603    -4.180e-04  5.572e-04  -0.750 0.453176    
## pixel604     5.487e-04  5.708e-04   0.961 0.336445    
## pixel605    -9.605e-04  6.061e-04  -1.585 0.113030    
## pixel606     1.312e-03  6.639e-04   1.976 0.048200 *  
## pixel607    -1.862e-03  7.534e-04  -2.471 0.013479 *  
## pixel608    -2.044e-05  8.749e-04  -0.023 0.981358    
## pixel609     3.393e-04  1.092e-03   0.311 0.756061    
## pixel610     2.348e-04  1.409e-03   0.167 0.867689    
## pixel611     3.857e-04  1.809e-03   0.213 0.831180    
## pixel612    -6.067e-04  2.505e-03  -0.242 0.808609    
## pixel613     3.751e-04  4.006e-03   0.094 0.925397    
## pixel614    -8.877e-04  8.445e-03  -0.105 0.916281    
## pixel615     8.199e-04  9.094e-02   0.009 0.992806    
## pixel616            NA         NA      NA       NA    
## pixel617    -5.352e+00  2.160e+00  -2.478 0.013219 *  
## pixel618    -2.330e-03  6.479e-03  -0.360 0.719125    
## pixel619     1.038e-03  2.990e-03   0.347 0.728567    
## pixel620    -1.681e-03  1.777e-03  -0.946 0.344030    
## pixel621    -1.821e-04  1.206e-03  -0.151 0.879986    
## pixel622     1.215e-04  9.159e-04   0.133 0.894449    
## pixel623    -2.465e-04  7.665e-04  -0.322 0.747735    
## pixel624     3.691e-04  6.696e-04   0.551 0.581499    
## pixel625    -5.595e-04  6.143e-04  -0.911 0.362422    
## pixel626     1.657e-04  5.856e-04   0.283 0.777211    
## pixel627     8.635e-05  5.729e-04   0.151 0.880190    
## pixel628    -3.060e-04  5.679e-04  -0.539 0.589978    
## pixel629    -1.512e-04  5.655e-04  -0.267 0.789161    
## pixel630     1.113e-03  5.671e-04   1.963 0.049621 *  
## pixel631    -9.970e-04  5.828e-04  -1.711 0.087158 .  
## pixel632    -1.117e-04  6.088e-04  -0.183 0.854444    
## pixel633     1.007e-03  6.583e-04   1.530 0.125991    
## pixel634     4.055e-05  7.409e-04   0.055 0.956352    
## pixel635     1.388e-03  8.725e-04   1.591 0.111551    
## pixel636    -5.978e-04  1.059e-03  -0.564 0.572531    
## pixel637    -1.190e-03  1.347e-03  -0.884 0.376937    
## pixel638     3.974e-04  1.756e-03   0.226 0.820993    
## pixel639     1.017e-03  2.344e-03   0.434 0.664377    
## pixel640    -1.099e-03  3.482e-03  -0.316 0.752383    
## pixel641     1.136e-04  5.800e-03   0.020 0.984377    
## pixel642     6.479e-04  1.340e-02   0.048 0.961444    
## pixel643            NA         NA      NA       NA    
## pixel644            NA         NA      NA       NA    
## pixel645            NA         NA      NA       NA    
## pixel646     3.815e-03  1.148e-02   0.332 0.739681    
## pixel647    -9.099e-04  4.145e-03  -0.220 0.826258    
## pixel648     5.215e-04  2.396e-03   0.218 0.827700    
## pixel649     5.280e-04  1.581e-03   0.334 0.738457    
## pixel650    -3.460e-04  1.121e-03  -0.309 0.757559    
## pixel651     4.288e-04  8.722e-04   0.492 0.623029    
## pixel652    -4.511e-04  7.293e-04  -0.619 0.536169    
## pixel653    -1.680e-05  6.588e-04  -0.026 0.979650    
## pixel654     3.974e-04  6.107e-04   0.651 0.515302    
## pixel655    -3.704e-04  5.808e-04  -0.638 0.523676    
## pixel656    -2.011e-04  5.709e-04  -0.352 0.724684    
## pixel657     4.920e-04  5.707e-04   0.862 0.388616    
## pixel658    -1.050e-03  5.798e-04  -1.812 0.070041 .  
## pixel659     8.930e-04  6.081e-04   1.469 0.141976    
## pixel660    -5.002e-04  6.633e-04  -0.754 0.450796    
## pixel661    -5.738e-04  7.462e-04  -0.769 0.441915    
## pixel662     3.908e-04  8.804e-04   0.444 0.657142    
## pixel663    -3.204e-03  1.058e-03  -3.030 0.002449 ** 
## pixel664     4.221e-03  1.345e-03   3.138 0.001704 ** 
## pixel665    -3.338e-03  1.780e-03  -1.875 0.060814 .  
## pixel666     1.357e-03  2.383e-03   0.570 0.568976    
## pixel667     6.904e-04  3.147e-03   0.219 0.826368    
## pixel668    -1.490e-03  4.594e-03  -0.324 0.745634    
## pixel669     1.590e-03  8.222e-03   0.193 0.846629    
## pixel670     7.845e-04  1.739e-02   0.045 0.964023    
## pixel671            NA         NA      NA       NA    
## pixel672            NA         NA      NA       NA    
## pixel673            NA         NA      NA       NA    
## pixel674     8.696e-03  1.674e-02   0.519 0.603511    
## pixel675    -1.375e-02  6.871e-03  -2.002 0.045308 *  
## pixel676     2.082e-03  4.020e-03   0.518 0.604553    
## pixel677    -7.496e-04  2.419e-03  -0.310 0.756601    
## pixel678     2.905e-05  1.671e-03   0.017 0.986129    
## pixel679     1.064e-04  1.252e-03   0.085 0.932309    
## pixel680    -6.807e-04  1.009e-03  -0.674 0.500058    
## pixel681     5.503e-04  8.416e-04   0.654 0.513186    
## pixel682    -1.213e-04  7.431e-04  -0.163 0.870371    
## pixel683    -2.727e-04  6.801e-04  -0.401 0.688406    
## pixel684     3.902e-04  6.522e-04   0.598 0.549682    
## pixel685    -3.253e-04  6.403e-04  -0.508 0.611416    
## pixel686     1.795e-04  6.549e-04   0.274 0.784003    
## pixel687     3.906e-04  7.046e-04   0.554 0.579405    
## pixel688     2.046e-04  7.880e-04   0.260 0.795142    
## pixel689     8.081e-04  9.138e-04   0.884 0.376515    
## pixel690     4.943e-06  1.118e-03   0.004 0.996474    
## pixel691    -3.953e-03  1.341e-03  -2.949 0.003192 ** 
## pixel692     4.875e-03  1.718e-03   2.837 0.004552 ** 
## pixel693    -3.980e-03  2.323e-03  -1.713 0.086722 .  
## pixel694     2.867e-03  3.447e-03   0.832 0.405554    
## pixel695     1.161e-03  4.877e-03   0.238 0.811840    
## pixel696    -4.259e-03  8.538e-03  -0.499 0.617897    
## pixel697     3.682e-03  2.016e-02   0.183 0.855121    
## pixel698    -2.090e-02  2.294e-01  -0.091 0.927402    
## pixel699            NA         NA      NA       NA    
## pixel700            NA         NA      NA       NA    
## pixel701            NA         NA      NA       NA    
## pixel702    -7.391e-03  8.492e-02  -0.087 0.930646    
## pixel703     1.136e-02  1.243e-02   0.914 0.360647    
## pixel704    -1.247e-03  5.718e-03  -0.218 0.827408    
## pixel705    -8.883e-04  4.164e-03  -0.213 0.831069    
## pixel706     1.055e-03  2.747e-03   0.384 0.700900    
## pixel707     3.033e-05  1.919e-03   0.016 0.987389    
## pixel708    -7.669e-04  1.432e-03  -0.536 0.592274    
## pixel709     1.143e-03  1.175e-03   0.973 0.330572    
## pixel710    -1.309e-03  1.011e-03  -1.295 0.195194    
## pixel711     1.410e-03  9.208e-04   1.532 0.125561    
## pixel712     1.252e-03  8.647e-04   1.448 0.147565    
## pixel713    -3.177e-03  8.556e-04  -3.713 0.000205 ***
## pixel714     4.274e-03  8.738e-04   4.891 1.01e-06 ***
## pixel715    -3.082e-03  9.458e-04  -3.258 0.001122 ** 
## pixel716     2.223e-03  1.058e-03   2.101 0.035631 *  
## pixel717    -3.678e-04  1.211e-03  -0.304 0.761407    
## pixel718     1.068e-03  1.459e-03   0.732 0.464145    
## pixel719     2.898e-03  1.888e-03   1.535 0.124852    
## pixel720    -4.707e-03  2.387e-03  -1.972 0.048577 *  
## pixel721     4.085e-03  3.151e-03   1.296 0.194819    
## pixel722    -1.684e-03  4.673e-03  -0.360 0.718644    
## pixel723    -7.192e-04  7.176e-03  -0.100 0.920177    
## pixel724    -2.587e-03  1.855e-02  -0.139 0.889113    
## pixel725    -1.395e-02  4.728e-02  -0.295 0.768034    
## pixel726     3.065e-02  2.184e-01   0.140 0.888387    
## pixel727            NA         NA      NA       NA    
## pixel728            NA         NA      NA       NA    
## pixel729            NA         NA      NA       NA    
## pixel730            NA         NA      NA       NA    
## pixel731            NA         NA      NA       NA    
## pixel732     9.234e-04  1.003e-02   0.092 0.926664    
## pixel733    -1.845e-04  6.853e-03  -0.027 0.978521    
## pixel734    -8.276e-04  3.897e-03  -0.212 0.831794    
## pixel735     1.057e-03  2.774e-03   0.381 0.703053    
## pixel736    -2.352e-03  2.022e-03  -1.163 0.244837    
## pixel737     1.310e-03  1.681e-03   0.780 0.435587    
## pixel738    -2.390e-03  1.423e-03  -1.680 0.092939 .  
## pixel739     1.215e-04  1.276e-03   0.095 0.924166    
## pixel740    -6.782e-04  1.205e-03  -0.563 0.573622    
## pixel741     2.002e-04  1.206e-03   0.166 0.868209    
## pixel742    -6.239e-03  1.254e-03  -4.976 6.53e-07 ***
## pixel743     7.013e-03  1.370e-03   5.118 3.10e-07 ***
## pixel744    -8.715e-03  1.521e-03  -5.728 1.02e-08 ***
## pixel745     1.003e-02  1.779e-03   5.634 1.77e-08 ***
## pixel746    -1.567e-02  2.189e-03  -7.162 8.11e-13 ***
## pixel747     5.388e-03  2.769e-03   1.946 0.051631 .  
## pixel748     5.413e-03  3.749e-03   1.444 0.148837    
## pixel749    -2.181e-03  5.492e-03  -0.397 0.691339    
## pixel750    -1.100e-02  7.846e-03  -1.402 0.160997    
## pixel751     1.004e-02  1.217e-02   0.825 0.409182    
## pixel752     6.239e-02  1.613e-01   0.387 0.698995    
## pixel753    -3.900e-03  6.064e-02  -0.064 0.948720    
## pixel754            NA         NA      NA       NA    
## pixel755            NA         NA      NA       NA    
## pixel756            NA         NA      NA       NA    
## pixel757            NA         NA      NA       NA    
## pixel758            NA         NA      NA       NA    
## pixel759            NA         NA      NA       NA    
## pixel760            NA         NA      NA       NA    
## pixel761    -3.328e-03  2.573e-02  -0.129 0.897078    
## pixel762    -1.831e-03  1.353e-02  -0.135 0.892359    
## pixel763    -1.319e-03  8.938e-03  -0.148 0.882719    
## pixel764     2.607e-03  7.177e-03   0.363 0.716403    
## pixel765     1.136e-04  5.022e-03   0.023 0.981955    
## pixel766     2.044e-03  4.233e-03   0.483 0.629199    
## pixel767    -1.773e-02  3.636e-03  -4.878 1.08e-06 ***
## pixel768     1.561e-02  3.135e-03   4.979 6.42e-07 ***
## pixel769    -1.225e-02  3.234e-03  -3.787 0.000152 ***
## pixel770     7.356e-03  3.112e-03   2.363 0.018118 *  
## pixel771    -1.042e-02  3.466e-03  -3.006 0.002653 ** 
## pixel772    -3.221e-03  3.801e-03  -0.847 0.396734    
## pixel773    -2.546e-02  4.190e-03  -6.076 1.24e-09 ***
## pixel774    -1.706e-03  4.852e-03  -0.352 0.725136    
## pixel775     5.445e-03  6.888e-03   0.791 0.429198    
## pixel776     3.720e-02  1.129e-02   3.295 0.000986 ***
## pixel777    -5.442e-02  1.800e-02  -3.024 0.002495 ** 
## pixel778    -2.183e-02  2.419e-02  -0.902 0.366926    
## pixel779     1.980e-01  1.058e-01   1.872 0.061264 .  
## pixel780            NA         NA      NA       NA    
## pixel781            NA         NA      NA       NA    
## pixel782            NA         NA      NA       NA    
## pixel783            NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.531 on 41295 degrees of freedom
## Multiple R-squared:  0.8508, Adjusted R-squared:  0.8482 
## F-statistic: 334.5 on 704 and 41295 DF,  p-value: < 2.2e-16
plot(model_house)
## Warning: not plotting observations with leverage one:
##   7282, 7896, 17491, 19297, 20611, 20740, 22510, 23459, 29554, 30102, 35364, 38324, 38895

## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

model_house2 <- lm(label ~ pixel0 + pixel1 + pixel2 +  pixel3 + pixel4 + pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 + pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 + pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 + pixel24 + pixel25 + pixel26 + pixel27 + pixel28 + pixel29 + pixel30 + pixel31 + pixel32 + pixel33 + pixel34 + pixel35, house_train2)
summary(model_house2)
## 
## Call:
## lm(formula = label ~ pixel0 + pixel1 + pixel2 + pixel3 + pixel4 + 
##     pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 + 
##     pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 + 
##     pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 + 
##     pixel24 + pixel25 + pixel26 + pixel27 + pixel28 + pixel29 + 
##     pixel30 + pixel31 + pixel32 + pixel33 + pixel34 + pixel35, 
##     data = house_train2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4564 -2.4564 -0.4564  2.5436  4.5436 
## 
## Coefficients: (30 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.45641    0.01409 316.219   <2e-16 ***
## pixel0            NA         NA      NA       NA    
## pixel1            NA         NA      NA       NA    
## pixel2            NA         NA      NA       NA    
## pixel3            NA         NA      NA       NA    
## pixel4            NA         NA      NA       NA    
## pixel5            NA         NA      NA       NA    
## pixel6            NA         NA      NA       NA    
## pixel7            NA         NA      NA       NA    
## pixel8            NA         NA      NA       NA    
## pixel9            NA         NA      NA       NA    
## pixel10           NA         NA      NA       NA    
## pixel11           NA         NA      NA       NA    
## pixel12      0.04252    0.04276   0.994    0.320    
## pixel13     -0.01334    0.01493  -0.893    0.372    
## pixel14           NA         NA      NA       NA    
## pixel15           NA         NA      NA       NA    
## pixel16           NA         NA      NA       NA    
## pixel17           NA         NA      NA       NA    
## pixel18           NA         NA      NA       NA    
## pixel19           NA         NA      NA       NA    
## pixel20           NA         NA      NA       NA    
## pixel21           NA         NA      NA       NA    
## pixel22           NA         NA      NA       NA    
## pixel23           NA         NA      NA       NA    
## pixel24           NA         NA      NA       NA    
## pixel25           NA         NA      NA       NA    
## pixel26           NA         NA      NA       NA    
## pixel27           NA         NA      NA       NA    
## pixel28           NA         NA      NA       NA    
## pixel29           NA         NA      NA       NA    
## pixel30           NA         NA      NA       NA    
## pixel31           NA         NA      NA       NA    
## pixel32     -0.29252    1.72876  -0.169    0.866    
## pixel33      0.13242    0.58530   0.226    0.821    
## pixel34     -0.01162    0.03988  -0.291    0.771    
## pixel35      0.01172    0.01581   0.741    0.459    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.888 on 41993 degrees of freedom
## Multiple R-squared:  6.981e-05,  Adjusted R-squared:  -7.306e-05 
## F-statistic: 0.4886 on 6 and 41993 DF,  p-value: 0.8174
plot(model_house2)
## Warning: not plotting observations with leverage one:
##   19297, 20740, 35364

## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

# Using only significant columns
model_house3 <- lm(label ~ pixel0 + pixel1 + pixel2 +  pixel3 + pixel4 + pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 + pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 + pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 + pixel24 + pixel25 + pixel26 + pixel27 + pixel28 + pixel29 + pixel30, house_train2)
summary(model_house3)
## 
## Call:
## lm(formula = label ~ pixel0 + pixel1 + pixel2 + pixel3 + pixel4 + 
##     pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 + 
##     pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 + 
##     pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 + 
##     pixel24 + pixel25 + pixel26 + pixel27 + pixel28 + pixel29 + 
##     pixel30, data = house_train2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4567 -2.4567 -0.4567  2.5433  4.5433 
## 
## Coefficients: (29 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.45666    0.01409 316.273   <2e-16 ***
## pixel0            NA         NA      NA       NA    
## pixel1            NA         NA      NA       NA    
## pixel2            NA         NA      NA       NA    
## pixel3            NA         NA      NA       NA    
## pixel4            NA         NA      NA       NA    
## pixel5            NA         NA      NA       NA    
## pixel6            NA         NA      NA       NA    
## pixel7            NA         NA      NA       NA    
## pixel8            NA         NA      NA       NA    
## pixel9            NA         NA      NA       NA    
## pixel10           NA         NA      NA       NA    
## pixel11           NA         NA      NA       NA    
## pixel12      0.04252    0.04276   0.994    0.320    
## pixel13     -0.01334    0.01493  -0.893    0.372    
## pixel14           NA         NA      NA       NA    
## pixel15           NA         NA      NA       NA    
## pixel16           NA         NA      NA       NA    
## pixel17           NA         NA      NA       NA    
## pixel18           NA         NA      NA       NA    
## pixel19           NA         NA      NA       NA    
## pixel20           NA         NA      NA       NA    
## pixel21           NA         NA      NA       NA    
## pixel22           NA         NA      NA       NA    
## pixel23           NA         NA      NA       NA    
## pixel24           NA         NA      NA       NA    
## pixel25           NA         NA      NA       NA    
## pixel26           NA         NA      NA       NA    
## pixel27           NA         NA      NA       NA    
## pixel28           NA         NA      NA       NA    
## pixel29           NA         NA      NA       NA    
## pixel30           NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.888 on 41997 degrees of freedom
## Multiple R-squared:  2.403e-05,  Adjusted R-squared:  -2.359e-05 
## F-statistic: 0.5047 on 2 and 41997 DF,  p-value: 0.6037
plot(model_house3)
## Warning: not plotting observations with leverage one:
##   19297, 20740

# Removing 5 more columns 
model_house4 <- lm(label ~ pixel0 + pixel1 + pixel2 +  pixel3 + pixel4 + pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 + pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 + pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 + pixel24 + pixel25, house_train2)
summary(model_house4)
## 
## Call:
## lm(formula = label ~ pixel0 + pixel1 + pixel2 + pixel3 + pixel4 + 
##     pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 + 
##     pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 + 
##     pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 + 
##     pixel24 + pixel25, data = house_train2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4567 -2.4567 -0.4567  2.5433  4.5433 
## 
## Coefficients: (24 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.45666    0.01409 316.273   <2e-16 ***
## pixel0            NA         NA      NA       NA    
## pixel1            NA         NA      NA       NA    
## pixel2            NA         NA      NA       NA    
## pixel3            NA         NA      NA       NA    
## pixel4            NA         NA      NA       NA    
## pixel5            NA         NA      NA       NA    
## pixel6            NA         NA      NA       NA    
## pixel7            NA         NA      NA       NA    
## pixel8            NA         NA      NA       NA    
## pixel9            NA         NA      NA       NA    
## pixel10           NA         NA      NA       NA    
## pixel11           NA         NA      NA       NA    
## pixel12      0.04252    0.04276   0.994    0.320    
## pixel13     -0.01334    0.01493  -0.893    0.372    
## pixel14           NA         NA      NA       NA    
## pixel15           NA         NA      NA       NA    
## pixel16           NA         NA      NA       NA    
## pixel17           NA         NA      NA       NA    
## pixel18           NA         NA      NA       NA    
## pixel19           NA         NA      NA       NA    
## pixel20           NA         NA      NA       NA    
## pixel21           NA         NA      NA       NA    
## pixel22           NA         NA      NA       NA    
## pixel23           NA         NA      NA       NA    
## pixel24           NA         NA      NA       NA    
## pixel25           NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.888 on 41997 degrees of freedom
## Multiple R-squared:  2.403e-05,  Adjusted R-squared:  -2.359e-05 
## F-statistic: 0.5047 on 2 and 41997 DF,  p-value: 0.6037
# Using model_house4 we'll create a scatterplot
plot(model_house4)
## Warning: not plotting observations with leverage one:
##   19297, 20740

# Predict prices for test data
house_test <- read.csv("C:/Users/Ivan/OneDrive/Desktop/test.csv/test.csv")
house_test2 <- house_test %>%
  dplyr::select_if(is.numeric) %>%
  replace(is.na(.), 0)

prediction <- predict(model_house4, house_test2, type = "response")
## Warning in predict.lm(model_house4, house_test2, type = "response"): prediction
## from a rank-deficient fit may be misleading
head(prediction)
##        1        2        3        4        5        6 
## 4.456665 4.456665 4.456665 4.456665 4.456665 4.456665
# Prepare data frame for submission
kaggle_prediction <- data.frame(pixel50  = house_test2$pixel50 , label = prediction)
head(kaggle_prediction)
##   pixel50    label
## 1       0 4.456665
## 2       0 4.456665
## 3       0 4.456665
## 4       0 4.456665
## 5       0 4.456665
## 6       0 4.456665

General References https://stackoverflow.com/questions/16496210/rotate-a-matrix-in-r-by-90-degrees-clockwise https://www.rdocumentation.org/packages/igraph/versions/1.3.1/topics/graph_from_adjacency_matrix