Loading libraries
# For Problem 1
library(igraph)
##
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
## decompose, spectrum
## The following object is masked from 'package:base':
##
## union
library(openintro)
## Loading required package: airports
## Loading required package: cherryblossom
## Loading required package: usdata
library(Matrix)
# For Problem 2
library(OpenImageR)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
##
## Attaching package: 'lattice'
## The following objects are masked from 'package:openintro':
##
## ethanol, lsegments
##
## Attaching package: 'caret'
## The following object is masked from 'package:openintro':
##
## dotPlot
library(nnet)
# For Problem 3
library(MASS)
##
## Attaching package: 'MASS'
## The following objects are masked from 'package:openintro':
##
## housing, mammals
library(matrixcalc)
##
## Attaching package: 'matrixcalc'
## The following object is masked from 'package:igraph':
##
## %s%
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
# For all Problems
library(ggplot2)
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.3 ✔ forcats 0.5.2
## ✔ purrr 0.3.5
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::as_data_frame() masks tibble::as_data_frame(), igraph::as_data_frame()
## ✖ purrr::compose() masks igraph::compose()
## ✖ tidyr::crossing() masks igraph::crossing()
## ✖ tidyr::expand() masks Matrix::expand()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::groups() masks igraph::groups()
## ✖ dplyr::lag() masks stats::lag()
## ✖ purrr::lift() masks caret::lift()
## ✖ tidyr::pack() masks Matrix::pack()
## ✖ dplyr::select() masks MASS::select()
## ✖ purrr::simplify() masks igraph::simplify()
## ✖ tidyr::unpack() masks Matrix::unpack()
library(hrbrthemes)
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
## Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
## if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
• Form the A matrix. Then, introduce decay and form the B matrix as we did in the course notes. (5 Points)
# create matrix
A <- matrix(c(0, (1/2), (1/2), 0, 0, 0, 0, 0, 0, 0, 0, 0, (1/3), (1/3), 0, 0, (1/3), 0, 0, 0, 0, 0, (1/2), (1/2), 0, 0, 0, (1/2), 0, (1/2), 0, 0, 0, 1, 0, 0), nrow = 6, byrow = T)
A
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.0000000 0.5000000 0.5 0.0 0.0000000 0.0
## [2,] 0.0000000 0.0000000 0.0 0.0 0.0000000 0.0
## [3,] 0.3333333 0.3333333 0.0 0.0 0.3333333 0.0
## [4,] 0.0000000 0.0000000 0.0 0.0 0.5000000 0.5
## [5,] 0.0000000 0.0000000 0.0 0.5 0.0000000 0.5
## [6,] 0.0000000 0.0000000 0.0 1.0 0.0000000 0.0
#formatC(A, format = “f”, digits = 4)
Being that the second row is filled with 0’s we are replacing the vector of 1/6 since there are 6 webpages and we have an equal probability of landing on any of the pages.
n <- 6 # number of webpages
# creating new row to replace matrix A second row
row2 <- rep(1/6, n)
# Removing second row from matrix A
A_2 <- A[-2,]
# Adding r into the second row and creating matrix A_2
A_2 <- matrix(rbind(A_2[1,], row2, A_2[- (1), ]), 6)
A_2
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.0000000 0.5000000 0.5000000 0.0000000 0.0000000 0.0000000
## [2,] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
## [3,] 0.3333333 0.3333333 0.0000000 0.0000000 0.3333333 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 0.5000000
## [5,] 0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 0.5000000
## [6,] 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000
#A_2 <- A + (apply(A, 1, sum) !=1) * 1 / n #formatC(A_2, format = “f”, digits = 4)
# decay form B matrix
decay <- 0.85
n <- nrow(A_2)
B <- decay * A_2 + ((1 - decay) / n)
formatC(B, format = "f", digits = 4)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] "0.0250" "0.4500" "0.4500" "0.0250" "0.0250" "0.0250"
## [2,] "0.1667" "0.1667" "0.1667" "0.1667" "0.1667" "0.1667"
## [3,] "0.3083" "0.3083" "0.0250" "0.0250" "0.3083" "0.0250"
## [4,] "0.0250" "0.0250" "0.0250" "0.0250" "0.4500" "0.4500"
## [5,] "0.0250" "0.0250" "0.0250" "0.4500" "0.0250" "0.4500"
## [6,] "0.0250" "0.0250" "0.0250" "0.8750" "0.0250" "0.0250"
• Start with a uniform rank vector r and perform power iterations on B till convergence. That is, compute the solution r = B^n × r. Attempt this for a sufficiently large n so that r actually converges. (5 Points)
# We will take the second row of 0.167 to perform the iterations on B when r = B^n * r
# We'll do a couple of iterations increasing by 10 starting at 0
n <- 0
r_0 <- matrix.power(t(B), n) %*% row2
r_0
## [,1]
## [1,] 0.1666667
## [2,] 0.1666667
## [3,] 0.1666667
## [4,] 0.1666667
## [5,] 0.1666667
## [6,] 0.1666667
n <- 10
r_10 <- matrix.power(t(B), n) %*% row2
r_10
## [,1]
## [1,] 0.05205661
## [2,] 0.07428990
## [3,] 0.05782138
## [4,] 0.34797267
## [5,] 0.19975859
## [6,] 0.26810085
n <- 20
r_20 <- matrix.power(t(B), n) %*% row2
r_20
## [,1]
## [1,] 0.05170616
## [2,] 0.07368173
## [3,] 0.05741406
## [4,] 0.34870083
## [5,] 0.19990313
## [6,] 0.26859408
n <- 30
r_30 <- matrix.power(t(B), n) %*% row2
r_30
## [,1]
## [1,] 0.05170475
## [2,] 0.07367927
## [3,] 0.05741242
## [4,] 0.34870367
## [5,] 0.19990381
## [6,] 0.26859607
n <- 40
r_40 <- matrix.power(t(B), n) %*% row2
r_40
## [,1]
## [1,] 0.05170475
## [2,] 0.07367926
## [3,] 0.05741241
## [4,] 0.34870369
## [5,] 0.19990381
## [6,] 0.26859608
n <- 50
r_50 <- matrix.power(t(B), n) %*% row2
r_50
## [,1]
## [1,] 0.05170475
## [2,] 0.07367926
## [3,] 0.05741241
## [4,] 0.34870369
## [5,] 0.19990381
## [6,] 0.26859608
# By iteration 30 we found the convergence
iter_converg <- matrix.power(t(B), 30) %*% row2
• Compute the eigen-decomposition of B and verify that you indeed get an eigenvalue of 1 as the largest eigenvalue and that its corresponding eigenvector is the same vector that you obtained in the previous power iteration method. Further, this eigenvector has all positive entries and it sums to 1.(10 points)
eigen_decomp <- eigen(B)
eigen_decomp
## eigen() decomposition
## $values
## [1] 1.00000000 0.57619235 -0.42500001 -0.42499999 -0.34991524 -0.08461044
##
## $vectors
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.4082483 -0.7278031 -5.345224e-01 5.345225e-01 -0.795670150
## [2,] -0.4082483 -0.3721164 -5.216180e-09 -5.216180e-09 0.059710287
## [3,] -0.4082483 -0.5389259 5.345225e-01 -5.345225e-01 0.602762996
## [4,] -0.4082483 0.1174605 -2.672613e-01 2.672612e-01 0.002611877
## [5,] -0.4082483 0.1174605 -2.672613e-01 2.672612e-01 0.002611877
## [6,] -0.4082483 0.1174605 5.345225e-01 -5.345224e-01 0.002611877
## [,6]
## [1,] 0.486246420
## [2,] -0.673469294
## [3,] 0.556554233
## [4,] -0.009145393
## [5,] -0.009145393
## [6,] -0.009145393
# turning values as numeric and getting the max value of 1
max_value_decomp <- which.max(eigen(B)$values)
print(paste('The largest eigenvalue is', max(max_value_decomp)))
## [1] "The largest eigenvalue is 1"
# corresponding vector of max eigenvalue
eigen_decomp2 <- as.numeric((1/sum(eigen_decomp$vectors[,1]))*eigen_decomp$vectors[,1])
sum(eigen_decomp2)
## [1] 1
• Use the graph package in R and its page.rank method to compute the Page Rank of the graph as given in A. Note that you don’t need to apply decay. The package starts with a connected graph and applies decay internally. Verify that you do get the same PageRank vector as the two approaches above. (10 points)
# Here we are using the library 'igraph' installed at the begining to complete the question
#graph_A <- graph.adjacency(A, weighted = T)
graph_A <- graph_from_adjacency_matrix(A, weighted = T)
plot(graph_A)
# verifying that you get the same PageRank vector as the two approached above
pageRank <- page.rank(graph_A)$vector
results <- (round(iter_converg, 4) == round(pageRank, 4))
results
## [,1]
## [1,] TRUE
## [2,] TRUE
## [3,] TRUE
## [4,] TRUE
## [5,] TRUE
## [6,] TRUE
Final Problem 2. 40 points.
1.Go to Kaggle.com and build an account if you do not already have one. It is free. 2. Go to https://www.kaggle.com/c/digit-recognizer/overview, accept the rules of the competition, and download the data. You will not be required to submit work to Kaggle, but you do need the data. ’MNIST (“Modified National Institute of Standards and Technology”) is the de facto “hello world” dataset of computer vision. Since its release in 1999, this classic dataset of handwritten images has served as the basis for benchmarking classification algorithms. As new machine learning techniques emerge, MNIST remains a reliable resource for researchers and learners alike.”
# Load data set from computer, file is too large to upload to free github account
# for knitting purposes I am not printing out the entire data set because it is too long.
train <- read.csv("C:/Users/Ivan/OneDrive/Desktop/train.csv/train.csv")
head(train[1:15], n = 5) # set to load columns 1-10 and 5 rows
## label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9
## 1 1 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0
## 3 1 0 0 0 0 0 0 0 0 0 0
## 4 4 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0
## pixel10 pixel11 pixel12 pixel13
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
# label is the first column and divide all pixels by 255
labels = train[,1]
train_data <- train[,-1]/255
# dimensions of data frame
dim(train_data)
## [1] 42000 784
# creating a plot to see how one image looks
image1 <- matrix(unlist(train_data[10, -1]), nrow = 28, byrow = T)
## Warning in matrix(unlist(train_data[10, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
image(image1, col = grey.colors(255))
# image must be rotated
rotate <- function(x) t(apply(x, 2, rev))
# final product; will be using this code to apply it to the first 10 images
image1 <- rotate(matrix(unlist(train_data[10, -1]), nrow = 28, byrow = T))
## Warning in matrix(unlist(train_data[10, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
image(image1, col = grey.colors(255))
# Apply code above to images 1:10 of the whole data set
par(mfrow = c (2, 5))
# images must be rotated
rotate <- function(x) t(apply(x, 2, rev))
# Using a for loop for all 10 images
for (i in 1:10){
m <- rotate(matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T))
image(m, col = grey.colors(255))
}
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(unlist(train_data[i, -1]), nrow = 28, byrow = T): data length
## [783] is not a sub-multiple or multiple of the number of rows [28]
train_frequency <- as.data.frame(table(labels)/42000)
# bar graph for frequency distribution
train_frequency %>%
ggplot(aes(x = labels, y = Freq, fill = Freq)) +
geom_bar(stat = 'identity') +
scale_fill_gradient(low = "blue", high = "red")
table(labels)/42000
## labels
## 0 1 2 3 4 5 6
## 0.09838095 0.11152381 0.09945238 0.10359524 0.09695238 0.09035714 0.09850000
## 7 8 9
## 0.10478571 0.09673810 0.09971429
# Using colMeans() I was only getting 0's.
colMeans(train_data)[1:20]
## pixel0 pixel1 pixel2 pixel3 pixel4 pixel5
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## pixel6 pixel7 pixel8 pixel9 pixel10 pixel11
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## pixel12 pixel13 pixel14 pixel15 pixel16 pixel17
## 1.176471e-05 4.388422e-05 2.016807e-05 8.403361e-07 0.000000e+00 0.000000e+00
## pixel18 pixel19
## 0.000000e+00 0.000000e+00
# covariance
train_cov <- train_data
# pca
train_pca <- prcomp(train_cov)
train_cumvar <- (cumsum(train_pca$sdev^2) / sum(train_pca$sdev^2))
# 95% variance
cumvar_95 <- which.max(train_cumvar >= .95)
print(paste0("At 95% variance there were ", (cumvar_95), " components generated."))
## [1] "At 95% variance there were 154 components generated."
# 100% variance
print(paste0("At 100% variance thereshould be 784 components generated representing each column in the dataset."))
## [1] "At 100% variance thereshould be 784 components generated representing each column in the dataset."
plot(train_cumvar)
par(mfrow = c (2, 5))
# images must be rotated
rotate <- function(x) t(apply(x, 2, rev))
# Using my for loop it reproduced static only
for (i in 1:10){
image(1:28, 1:28, array(train_pca$x[,i], dim = c(28, 28)))
}
# Using code from another student you can visualize more of a number that's blurry
for (i in 1:10){
img <- matrix(train_pca$rotation[1:784], nrow = 28, ncol = 28)
image(img, useRaster = T, axes = F)
}
# Selecting only the 8's
eights <- train_data %>%
filter(labels == 8)
eights <- eights[,2:ncol(eights)]
# Reducing pixels to 255
eights_reduced <- eights / 255
eights_pca <- prcomp(eights_reduced)
#
eights_cumvar <- (cumsum(eights_pca$sdev^2) / sum(eights_pca$sdev^2))
# 100% variance
eights_100 <- which.max(eights_cumvar >= 1)
eights_100
## [1] 537
plot(eights_cumvar)
par(mfrow = c (2, 5))
# images must be rotated
rotate <- function(x) t(apply(x, 2, rev))
# When using my code, same thing happens as before
for (i in 1:10){
m <- rotate(matrix(eights_pca$x[,i], nrow = 28, byrow = T))
image(m, col = grey.colors(255))
}
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
## Warning in matrix(eights_pca$x[, i], nrow = 28, byrow = T): data length [4063]
## is not a sub-multiple or multiple of the number of rows [28]
for (i in 1:10){
img <- matrix(eights_pca$rotation[1:784], nrow = 28, ncol = 28)
image(img, useRaster = T, axes = F)
}
# create model
train_label <- as.factor(train$label)
train_data <- train[2:785] / 255
train_data_label <- train$label
model <- nnet::multinom(labels ~., data = train_data, MaxNWts = 10000000)
## # weights: 7860 (7065 variable)
## initial value 96708.573906
## iter 10 value 25322.714106
## iter 20 value 20402.086316
## iter 30 value 19312.872829
## iter 40 value 18703.256586
## iter 50 value 18197.815143
## iter 60 value 17732.985798
## iter 70 value 16739.962157
## iter 80 value 14961.658448
## iter 90 value 13446.085942
## iter 100 value 12442.636014
## final value 12442.636014
## stopped after 100 iterations
# make the prediction and confusion matrix
prediction_model <- predict(model, train_data)
confusionMatrix(prediction_model, train_label)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1 2 3 4 5 6 7 8 9
## 0 3994 0 19 11 4 35 17 5 19 12
## 1 3 4588 59 32 20 39 28 37 134 18
## 2 11 13 3753 88 17 19 17 37 21 10
## 3 8 12 65 3879 9 91 1 9 91 53
## 4 13 6 60 10 3852 55 35 44 38 136
## 5 33 12 20 162 5 3386 45 10 132 33
## 6 35 3 38 15 22 52 3973 2 19 3
## 7 7 8 54 35 7 28 2 4076 18 87
## 8 20 32 85 78 22 51 17 4 3519 25
## 9 8 10 24 41 114 39 2 177 72 3811
##
## Overall Statistics
##
## Accuracy : 0.9245
## 95% CI : (0.922, 0.9271)
## No Information Rate : 0.1115
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9161
##
## Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
## Class: 0 Class: 1 Class: 2 Class: 3 Class: 4 Class: 5
## Sensitivity 0.96660 0.9795 0.89849 0.89152 0.94597 0.89223
## Specificity 0.99678 0.9901 0.99384 0.99100 0.98953 0.98817
## Pos Pred Value 0.97036 0.9254 0.94155 0.91963 0.90657 0.88223
## Neg Pred Value 0.99636 0.9974 0.98885 0.98751 0.99417 0.98928
## Prevalence 0.09838 0.1115 0.09945 0.10360 0.09695 0.09036
## Detection Rate 0.09510 0.1092 0.08936 0.09236 0.09171 0.08062
## Detection Prevalence 0.09800 0.1180 0.09490 0.10043 0.10117 0.09138
## Balanced Accuracy 0.98169 0.9848 0.94617 0.94126 0.96775 0.94020
## Class: 6 Class: 7 Class: 8 Class: 9
## Sensitivity 0.9604 0.92615 0.86611 0.90998
## Specificity 0.9950 0.99346 0.99120 0.98712
## Pos Pred Value 0.9546 0.94308 0.91331 0.88669
## Neg Pred Value 0.9957 0.99137 0.98574 0.99000
## Prevalence 0.0985 0.10479 0.09674 0.09971
## Detection Rate 0.0946 0.09705 0.08379 0.09074
## Detection Prevalence 0.0991 0.10290 0.09174 0.10233
## Balanced Accuracy 0.9777 0.95981 0.92865 0.94855
F inal Problem 3. 30 points You are to compete in the House Prices: Advanced Regression Techniques competition https://www.kaggle.com/c/house-prices-advanced-regression-techniques . I want you to do the following. Descriptive and Inferential Statistics. Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable. Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not? 5 points
# Read csv file renaming train.csv to house_train
house_train <- read.csv("C:/Users/Ivan/OneDrive/Desktop/train.csv/train.csv", header = T, sep = ",")
head(house_train[1:15], n = 5)
## label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9
## 1 1 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0
## 3 1 0 0 0 0 0 0 0 0 0 0
## 4 4 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0
## pixel10 pixel11 pixel12 pixel13
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
# glimpse of data set columns 1 - 10
glimpse(house_train[1:10])
## Rows: 42,000
## Columns: 10
## $ label <int> 1, 0, 1, 4, 0, 0, 7, 3, 5, 3, 8, 9, 1, 3, 3, 1, 2, 0, 7, 5, 8, …
## $ pixel0 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel1 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel2 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel3 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel4 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel5 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel6 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel7 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ pixel8 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
# summary of data set with filter of numeric values only
house_train %>%
select_if(is.numeric) %>%
summary()
## label pixel0 pixel1 pixel2 pixel3 pixel4
## Min. :0.000 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.:2.000 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median :4.000 Median :0 Median :0 Median :0 Median :0 Median :0
## Mean :4.457 Mean :0 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.:7.000 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :9.000 Max. :0 Max. :0 Max. :0 Max. :0 Max. :0
## pixel5 pixel6 pixel7 pixel8 pixel9 pixel10
## Min. :0 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median :0 Median :0 Median :0 Median :0 Median :0 Median :0
## Mean :0 Mean :0 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0 Max. :0 Max. :0 Max. :0 Max. :0
## pixel11 pixel12 pixel13 pixel14
## Min. :0 Min. : 0.000 Min. : 0.00000 Min. :0.00e+00
## 1st Qu.:0 1st Qu.: 0.000 1st Qu.: 0.00000 1st Qu.:0.00e+00
## Median :0 Median : 0.000 Median : 0.00000 Median :0.00e+00
## Mean :0 Mean : 0.003 Mean : 0.01119 Mean :5.14e-03
## 3rd Qu.:0 3rd Qu.: 0.000 3rd Qu.: 0.00000 3rd Qu.:0.00e+00
## Max. :0 Max. :116.000 Max. :254.00000 Max. :2.16e+02
## pixel15 pixel16 pixel17 pixel18 pixel19 pixel20
## Min. :0.000000 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.:0.000000 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median :0.000000 Median :0 Median :0 Median :0 Median :0 Median :0
## Mean :0.000214 Mean :0 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.:0.000000 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :9.000000 Max. :0 Max. :0 Max. :0 Max. :0 Max. :0
## pixel21 pixel22 pixel23 pixel24 pixel25 pixel26
## Min. :0 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median :0 Median :0 Median :0 Median :0 Median :0 Median :0
## Mean :0 Mean :0 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0 Max. :0 Max. :0 Max. :0 Max. :0
## pixel27 pixel28 pixel29 pixel30 pixel31 pixel32
## Min. :0 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0.00e+00
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0.00e+00
## Median :0 Median :0 Median :0 Median :0 Median :0 Median :0.00e+00
## Mean :0 Mean :0 Mean :0 Mean :0 Mean :0 Mean :3.81e-04
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00e+00
## Max. :0 Max. :0 Max. :0 Max. :0 Max. :0 Max. :1.60e+01
## pixel33 pixel34 pixel35 pixel36
## Min. : 0.00000 Min. : 0.00000 Min. : 0.00000 Min. : 0.0000
## 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.: 0.0000
## Median : 0.00000 Median : 0.00000 Median : 0.00000 Median : 0.0000
## Mean : 0.00131 Mean : 0.01055 Mean : 0.02726 Mean : 0.0509
## 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.: 0.0000
## Max. :47.00000 Max. :157.00000 Max. :254.00000 Max. :255.0000
## pixel37 pixel38 pixel39 pixel40
## Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.0000 Median : 0.0000 Median : 0.0000 Median : 0.0000
## Mean : 0.0664 Mean : 0.1296 Mean : 0.1741 Mean : 0.1913
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :243.0000 Max. :255.0000 Max. :255.0000 Max. :255.0000
## pixel41 pixel42 pixel43 pixel44
## Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.0000 Median : 0.0000 Median : 0.0000 Median : 0.0000
## Mean : 0.1906 Mean : 0.1961 Mean : 0.1714 Mean : 0.1645
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :255.0000 Max. :255.0000 Max. :255.0000 Max. :255.0000
## pixel45 pixel46 pixel47 pixel48
## Min. : 0.0000 Min. : 0.0000 Min. : 0.00000 Min. : 0.00000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000
## Median : 0.0000 Median : 0.0000 Median : 0.00000 Median : 0.00000
## Mean : 0.1517 Mean : 0.1053 Mean : 0.06079 Mean : 0.04507
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000
## Max. :255.0000 Max. :255.0000 Max. :255.00000 Max. :244.00000
## pixel49 pixel50 pixel51 pixel52
## Min. : 0.0000 Min. : 0.00000 Min. :0.00e+00 Min. :0
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.:0.00e+00 1st Qu.:0
## Median : 0.0000 Median : 0.00000 Median :0.00e+00 Median :0
## Mean : 0.0154 Mean : 0.01052 Mean :5.05e-03 Mean :0
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.:0.00e+00 3rd Qu.:0
## Max. :255.0000 Max. :184.00000 Max. :1.97e+02 Max. :0
## pixel53 pixel54 pixel55 pixel56 pixel57 pixel58
## Min. :0 Min. :0 Min. :0 Min. :0 Min. :0 Min. : 0.00000
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.: 0.00000
## Median :0 Median :0 Median :0 Median :0 Median :0 Median : 0.00000
## Mean :0 Mean :0 Mean :0 Mean :0 Mean :0 Mean : 0.00152
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.: 0.00000
## Max. :0 Max. :0 Max. :0 Max. :0 Max. :0 Max. :64.00000
## pixel59 pixel60 pixel61 pixel62
## Min. :0.0e+00 Min. :0.00e+00 Min. :0.00e+00 Min. : 0.00000
## 1st Qu.:0.0e+00 1st Qu.:0.00e+00 1st Qu.:0.00e+00 1st Qu.: 0.00000
## Median :0.0e+00 Median :0.00e+00 Median :0.00e+00 Median : 0.00000
## Mean :6.9e-04 Mean :7.33e-03 Mean :9.02e-03 Mean : 0.06112
## 3rd Qu.:0.0e+00 3rd Qu.:0.00e+00 3rd Qu.:0.00e+00 3rd Qu.: 0.00000
## Max. :2.9e+01 Max. :1.34e+02 Max. :1.28e+02 Max. :234.00000
## pixel63 pixel64 pixel65 pixel66
## Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.0000 Median : 0.0000 Median : 0.0000 Median : 0.0000
## Mean : 0.1511 Mean : 0.2959 Mean : 0.5337 Mean : 0.8694
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :255.0000 Max. :255.0000 Max. :255.0000 Max. :255.0000
## pixel67 pixel68 pixel69 pixel70
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.00
## Mean : 1.346 Mean : 1.981 Mean : 2.699 Mean : 3.39
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00
## Max. :255.000 Max. :255.000 Max. :255.000 Max. :255.00
## pixel71 pixel72 pixel73 pixel74
## Min. : 0.000 Min. : 0.00 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.000 Median : 0.00 Median : 0.000 Median : 0.000
## Mean : 3.802 Mean : 3.74 Mean : 3.333 Mean : 2.684
## 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.000 Max. :255.00 Max. :255.000 Max. :255.000
## pixel75 pixel76 pixel77 pixel78
## Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.000 Median : 0.0000 Median : 0.0000
## Mean : 1.993 Mean : 1.196 Mean : 0.6012 Mean : 0.2938
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :255.000 Max. :255.000 Max. :255.0000 Max. :255.0000
## pixel79 pixel80 pixel81 pixel82
## Min. : 0.00000 Min. : 0.00000 Min. : 0.0000 Min. :0
## 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.: 0.0000 1st Qu.:0
## Median : 0.00000 Median : 0.00000 Median : 0.0000 Median :0
## Mean : 0.09848 Mean : 0.03495 Mean : 0.0084 Mean :0
## 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.: 0.0000 3rd Qu.:0
## Max. :255.00000 Max. :255.00000 Max. :165.0000 Max. :0
## pixel83 pixel84 pixel85 pixel86 pixel87
## Min. :0 Min. :0 Min. :0 Min. :0.00e+00 Min. : 0.00000
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0.00e+00 1st Qu.: 0.00000
## Median :0 Median :0 Median :0 Median :0.00e+00 Median : 0.00000
## Mean :0 Mean :0 Mean :0 Mean :3.62e-03 Mean : 0.00417
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00e+00 3rd Qu.: 0.00000
## Max. :0 Max. :0 Max. :0 Max. :1.41e+02 Max. :84.00000
## pixel88 pixel89 pixel90 pixel91
## Min. : 0.0000 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.0000 Median : 0.00000 Median : 0.0000 Median : 0.0000
## Mean : 0.0164 Mean : 0.08976 Mean : 0.2358 Mean : 0.5407
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :139.0000 Max. :255.00000 Max. :255.0000 Max. :255.0000
## pixel92 pixel93 pixel94 pixel95
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.000
## Mean : 1.193 Mean : 2.293 Mean : 3.768 Mean : 5.714
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.000 Max. :255.000 Max. :255.000 Max. :255.000
## pixel96 pixel97 pixel98 pixel99
## Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.000 Median : 0.00 Median : 0.00 Median : 0.0
## Mean : 7.751 Mean : 10.05 Mean : 12.07 Mean : 13.4
## 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.0
## Max. :255.000 Max. :255.00 Max. :255.00 Max. :255.0
## pixel100 pixel101 pixel102 pixel103
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.000 Median : 0.000
## Mean : 13.07 Mean : 11.57 Mean : 9.296 Mean : 6.708
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.00 Max. :255.00 Max. :255.000 Max. :255.000
## pixel104 pixel105 pixel106 pixel107
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.00 Median : 0.00 Median : 0.000 Median : 0.0000
## Mean : 4.14 Mean : 2.27 Mean : 1.092 Mean : 0.4246
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.0000
## Max. :255.00 Max. :255.00 Max. :255.000 Max. :255.0000
## pixel108 pixel109 pixel110 pixel111
## Min. : 0.000 Min. : 0.00000 Min. :0.00e+00 Min. :0
## 1st Qu.: 0.000 1st Qu.: 0.00000 1st Qu.:0.00e+00 1st Qu.:0
## Median : 0.000 Median : 0.00000 Median :0.00e+00 Median :0
## Mean : 0.168 Mean : 0.02374 Mean :2.88e-03 Mean :0
## 3rd Qu.: 0.000 3rd Qu.: 0.00000 3rd Qu.:0.00e+00 3rd Qu.:0
## Max. :255.000 Max. :164.00000 Max. :1.21e+02 Max. :0
## pixel112 pixel113 pixel114 pixel115
## Min. :0 Min. : 0.0000 Min. : 0.00000 Min. : 0.00000
## 1st Qu.:0 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000
## Median :0 Median : 0.0000 Median : 0.00000 Median : 0.00000
## Mean :0 Mean : 0.0009 Mean : 0.00274 Mean : 0.01607
## 3rd Qu.:0 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000
## Max. :0 Max. :38.0000 Max. :51.00000 Max. :114.00000
## pixel116 pixel117 pixel118 pixel119
## Min. : 0.00000 Min. : 0.0000 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00000 1st Qu.: 0.0000 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00000 Median : 0.0000 Median : 0.00 Median : 0.000
## Mean : 0.08826 Mean : 0.3887 Mean : 1.03 Mean : 2.455
## 3rd Qu.: 0.00000 3rd Qu.: 0.0000 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :226.00000 Max. :255.0000 Max. :255.00 Max. :255.000
## pixel120 pixel121 pixel122 pixel123
## Min. : 0.000 Min. : 0.000 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.0 Median : 0.00
## Mean : 4.953 Mean : 8.677 Mean : 13.8 Mean : 20.33
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0 3rd Qu.: 0.00
## Max. :255.000 Max. :255.000 Max. :255.0 Max. :255.00
## pixel124 pixel125 pixel126 pixel127
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 28.04 Mean : 36.08 Mean : 42.71 Mean : 46.09
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 10.00 3rd Qu.: 29.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel128 pixel129 pixel130 pixel131
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 44.54 Mean : 38.95 Mean : 30.96 Mean : 22.91
## 3rd Qu.: 21.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel132 pixel133 pixel134 pixel135
## Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0
## Median : 0.00 Median : 0.000 Median : 0.000 Median : 0.0
## Mean : 14.87 Mean : 8.692 Mean : 4.551 Mean : 2.1
## 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0
## Max. :255.00 Max. :255.000 Max. :255.000 Max. :255.0
## pixel136 pixel137 pixel138 pixel139
## Min. : 0.0000 Min. : 0.0000 Min. : 0.00000 Min. :0
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.:0
## Median : 0.0000 Median : 0.0000 Median : 0.00000 Median :0
## Mean : 0.8388 Mean : 0.2028 Mean : 0.03548 Mean :0
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.:0
## Max. :255.0000 Max. :254.0000 Max. :230.00000 Max. :0
## pixel140 pixel141 pixel142 pixel143
## Min. :0 Min. :0 Min. : 0.00000 Min. : 0.000
## 1st Qu.:0 1st Qu.:0 1st Qu.: 0.00000 1st Qu.: 0.000
## Median :0 Median :0 Median : 0.00000 Median : 0.000
## Mean :0 Mean :0 Mean : 0.00943 Mean : 0.048
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.: 0.00000 3rd Qu.: 0.000
## Max. :0 Max. :0 Max. :95.00000 Max. :255.000
## pixel144 pixel145 pixel146 pixel147
## Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 0.0000 Median : 0.000 Median : 0.000 Median : 0.00
## Mean : 0.4116 Mean : 1.438 Mean : 3.558 Mean : 7.15
## 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00
## Max. :255.0000 Max. :255.000 Max. :255.000 Max. :255.00
## pixel148 pixel149 pixel150 pixel151
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 12.93 Mean : 21.42 Mean : 32.22 Mean : 45.36
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 27.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel152 pixel153 pixel154 pixel155
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.0 Median : 0.00
## Mean : 60.18 Mean : 75.01 Mean : 86.3 Mean : 91.59
## 3rd Qu.:114.00 3rd Qu.:175.00 3rd Qu.:213.0 3rd Qu.:225.00
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.00
## pixel156 pixel157 pixel158 pixel159
## Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.0 Median : 0.00 Median : 0.00
## Mean : 89.45 Mean : 80.3 Mean : 65.76 Mean : 49.65
## 3rd Qu.:220.00 3rd Qu.:194.0 3rd Qu.:138.00 3rd Qu.: 51.00
## Max. :255.00 Max. :255.0 Max. :255.00 Max. :255.00
## pixel160 pixel161 pixel162 pixel163
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.000
## Mean : 34.39 Mean : 21.46 Mean : 12.23 Mean : 6.375
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.000
## pixel164 pixel165 pixel166 pixel167
## Min. : 0.000 Min. : 0.0000 Min. : 0.000 Min. :0.00e+00
## 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.:0.00e+00
## Median : 0.000 Median : 0.0000 Median : 0.000 Median :0.00e+00
## Mean : 2.906 Mean : 0.7934 Mean : 0.126 Mean :4.29e-04
## 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.:0.00e+00
## Max. :255.000 Max. :255.0000 Max. :253.000 Max. :1.80e+01
## pixel168 pixel169 pixel170 pixel171
## Min. :0 Min. :0.0e+00 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0 1st Qu.:0.0e+00 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median :0 Median :0.0e+00 Median : 0.0000 Median : 0.0000
## Mean :0 Mean :9.5e-05 Mean : 0.0231 Mean : 0.2284
## 3rd Qu.:0 3rd Qu.:0.0e+00 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :0 Max. :4.0e+00 Max. :177.0000 Max. :255.0000
## pixel172 pixel173 pixel174 pixel175
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.00
## Mean : 1.155 Mean : 3.268 Mean : 7.367 Mean : 14.11
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00
## Max. :255.000 Max. :255.000 Max. :255.000 Max. :255.00
## pixel176 pixel177 pixel178 pixel179
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0
## Mean : 24.13 Mean : 37.88 Mean : 54.01 Mean : 72
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 74.00 3rd Qu.:163
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255
## pixel180 pixel181 pixel182 pixel183
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 7.00 Median : 61.0 Median :112.0 Median :128.0
## Mean : 90.47 Mean :107.5 Mean :119.7 Mean :124.9
## 3rd Qu.:223.00 3rd Qu.:250.0 3rd Qu.:252.0 3rd Qu.:252.0
## Max. :255.00 Max. :255.0 Max. :255.0 Max. :255.0
## pixel184 pixel185 pixel186 pixel187
## Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.0
## Median :119.0 Median : 75.0 Median : 14.00 Median : 0.0
## Mean :121.9 Mean :111.6 Mean : 95.59 Mean : 74.6
## 3rd Qu.:252.0 3rd Qu.:252.0 3rd Qu.:235.00 3rd Qu.:178.0
## Max. :255.0 Max. :255.0 Max. :255.00 Max. :255.0
## pixel188 pixel189 pixel190 pixel191
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.0 Median : 0.00
## Mean : 53.74 Mean : 34.96 Mean : 20.7 Mean : 11.12
## 3rd Qu.: 69.25 3rd Qu.: 0.00 3rd Qu.: 0.0 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.00
## pixel192 pixel193 pixel194 pixel195
## Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.00000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.00000
## Median : 0.000 Median : 0.000 Median : 0.0000 Median : 0.00000
## Mean : 5.254 Mean : 1.773 Mean : 0.3457 Mean : 0.02502
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.00000
## Max. :255.000 Max. :255.000 Max. :254.0000 Max. :253.00000
## pixel196 pixel197 pixel198 pixel199
## Min. :0 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0 1st Qu.: 0.00000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median :0 Median : 0.00000 Median : 0.0000 Median : 0.0000
## Mean :0 Mean : 0.01781 Mean : 0.1125 Mean : 0.6214
## 3rd Qu.:0 3rd Qu.: 0.00000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :0 Max. :128.00000 Max. :254.0000 Max. :255.0000
## pixel200 pixel201 pixel202 pixel203
## Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.00 Median : 0.00
## Mean : 2.452 Mean : 5.981 Mean : 12.39 Mean : 22.36
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.000 Max. :255.000 Max. :255.00 Max. :255.00
## pixel204 pixel205 pixel206 pixel207
## Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.0 Median : 0.00 Median : 0.00 Median : 28.00
## Mean : 36.6 Mean : 54.74 Mean : 74.79 Mean : 95.42
## 3rd Qu.: 0.0 3rd Qu.: 80.00 3rd Qu.:170.00 3rd Qu.:226.00
## Max. :255.0 Max. :255.00 Max. :255.00 Max. :255.00
## pixel208 pixel209 pixel210 pixel211 pixel212
## Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 85 Median :130.0 Median :152.0 Median :156.0 Median :149.0
## Mean :113 Mean :126.3 Mean :133.6 Mean :135.5 Mean :132.9
## 3rd Qu.:250 3rd Qu.:252.0 3rd Qu.:253.0 3rd Qu.:253.0 3rd Qu.:252.0
## Max. :255 Max. :255.0 Max. :255.0 Max. :255.0 Max. :255.0
## pixel213 pixel214 pixel215 pixel216
## Min. : 0 Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00
## Median :130 Median : 84.0 Median : 14.00 Median : 0.00
## Mean :126 Mean :112.7 Mean : 92.73 Mean : 68.89
## 3rd Qu.:252 3rd Qu.:251.0 3rd Qu.:227.00 3rd Qu.:152.00
## Max. :255 Max. :255.0 Max. :255.00 Max. :255.00
## pixel217 pixel218 pixel219 pixel220
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.000
## Mean : 46.21 Mean : 27.63 Mean : 14.79 Mean : 6.777
## 3rd Qu.: 31.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.000
## pixel221 pixel222 pixel223 pixel224
## Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. : 0.00000
## 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000
## Median : 0.000 Median : 0.0000 Median : 0.00000 Median : 0.00000
## Mean : 2.381 Mean : 0.4858 Mean : 0.02155 Mean : 0.00126
## 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000
## Max. :255.000 Max. :255.0000 Max. :196.00000 Max. :53.00000
## pixel225 pixel226 pixel227 pixel228
## Min. : 0.00000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.00000 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.00000 Median : 0.0000 Median : 0.000 Median : 0.000
## Mean : 0.06662 Mean : 0.3836 Mean : 1.401 Mean : 3.971
## 3rd Qu.: 0.00000 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.00000 Max. :255.0000 Max. :255.000 Max. :255.000
## pixel229 pixel230 pixel231 pixel232
## Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.000 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 8.704 Mean : 16.91 Mean : 29.64 Mean : 47.38
## 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 36.00
## Max. :255.000 Max. :255.00 Max. :255.00 Max. :255.00
## pixel233 pixel234 pixel235 pixel236
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 0.00 Median : 15.00 Median : 72.0 Median :113.0
## Mean : 69.18 Mean : 92.12 Mean :110.2 Mean :120.6
## 3rd Qu.:152.25 3rd Qu.:224.00 3rd Qu.:249.0 3rd Qu.:252.0
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.0
## pixel237 pixel238 pixel239 pixel240 pixel241
## Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0
## Median :124.0 Median :121.0 Median :117 Median :117.0 Median :115.0
## Mean :123.9 Mean :123.2 Mean :122 Mean :122.2 Mean :121.8
## 3rd Qu.:252.0 3rd Qu.:252.0 3rd Qu.:252 3rd Qu.:252.0 3rd Qu.:252.0
## Max. :255.0 Max. :255.0 Max. :255 Max. :255.0 Max. :255.0
## pixel242 pixel243 pixel244 pixel245
## Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 94.0 Median : 34.0 Median : 0.00 Median : 0.00
## Mean :116.1 Mean :100.2 Mean : 76.63 Mean : 52.02
## 3rd Qu.:252.0 3rd Qu.:240.0 3rd Qu.:188.00 3rd Qu.: 62.00
## Max. :255.0 Max. :255.0 Max. :255.00 Max. :255.00
## pixel246 pixel247 pixel248 pixel249
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.000 Median : 0.000
## Mean : 31.16 Mean : 15.89 Mean : 6.913 Mean : 2.481
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.00 Max. :255.00 Max. :255.000 Max. :255.000
## pixel250 pixel251 pixel252 pixel253
## Min. : 0.0000 Min. : 0.00000 Min. :0.00e+00 Min. : 0.00000
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.:0.00e+00 1st Qu.: 0.00000
## Median : 0.0000 Median : 0.00000 Median :0.00e+00 Median : 0.00000
## Mean : 0.4845 Mean : 0.01774 Mean :9.55e-03 Mean : 0.09826
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.:0.00e+00 3rd Qu.: 0.00000
## Max. :254.0000 Max. :190.00000 Max. :1.84e+02 Max. :254.00000
## pixel254 pixel255 pixel256 pixel257
## Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.0000 Median : 0.000 Median : 0.000 Median : 0.000
## Mean : 0.5517 Mean : 1.805 Mean : 4.648 Mean : 9.881
## 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.0000 Max. :255.000 Max. :255.000 Max. :255.000
## pixel258 pixel259 pixel260 pixel261
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 19.54 Mean : 34.52 Mean : 55.56 Mean : 79.87
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 79.00 3rd Qu.:196.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel262 pixel263 pixel264 pixel265 pixel266
## Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 36 Median : 76.0 Median : 73.0 Median : 52.0 Median : 36.00
## Mean :101 Mean :111.9 Mean :111.1 Mean :104.1 Mean : 98.53
## 3rd Qu.:241 3rd Qu.:251.0 3rd Qu.:250.0 3rd Qu.:243.0 3rd Qu.:235.00
## Max. :255 Max. :255.0 Max. :255.0 Max. :255.0 Max. :255.00
## pixel267 pixel268 pixel269 pixel270
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 37.00 Median : 55.0 Median : 76.0 Median : 75.0
## Mean : 98.87 Mean :103.9 Mean :110.7 Mean :111.3
## 3rd Qu.:234.00 3rd Qu.:241.0 3rd Qu.:250.0 3rd Qu.:251.0
## Max. :255.00 Max. :255.0 Max. :255.0 Max. :255.0
## pixel271 pixel272 pixel273 pixel274
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 30.00 Median : 0.00 Median : 0.0 Median : 0.00
## Mean : 99.14 Mean : 76.66 Mean : 52.1 Mean : 30.89
## 3rd Qu.:239.00 3rd Qu.:188.00 3rd Qu.: 60.0 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.00
## pixel275 pixel276 pixel277 pixel278
## Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.00 Median : 0.000 Median : 0.000 Median : 0.0000
## Mean : 15.04 Mean : 5.851 Mean : 1.838 Mean : 0.3306
## 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0000
## Max. :255.00 Max. :255.000 Max. :255.000 Max. :254.0000
## pixel279 pixel280 pixel281 pixel282
## Min. : 0.00000 Min. : 0.00000 Min. : 0.00000 Min. : 0.0000
## 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.: 0.0000
## Median : 0.00000 Median : 0.00000 Median : 0.00000 Median : 0.0000
## Mean : 0.03129 Mean : 0.01488 Mean : 0.09914 Mean : 0.5403
## 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.: 0.0000
## Max. :220.00000 Max. :226.00000 Max. :255.00000 Max. :255.0000
## pixel283 pixel284 pixel285 pixel286
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.00
## Mean : 1.709 Mean : 4.309 Mean : 9.806 Mean : 20.48
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00
## Max. :255.000 Max. :255.000 Max. :255.000 Max. :255.00
## pixel287 pixel288 pixel289 pixel290
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 37.5
## Mean : 37.33 Mean : 60.88 Mean : 85.24 Mean :101.8
## 3rd Qu.: 0.00 3rd Qu.:113.00 3rd Qu.:213.00 3rd Qu.:243.0
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.0
## pixel291 pixel292 pixel293 pixel294
## Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 45.0 Median : 21.00 Median : 3.00 Median : 0.00
## Mean :103.6 Mean : 93.18 Mean : 82.03 Mean : 78.92
## 3rd Qu.:244.0 3rd Qu.:224.00 3rd Qu.:192.00 3rd Qu.:183.00
## Max. :255.0 Max. :255.00 Max. :255.00 Max. :255.00
## pixel295 pixel296 pixel297 pixel298
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 3.00 Median : 25.00 Median : 54.0 Median : 60.0
## Mean : 83.99 Mean : 93.76 Mean :104.5 Mean :106.5
## 3rd Qu.:201.00 3rd Qu.:223.00 3rd Qu.:243.0 3rd Qu.:246.0
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.0
## pixel299 pixel300 pixel301 pixel302
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 14.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 94.19 Mean : 71.39 Mean : 47.89 Mean : 28.21
## 3rd Qu.:232.00 3rd Qu.:165.00 3rd Qu.: 34.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel303 pixel304 pixel305 pixel306
## Min. : 0.0 Min. : 0.000 Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.0 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.0 Median : 0.000 Median : 0.000 Median : 0.0000
## Mean : 13.5 Mean : 4.627 Mean : 1.157 Mean : 0.2201
## 3rd Qu.: 0.0 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0000
## Max. :255.0 Max. :255.000 Max. :255.000 Max. :254.0000
## pixel307 pixel308 pixel309 pixel310
## Min. : 0.00000 Min. :0.00e+00 Min. : 0.00000 Min. : 0.0000
## 1st Qu.: 0.00000 1st Qu.:0.00e+00 1st Qu.: 0.00000 1st Qu.: 0.0000
## Median : 0.00000 Median :0.00e+00 Median : 0.00000 Median : 0.0000
## Mean : 0.03067 Mean :6.33e-03 Mean : 0.06705 Mean : 0.4398
## 3rd Qu.: 0.00000 3rd Qu.:0.00e+00 3rd Qu.: 0.00000 3rd Qu.: 0.0000
## Max. :243.00000 Max. :1.50e+02 Max. :254.00000 Max. :255.0000
## pixel311 pixel312 pixel313 pixel314
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.00
## Mean : 1.288 Mean : 3.567 Mean : 9.441 Mean : 21.09
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00
## Max. :255.000 Max. :255.000 Max. :255.000 Max. :255.00
## pixel315 pixel316 pixel317 pixel318
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 30.00
## Mean : 40.07 Mean : 65.19 Mean : 88.65 Mean : 99.96
## 3rd Qu.: 5.00 3rd Qu.:134.00 3rd Qu.:221.00 3rd Qu.:241.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel319 pixel320 pixel321 pixel322
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 20.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 94.94 Mean : 81.14 Mean : 72.99 Mean : 76.01
## 3rd Qu.:230.00 3rd Qu.:192.00 3rd Qu.:160.00 3rd Qu.:178.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel323 pixel324 pixel325 pixel326 pixel327
## Min. : 0.0 Min. : 0.00 Min. : 0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 2.0 Median : 37.00 Median : 66 Median : 57.0 Median : 1.0
## Mean : 85.6 Mean : 97.82 Mean :108 Mean :105.7 Mean : 88.7
## 3rd Qu.:211.0 3rd Qu.:232.00 3rd Qu.:245 3rd Qu.:246.0 3rd Qu.:222.0
## Max. :255.0 Max. :255.00 Max. :255 Max. :255.0 Max. :255.0
## pixel328 pixel329 pixel330 pixel331
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 64.59 Mean : 42.46 Mean : 25.37 Mean : 12.66
## 3rd Qu.:131.00 3rd Qu.: 10.00 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel332 pixel333 pixel334 pixel335
## Min. : 0.00 Min. : 0.0000 Min. : 0.0000 Min. :0.00e+00
## 1st Qu.: 0.00 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.:0.00e+00
## Median : 0.00 Median : 0.0000 Median : 0.0000 Median :0.00e+00
## Mean : 4.13 Mean : 0.6492 Mean : 0.1351 Mean :9.64e-03
## 3rd Qu.: 0.00 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.:0.00e+00
## Max. :255.00 Max. :255.0000 Max. :253.0000 Max. :1.12e+02
## pixel336 pixel337 pixel338 pixel339
## Min. :0.00e+00 Min. : 0.00000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0.00e+00 1st Qu.: 0.00000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median :0.00e+00 Median : 0.00000 Median : 0.0000 Median : 0.0000
## Mean :3.88e-03 Mean : 0.03502 Mean : 0.2666 Mean : 0.8958
## 3rd Qu.:0.00e+00 3rd Qu.: 0.00000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :1.63e+02 Max. :255.00000 Max. :255.0000 Max. :255.0000
## pixel340 pixel341 pixel342 pixel343
## Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.00 Median : 0.00
## Mean : 2.978 Mean : 9.557 Mean : 22.85 Mean : 44.02
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 17.25
## Max. :255.000 Max. :255.000 Max. :255.00 Max. :255.00
## pixel344 pixel345 pixel346 pixel347
## Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.0 Median : 1.00 Median : 26.00 Median : 9.00
## Mean : 69.6 Mean : 91.09 Mean : 98.91 Mean : 91.42
## 3rd Qu.:158.0 3rd Qu.:229.00 3rd Qu.:240.00 3rd Qu.:225.00
## Max. :255.0 Max. :255.00 Max. :255.00 Max. :255.00
## pixel348 pixel349 pixel350 pixel351
## Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.00 Median : 0.0 Median : 0.00 Median : 39.0
## Mean : 79.76 Mean : 79.7 Mean : 89.51 Mean :102.1
## 3rd Qu.:190.00 3rd Qu.:188.0 3rd Qu.:228.00 3rd Qu.:247.0
## Max. :255.00 Max. :255.0 Max. :255.00 Max. :255.0
## pixel352 pixel353 pixel354 pixel355
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 89.0 Median :103.0 Median : 62.0 Median : 0.00
## Mean :113.9 Mean :118.5 Mean :107.8 Mean : 84.27
## 3rd Qu.:250.0 3rd Qu.:252.0 3rd Qu.:249.0 3rd Qu.:207.00
## Max. :255.0 Max. :255.0 Max. :255.0 Max. :255.00
## pixel356 pixel357 pixel358 pixel359
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 58.37 Mean : 38.36 Mean : 23.99 Mean : 12.95
## 3rd Qu.: 99.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel360 pixel361 pixel362 pixel363
## Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.0000 Median : 0.00000 Median : 0.0000
## Mean : 4.459 Mean : 0.4759 Mean : 0.07445 Mean : 0.0109
## 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.0000
## Max. :255.000 Max. :255.0000 Max. :252.00000 Max. :110.0000
## pixel364 pixel365 pixel366 pixel367
## Min. :0.0e+00 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0.0e+00 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median :0.0e+00 Median : 0.0000 Median : 0.0000 Median : 0.0000
## Mean :7.6e-04 Mean : 0.0135 Mean : 0.1292 Mean : 0.6131
## 3rd Qu.:0.0e+00 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :3.2e+01 Max. :253.0000 Max. :255.0000 Max. :255.0000
## pixel368 pixel369 pixel370 pixel371
## Min. : 0.000 Min. : 0.0 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 0.000 Median : 0.0 Median : 0.0 Median : 0.00
## Mean : 2.815 Mean : 10.7 Mean : 25.7 Mean : 47.93
## 3rd Qu.: 0.000 3rd Qu.: 0.0 3rd Qu.: 0.0 3rd Qu.: 34.00
## Max. :255.000 Max. :255.0 Max. :255.0 Max. :255.00
## pixel372 pixel373 pixel374 pixel375
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 2.00 Median : 21.00 Median : 9.00
## Mean : 72.83 Mean : 91.76 Mean : 97.15 Mean : 91.12
## 3rd Qu.:173.00 3rd Qu.:230.00 3rd Qu.:237.00 3rd Qu.:226.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel376 pixel377 pixel378 pixel379
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 6.00 Median : 29.00 Median : 64.0 Median :124.0
## Mean : 86.84 Mean : 96.88 Mean :111.5 Mean :124.5
## 3rd Qu.:213.00 3rd Qu.:232.00 3rd Qu.:252.0 3rd Qu.:252.0
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.0
## pixel380 pixel381 pixel382 pixel383
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00
## Median :144.0 Median :135.0 Median : 64.0 Median : 0.00
## Mean :130.7 Mean :127.5 Mean :109.5 Mean : 81.27
## 3rd Qu.:252.0 3rd Qu.:252.0 3rd Qu.:251.0 3rd Qu.:194.00
## Max. :255.0 Max. :255.0 Max. :255.0 Max. :255.00
## pixel384 pixel385 pixel386 pixel387
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.0
## Mean : 55.37 Mean : 37.48 Mean : 24.29 Mean : 13.9
## 3rd Qu.: 82.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.0
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.0
## pixel388 pixel389 pixel390 pixel391
## Min. : 0.000 Min. : 0.000 Min. : 0.00000 Min. : 0.00000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00000 1st Qu.: 0.00000
## Median : 0.000 Median : 0.000 Median : 0.00000 Median : 0.00000
## Mean : 5.257 Mean : 0.616 Mean : 0.07252 Mean : 0.01288
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00000 3rd Qu.: 0.00000
## Max. :255.000 Max. :255.000 Max. :252.00000 Max. :247.00000
## pixel392 pixel393 pixel394 pixel395
## Min. :0 Min. : 0.000 Min. : 0.00000 Min. : 0.0000
## 1st Qu.:0 1st Qu.: 0.000 1st Qu.: 0.00000 1st Qu.: 0.0000
## Median :0 Median : 0.000 Median : 0.00000 Median : 0.0000
## Mean :0 Mean : 0.005 Mean : 0.05248 Mean : 0.4321
## 3rd Qu.:0 3rd Qu.: 0.000 3rd Qu.: 0.00000 3rd Qu.: 0.0000
## Max. :0 Max. :188.000 Max. :254.00000 Max. :255.0000
## pixel396 pixel397 pixel398 pixel399
## Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.000 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 2.936 Mean : 12.36 Mean : 28.52 Mean : 50.57
## 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 48.00
## Max. :255.000 Max. :255.00 Max. :255.00 Max. :255.00
## pixel400 pixel401 pixel402 pixel403
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 15.00 Median : 16.00
## Mean : 73.58 Mean : 89.73 Mean : 94.56 Mean : 92.68
## 3rd Qu.:180.00 3rd Qu.:228.00 3rd Qu.:233.00 3rd Qu.:226.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel404 pixel405 pixel406 pixel407 pixel408
## Min. : 0.00 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 35.00 Median : 92 Median :144.0 Median :173.0 Median :164.0
## Mean : 97.16 Mean :115 Mean :130.1 Mean :139.8 Mean :137.4
## 3rd Qu.:231.00 3rd Qu.:252 3rd Qu.:253.0 3rd Qu.:253.0 3rd Qu.:253.0
## Max. :255.00 Max. :255 Max. :255.0 Max. :255.0 Max. :255.0
## pixel409 pixel410 pixel411 pixel412
## Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00
## Median :141.0 Median : 60.0 Median : 0.00 Median : 0.00
## Mean :128.7 Mean :107.7 Mean : 79.75 Mean : 56.31
## 3rd Qu.:252.0 3rd Qu.:250.0 3rd Qu.:191.00 3rd Qu.: 86.00
## Max. :255.0 Max. :255.0 Max. :255.00 Max. :255.00
## pixel413 pixel414 pixel415 pixel416
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.000
## Mean : 39.24 Mean : 25.75 Mean : 14.86 Mean : 5.844
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.000
## pixel417 pixel418 pixel419 pixel420
## Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 Min. :0
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.:0
## Median : 0.0000 Median : 0.00000 Median : 0.00000 Median :0
## Mean : 0.8296 Mean : 0.07433 Mean : 0.00193 Mean :0
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.:0
## Max. :255.0000 Max. :209.00000 Max. :51.00000 Max. :0
## pixel421 pixel422 pixel423 pixel424
## Min. :0 Min. : 0.00000 Min. : 0.0000 Min. : 0.000
## 1st Qu.:0 1st Qu.: 0.00000 1st Qu.: 0.0000 1st Qu.: 0.000
## Median :0 Median : 0.00000 Median : 0.0000 Median : 0.000
## Mean :0 Mean : 0.03567 Mean : 0.4788 Mean : 3.477
## 3rd Qu.:0 3rd Qu.: 0.00000 3rd Qu.: 0.0000 3rd Qu.: 0.000
## Max. :0 Max. :254.00000 Max. :255.0000 Max. :255.000
## pixel425 pixel426 pixel427 pixel428
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.0
## Mean : 14.31 Mean : 30.78 Mean : 51.02 Mean : 71.1
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 48.00 3rd Qu.:169.0
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.0
## pixel429 pixel430 pixel431 pixel432
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.00 Median : 7.00 Median : 19.00 Median : 56.0
## Mean : 85.14 Mean : 90.78 Mean : 93.73 Mean :104.6
## 3rd Qu.:216.00 3rd Qu.:224.00 3rd Qu.:227.00 3rd Qu.:242.0
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.0
## pixel433 pixel434 pixel435 pixel436 pixel437
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0 1st Qu.: 0.0
## Median :121.0 Median :167.0 Median :170.0 Median :149 Median :116.0
## Mean :123.1 Mean :135.5 Mean :139.1 Mean :132 Mean :121.7
## 3rd Qu.:252.0 3rd Qu.:253.0 3rd Qu.:253.0 3rd Qu.:253 3rd Qu.:252.0
## Max. :255.0 Max. :255.0 Max. :255.0 Max. :255 Max. :255.0
## pixel438 pixel439 pixel440 pixel441
## Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 42.0 Median : 0.00 Median : 0.00 Median : 0.00
## Mean :101.9 Mean : 78.86 Mean : 58.85 Mean : 41.73
## 3rd Qu.:241.0 3rd Qu.:191.00 3rd Qu.:103.00 3rd Qu.: 2.00
## Max. :255.0 Max. :255.00 Max. :255.00 Max. :255.00
## pixel442 pixel443 pixel444 pixel445
## Min. : 0.00 Min. : 0.0 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.00 Median : 0.0 Median : 0.000 Median : 0.000
## Mean : 27.17 Mean : 15.1 Mean : 5.895 Mean : 1.058
## 3rd Qu.: 0.00 3rd Qu.: 0.0 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.00 Max. :255.0 Max. :255.000 Max. :255.000
## pixel446 pixel447 pixel448 pixel449
## Min. : 0.0000 Min. : 0.00000 Min. :0 Min. : 0.00000
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.:0 1st Qu.: 0.00000
## Median : 0.0000 Median : 0.00000 Median :0 Median : 0.00000
## Mean : 0.1438 Mean : 0.01098 Mean :0 Mean : 0.00188
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.:0 3rd Qu.: 0.00000
## Max. :255.0000 Max. :190.00000 Max. :0 Max. :47.00000
## pixel450 pixel451 pixel452 pixel453
## Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 0.0000 Median : 0.0000 Median : 0.000 Median : 0.00
## Mean : 0.0666 Mean : 0.6474 Mean : 4.449 Mean : 16.35
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.00
## Max. :254.0000 Max. :255.0000 Max. :255.000 Max. :255.00
## pixel454 pixel455 pixel456 pixel457
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 0.00 Median : 0.00 Median : 0.0 Median : 0.0
## Mean : 32.25 Mean : 49.76 Mean : 66.2 Mean : 77.7
## 3rd Qu.: 0.00 3rd Qu.: 40.00 3rd Qu.:140.0 3rd Qu.:192.0
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.0
## pixel458 pixel459 pixel460 pixel461
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 0.00 Median : 7.00 Median : 39.0 Median : 87.0
## Mean : 83.55 Mean : 88.88 Mean :100.5 Mean :115.4
## 3rd Qu.:206.00 3rd Qu.:218.00 3rd Qu.:240.0 3rd Qu.:252.0
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.0
## pixel462 pixel463 pixel464 pixel465 pixel466
## Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00
## Median :129 Median :133.0 Median :111.0 Median : 75.0 Median : 27.00
## Mean :126 Mean :127.5 Mean :121.3 Mean :111.4 Mean : 95.93
## 3rd Qu.:253 3rd Qu.:253.0 3rd Qu.:252.0 3rd Qu.:251.0 3rd Qu.:229.00
## Max. :255 Max. :255.0 Max. :255.0 Max. :255.0 Max. :255.00
## pixel467 pixel468 pixel469 pixel470
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 78.36 Mean : 60.52 Mean : 42.63 Mean : 27.05
## 3rd Qu.:191.00 3rd Qu.:113.00 3rd Qu.: 6.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel471 pixel472 pixel473 pixel474
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.00 Median : 0.00 Median : 0.000 Median : 0.0000
## Mean : 14.34 Mean : 5.59 Mean : 1.243 Mean : 0.1886
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.0000
## Max. :255.00 Max. :255.00 Max. :255.000 Max. :254.0000
## pixel475 pixel476 pixel477 pixel478
## Min. : 0.00000 Min. :0 Min. : 0.00000 Min. : 0.0000
## 1st Qu.: 0.00000 1st Qu.:0 1st Qu.: 0.00000 1st Qu.: 0.0000
## Median : 0.00000 Median :0 Median : 0.00000 Median : 0.0000
## Mean : 0.02012 Mean :0 Mean : 0.00371 Mean : 0.1051
## 3rd Qu.: 0.00000 3rd Qu.:0 3rd Qu.: 0.00000 3rd Qu.: 0.0000
## Max. :223.00000 Max. :0 Max. :71.00000 Max. :254.0000
## pixel479 pixel480 pixel481 pixel482
## Min. : 0.0000 Min. : 0.000 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.0000 Median : 0.000 Median : 0.00 Median : 0.00
## Mean : 0.9673 Mean : 5.888 Mean : 18.16 Mean : 33.28
## 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.0000 Max. :255.000 Max. :255.00 Max. :255.00
## pixel483 pixel484 pixel485 pixel486
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.0 Median : 0.00
## Mean : 48.02 Mean : 60.62 Mean : 69.4 Mean : 74.59
## 3rd Qu.: 32.00 3rd Qu.:110.00 3rd Qu.:156.0 3rd Qu.:177.00
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.00
## pixel487 pixel488 pixel489 pixel490
## Min. : 0.00 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 0.00 Median : 0.00 Median : 35.0 Median : 76.0
## Mean : 80.26 Mean : 88.92 Mean :101.2 Mean :112.1
## 3rd Qu.:196.00 3rd Qu.:226.00 3rd Qu.:245.0 3rd Qu.:252.0
## Max. :255.00 Max. :255.00 Max. :255.0 Max. :255.0
## pixel491 pixel492 pixel493 pixel494
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 88.0 Median : 81.0 Median : 56.0 Median : 18.00
## Mean :115.4 Mean :112.6 Mean :105.2 Mean : 93.53
## 3rd Qu.:252.0 3rd Qu.:252.0 3rd Qu.:244.0 3rd Qu.:227.00
## Max. :255.0 Max. :255.0 Max. :255.0 Max. :255.00
## pixel495 pixel496 pixel497 pixel498
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 78.66 Mean : 60.41 Mean : 41.52 Mean : 25.25
## 3rd Qu.:194.00 3rd Qu.:113.00 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel499 pixel500 pixel501 pixel502
## Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.00 Median : 0.000 Median : 0.000 Median : 0.0000
## Mean : 12.82 Mean : 5.052 Mean : 1.328 Mean : 0.2043
## 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0000
## Max. :255.00 Max. :255.000 Max. :255.000 Max. :253.0000
## pixel503 pixel504 pixel505 pixel506
## Min. : 0.0000 Min. : 0.00000 Min. :0.00e+00 Min. : 0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.:0.00e+00 1st Qu.: 0.0000
## Median : 0.0000 Median : 0.00000 Median :0.00e+00 Median : 0.0000
## Mean : 0.0181 Mean : 0.00264 Mean :5.33e-03 Mean : 0.1716
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.:0.00e+00 3rd Qu.: 0.0000
## Max. :121.0000 Max. :60.00000 Max. :1.26e+02 Max. :255.0000
## pixel507 pixel508 pixel509 pixel510
## Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.00 Median : 0.00
## Mean : 1.509 Mean : 7.523 Mean : 20.15 Mean : 34.72
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.000 Max. :255.000 Max. :255.00 Max. :255.00
## pixel511 pixel512 pixel513 pixel514
## Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.0 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 48.3 Mean : 58.56 Mean : 65.86 Mean : 71.46
## 3rd Qu.: 32.0 3rd Qu.: 98.00 3rd Qu.:137.00 3rd Qu.:168.00
## Max. :255.0 Max. :255.00 Max. :255.00 Max. :255.00
## pixel515 pixel516 pixel517 pixel518
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.00 Median : 0.00 Median : 16.00 Median : 54.0
## Mean : 76.27 Mean : 82.62 Mean : 94.35 Mean :106.1
## 3rd Qu.:189.00 3rd Qu.:206.00 3rd Qu.:232.00 3rd Qu.:250.0
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.0
## pixel519 pixel520 pixel521 pixel522 pixel523
## Min. : 0.0 Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 80.0 Median : 81.0 Median : 58 Median : 15.0 Median : 0.0
## Mean :112.6 Mean :112.2 Mean :106 Mean : 94.6 Mean : 78.1
## 3rd Qu.:252.0 3rd Qu.:250.0 3rd Qu.:244 3rd Qu.:232.0 3rd Qu.:194.2
## Max. :255.0 Max. :255.0 Max. :255 Max. :255.0 Max. :255.0
## pixel524 pixel525 pixel526 pixel527
## Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.0 Median : 0.00 Median : 0.00
## Mean : 57.81 Mean : 38.4 Mean : 22.68 Mean : 11.29
## 3rd Qu.: 94.00 3rd Qu.: 0.0 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.0 Max. :255.00 Max. :255.00
## pixel528 pixel529 pixel530 pixel531
## Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.000 Median : 0.0000 Median : 0.0000
## Mean : 4.453 Mean : 1.246 Mean : 0.1621 Mean : 0.0111
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :255.000 Max. :255.000 Max. :255.0000 Max. :151.0000
## pixel532 pixel533 pixel534 pixel535
## Min. :0 Min. : 0.0000 Min. : 0.0000 Min. : 0.000
## 1st Qu.:0 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.000
## Median :0 Median : 0.0000 Median : 0.0000 Median : 0.000
## Mean :0 Mean : 0.0096 Mean : 0.2757 Mean : 2.037
## 3rd Qu.:0 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.000
## Max. :0 Max. :255.0000 Max. :255.0000 Max. :255.000
## pixel536 pixel537 pixel538 pixel539
## Min. : 0.000 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.000 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 8.624 Mean : 21.59 Mean : 36.88 Mean : 51.12
## 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 48.00
## Max. :255.000 Max. :255.00 Max. :255.00 Max. :255.00
## pixel540 pixel541 pixel542 pixel543
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 62.61 Mean : 71.28 Mean : 77.61 Mean : 82.16
## 3rd Qu.:124.00 3rd Qu.:168.00 3rd Qu.:192.00 3rd Qu.:209.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel544 pixel545 pixel546 pixel547
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 3.00 Median : 36.0 Median : 77.0 Median :103.0
## Mean : 89.26 Mean :100.3 Mean :112.4 Mean :118.6
## 3rd Qu.:226.00 3rd Qu.:242.0 3rd Qu.:252.0 3rd Qu.:252.0
## Max. :255.00 Max. :255.0 Max. :255.0 Max. :255.0
## pixel548 pixel549 pixel550 pixel551
## Min. : 0.0 Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00
## Median :100.0 Median : 64.0 Median : 10.00 Median : 0.00
## Mean :117.2 Mean :108.7 Mean : 93.43 Mean : 73.22
## 3rd Qu.:252.0 3rd Qu.:249.0 3rd Qu.:232.00 3rd Qu.:174.00
## Max. :255.0 Max. :255.0 Max. :255.00 Max. :255.00
## pixel552 pixel553 pixel554 pixel555
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 51.85 Mean : 33.29 Mean : 18.95 Mean : 9.13
## 3rd Qu.: 57.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel556 pixel557 pixel558 pixel559
## Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. :0.00e+00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00e+00
## Median : 0.000 Median : 0.000 Median : 0.0000 Median :0.00e+00
## Mean : 3.536 Mean : 1.026 Mean : 0.1598 Mean :5.43e-03
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.:0.00e+00
## Max. :255.000 Max. :255.000 Max. :253.0000 Max. :1.28e+02
## pixel560 pixel561 pixel562 pixel563
## Min. :0 Min. :0.00e+00 Min. : 0.0000 Min. : 0.000
## 1st Qu.:0 1st Qu.:0.00e+00 1st Qu.: 0.0000 1st Qu.: 0.000
## Median :0 Median :0.00e+00 Median : 0.0000 Median : 0.000
## Mean :0 Mean :9.17e-03 Mean : 0.3236 Mean : 2.294
## 3rd Qu.:0 3rd Qu.:0.00e+00 3rd Qu.: 0.0000 3rd Qu.: 0.000
## Max. :0 Max. :1.78e+02 Max. :255.0000 Max. :255.000
## pixel564 pixel565 pixel566 pixel567
## Min. : 0.000 Min. : 0.00 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 0.000 Median : 0.00 Median : 0.0 Median : 0.00
## Mean : 8.577 Mean : 20.66 Mean : 36.9 Mean : 53.74
## 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.0 3rd Qu.: 64.00
## Max. :255.000 Max. :255.00 Max. :255.0 Max. :255.00
## pixel568 pixel569 pixel570 pixel571
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 22.00
## Mean : 68.99 Mean : 81.35 Mean : 90.21 Mean : 97.62
## 3rd Qu.:159.00 3rd Qu.:207.00 3rd Qu.:229.00 3rd Qu.:241.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel572 pixel573 pixel574 pixel575 pixel576
## Min. : 0.0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 56.0 Median : 96 Median :128.0 Median :129.0 Median :109.0
## Mean :106.2 Mean :117 Mean :125.6 Mean :126.7 Mean :119.7
## 3rd Qu.:250.0 3rd Qu.:252 3rd Qu.:252.0 3rd Qu.:253.0 3rd Qu.:252.0
## Max. :255.0 Max. :255 Max. :255.0 Max. :255.0 Max. :255.0
## pixel577 pixel578 pixel579 pixel580
## Min. : 0.0 Min. : 0.00 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 53.0 Median : 0.00 Median : 0.0 Median : 0.00
## Mean :105.3 Mean : 85.09 Mean : 62.3 Mean : 41.47
## 3rd Qu.:246.0 3rd Qu.:213.00 3rd Qu.:122.0 3rd Qu.: 5.00
## Max. :255.0 Max. :255.00 Max. :255.0 Max. :255.00
## pixel581 pixel582 pixel583 pixel584
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.000 Median : 0.000
## Mean : 25.23 Mean : 13.66 Mean : 6.501 Mean : 2.634
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.00 Max. :255.00 Max. :255.000 Max. :255.000
## pixel585 pixel586 pixel587 pixel588
## Min. : 0.000 Min. : 0.0000 Min. : 0.00000 Min. :0.0e+00
## 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.:0.0e+00
## Median : 0.000 Median : 0.0000 Median : 0.00000 Median :0.0e+00
## Mean : 0.755 Mean : 0.1042 Mean : 0.00119 Mean :7.6e-04
## 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.:0.0e+00
## Max. :255.000 Max. :255.0000 Max. :50.00000 Max. :3.2e+01
## pixel589 pixel590 pixel591 pixel592
## Min. :0.00e+00 Min. : 0.0000 Min. : 0.000 Min. : 0.000
## 1st Qu.:0.00e+00 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.000
## Median :0.00e+00 Median : 0.0000 Median : 0.000 Median : 0.000
## Mean :7.07e-03 Mean : 0.2723 Mean : 1.907 Mean : 6.756
## 3rd Qu.:0.00e+00 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :1.07e+02 Max. :255.0000 Max. :255.000 Max. :255.000
## pixel593 pixel594 pixel595 pixel596
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 16.95 Mean : 32.56 Mean : 51.39 Mean : 70.45
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 50.00 3rd Qu.:169.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel597 pixel598 pixel599 pixel600 pixel601
## Min. : 0.00 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 0.00 Median : 32 Median : 82.0 Median :117.0 Median :144.0
## Mean : 87.45 Mean :101 Mean :112.4 Mean :122.6 Mean :130.8
## 3rd Qu.:226.00 3rd Qu.:246 3rd Qu.:252.0 3rd Qu.:252.0 3rd Qu.:252.0
## Max. :255.00 Max. :255 Max. :255.0 Max. :255.0 Max. :255.0
## pixel602 pixel603 pixel604 pixel605
## Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.00
## Median :151 Median :130.0 Median : 81.0 Median : 10.00
## Mean :133 Mean :126.3 Mean :111.6 Mean : 90.95
## 3rd Qu.:253 3rd Qu.:252.0 3rd Qu.:250.0 3rd Qu.:222.25
## Max. :255 Max. :255.0 Max. :255.0 Max. :255.00
## pixel606 pixel607 pixel608 pixel609
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 67.71 Mean : 46.19 Mean : 28.82 Mean : 16.23
## 3rd Qu.:145.00 3rd Qu.: 28.00 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel610 pixel611 pixel612 pixel613
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.0000
## Mean : 8.397 Mean : 4.122 Mean : 1.635 Mean : 0.4292
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0000
## Max. :255.000 Max. :255.000 Max. :255.000 Max. :255.0000
## pixel614 pixel615 pixel616 pixel617
## Min. : 0.00000 Min. :0.0e+00 Min. :0.00e+00 Min. :0.00e+00
## 1st Qu.: 0.00000 1st Qu.:0.0e+00 1st Qu.:0.00e+00 1st Qu.:0.00e+00
## Median : 0.00000 Median :0.0e+00 Median :0.00e+00 Median :0.00e+00
## Mean : 0.06571 Mean :9.3e-04 Mean :7.38e-04 Mean :3.33e-04
## 3rd Qu.: 0.00000 3rd Qu.:0.0e+00 3rd Qu.:0.00e+00 3rd Qu.:0.00e+00
## Max. :251.00000 Max. :3.9e+01 Max. :3.10e+01 Max. :1.00e+01
## pixel618 pixel619 pixel620 pixel621
## Min. : 0.0000 Min. : 0.000 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.0000 Median : 0.000 Median : 0.00 Median : 0.00
## Mean : 0.1705 Mean : 1.158 Mean : 4.03 Mean : 10.91
## 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.0000 Max. :255.000 Max. :255.00 Max. :255.00
## pixel622 pixel623 pixel624 pixel625
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 23.26 Mean : 40.24 Mean : 60.69 Mean : 80.79
## 3rd Qu.: 0.00 3rd Qu.: 2.00 3rd Qu.:114.00 3rd Qu.:208.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel626 pixel627 pixel628 pixel629 pixel630
## Min. : 0.00 Min. : 0 Min. : 0.0 Min. : 0 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0 1st Qu.: 0.0
## Median : 17.00 Median : 79 Median :121.0 Median :130 Median :118.0
## Mean : 98.92 Mean :113 Mean :122.7 Mean :126 Mean :121.9
## 3rd Qu.:245.00 3rd Qu.:252 3rd Qu.:252.0 3rd Qu.:252 3rd Qu.:252.0
## Max. :255.00 Max. :255 Max. :255.0 Max. :255 Max. :255.0
## pixel631 pixel632 pixel633 pixel634
## Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 65.0 Median : 4.00 Median : 0.00 Median : 0.00
## Mean :108.5 Mean : 89.06 Mean : 66.84 Mean : 45.73
## 3rd Qu.:250.0 3rd Qu.:218.00 3rd Qu.:142.00 3rd Qu.: 30.00
## Max. :255.0 Max. :255.00 Max. :255.00 Max. :255.00
## pixel635 pixel636 pixel637 pixel638
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.000 Median : 0.000
## Mean : 28.86 Mean : 16.69 Mean : 8.914 Mean : 4.548
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.00 Max. :255.00 Max. :255.000 Max. :255.000
## pixel639 pixel640 pixel641 pixel642
## Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.00000
## 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.00000
## Median : 0.000 Median : 0.0000 Median : 0.0000 Median : 0.00000
## Mean : 2.102 Mean : 0.7971 Mean : 0.2019 Mean : 0.02333
## 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.00000
## Max. :255.000 Max. :255.0000 Max. :253.0000 Max. :225.00000
## pixel643 pixel644 pixel645 pixel646
## Min. : 0.00000 Min. :0 Min. :0 Min. : 0.00000
## 1st Qu.: 0.00000 1st Qu.:0 1st Qu.:0 1st Qu.: 0.00000
## Median : 0.00000 Median :0 Median :0 Median : 0.00000
## Mean : 0.00171 Mean :0 Mean :0 Mean : 0.06069
## 3rd Qu.: 0.00000 3rd Qu.:0 3rd Qu.:0 3rd Qu.: 0.00000
## Max. :72.00000 Max. :0 Max. :0 Max. :217.00000
## pixel647 pixel648 pixel649 pixel650
## Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 0.0000 Median : 0.000 Median : 0.000 Median : 0.00
## Mean : 0.4729 Mean : 1.809 Mean : 5.026 Mean : 12.01
## 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00
## Max. :255.0000 Max. :255.000 Max. :255.000 Max. :255.00
## pixel651 pixel652 pixel653 pixel654
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 23.71 Mean : 39.84 Mean : 58.29 Mean : 76.57
## 3rd Qu.: 0.00 3rd Qu.: 5.00 3rd Qu.:104.00 3rd Qu.:184.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel655 pixel656 pixel657 pixel658
## Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 27.0 Median : 30.00 Median : 6.00
## Mean : 91.62 Mean : 99.9 Mean : 99.82 Mean : 91.57
## 3rd Qu.:228.00 3rd Qu.:241.0 3rd Qu.:240.00 3rd Qu.:222.00
## Max. :255.00 Max. :255.0 Max. :255.00 Max. :255.00
## pixel659 pixel660 pixel661 pixel662
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 76.47 Mean : 58.16 Mean : 40.59 Mean : 25.69
## 3rd Qu.:178.00 3rd Qu.:103.00 3rd Qu.: 12.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel663 pixel664 pixel665 pixel666
## Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.00 Median : 0.000 Median : 0.000 Median : 0.000
## Mean : 15.21 Mean : 8.414 Mean : 4.275 Mean : 2.105
## 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.00 Max. :255.000 Max. :255.000 Max. :255.000
## pixel667 pixel668 pixel669 pixel670
## Min. : 0.0000 Min. : 0.0000 Min. : 0.00000 Min. : 0.00000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000
## Median : 0.0000 Median : 0.0000 Median : 0.00000 Median : 0.00000
## Mean : 0.9506 Mean : 0.3095 Mean : 0.06471 Mean : 0.01238
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000
## Max. :255.0000 Max. :255.0000 Max. :241.00000 Max. :150.00000
## pixel671 pixel672 pixel673 pixel674 pixel675
## Min. :0 Min. :0 Min. :0 Min. : 0.00000 Min. : 0.0000
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.: 0.00000 1st Qu.: 0.0000
## Median :0 Median :0 Median :0 Median : 0.00000 Median : 0.0000
## Mean :0 Mean :0 Mean :0 Mean : 0.01805 Mean : 0.1389
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.: 0.00000 3rd Qu.: 0.0000
## Max. :0 Max. :0 Max. :0 Max. :253.00000 Max. :253.0000
## pixel676 pixel677 pixel678 pixel679
## Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.0000 Median : 0.000 Median : 0.000 Median : 0.000
## Mean : 0.5567 Mean : 1.637 Mean : 4.152 Mean : 8.925
## 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.0000 Max. :255.000 Max. :255.000 Max. :255.000
## pixel680 pixel681 pixel682 pixel683
## Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.00 Median : 0.0 Median : 0.00 Median : 0.0
## Mean : 16.42 Mean : 26.4 Mean : 37.14 Mean : 46.2
## 3rd Qu.: 0.00 3rd Qu.: 0.0 3rd Qu.: 0.00 3rd Qu.: 25.0
## Max. :255.00 Max. :255.0 Max. :255.00 Max. :255.0
## pixel684 pixel685 pixel686 pixel687
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.00
## Mean : 51.24 Mean : 51.04 Mean : 45.93 Mean : 37.29
## 3rd Qu.: 64.00 3rd Qu.: 63.00 3rd Qu.: 31.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00
## pixel688 pixel689 pixel690 pixel691
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.000
## Mean : 28.02 Mean : 19.44 Mean : 12.16 Mean : 7.313
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.000
## pixel692 pixel693 pixel694 pixel695
## Min. : 0 Min. : 0.000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0 Median : 0.000 Median : 0.0000 Median : 0.0000
## Mean : 4 Mean : 1.992 Mean : 0.9327 Mean : 0.4042
## 3rd Qu.: 0 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :255 Max. :255.000 Max. :255.0000 Max. :255.0000
## pixel696 pixel697 pixel698 pixel699
## Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 Min. :0
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.:0
## Median : 0.0000 Median : 0.00000 Median : 0.00000 Median :0
## Mean : 0.1003 Mean : 0.02307 Mean : 0.00276 Mean :0
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.:0
## Max. :254.0000 Max. :241.00000 Max. :98.00000 Max. :0
## pixel700 pixel701 pixel702 pixel703
## Min. :0 Min. :0 Min. : 0.00000 Min. : 0.0000
## 1st Qu.:0 1st Qu.:0 1st Qu.: 0.00000 1st Qu.: 0.0000
## Median :0 Median :0 Median : 0.00000 Median : 0.0000
## Mean :0 Mean :0 Mean : 0.00224 Mean : 0.0209
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.: 0.00000 3rd Qu.: 0.0000
## Max. :0 Max. :0 Max. :42.00000 Max. :254.0000
## pixel704 pixel705 pixel706 pixel707
## Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.0000 Median : 0.0000 Median : 0.000 Median : 0.000
## Mean : 0.1489 Mean : 0.4729 Mean : 1.306 Mean : 2.991
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.0000 Max. :255.0000 Max. :255.000 Max. :255.000
## pixel708 pixel709 pixel710 pixel711
## Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.00 Median : 0.00
## Mean : 5.843 Mean : 9.439 Mean : 13.48 Mean : 16.56
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.000 Max. :255.000 Max. :255.00 Max. :255.00
## pixel712 pixel713 pixel714 pixel715
## Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.0 Median : 0.00 Median : 0.00
## Mean : 18.13 Mean : 17.9 Mean : 16.11 Mean : 13.64
## 3rd Qu.: 0.00 3rd Qu.: 0.0 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :255.00 Max. :255.0 Max. :255.00 Max. :255.00
## pixel716 pixel717 pixel718 pixel719
## Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.00 Median : 0.000 Median : 0.000 Median : 0.000
## Mean : 10.89 Mean : 8.055 Mean : 5.334 Mean : 3.186
## 3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.00 Max. :255.000 Max. :255.000 Max. :255.000
## pixel720 pixel721 pixel722 pixel723
## Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.0000 Median : 0.0000 Median : 0.0000
## Mean : 1.721 Mean : 0.8351 Mean : 0.3787 Mean : 0.1461
## 3rd Qu.: 0.000 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :255.000 Max. :255.0000 Max. :255.0000 Max. :255.0000
## pixel724 pixel725 pixel726 pixel727
## Min. : 0.0000 Min. : 0.0000 Min. :0.00e+00 Min. :0
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.:0.00e+00 1st Qu.:0
## Median : 0.0000 Median : 0.0000 Median :0.00e+00 Median :0
## Mean : 0.0244 Mean : 0.0051 Mean :2.48e-03 Mean :0
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.:0.00e+00 3rd Qu.:0
## Max. :196.0000 Max. :127.0000 Max. :1.04e+02 Max. :0
## pixel728 pixel729 pixel730 pixel731 pixel732
## Min. :0 Min. :0 Min. :0 Min. :0 Min. : 0.00000
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.: 0.00000
## Median :0 Median :0 Median :0 Median :0 Median : 0.00000
## Mean :0 Mean :0 Mean :0 Mean :0 Mean : 0.03505
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.: 0.00000
## Max. :0 Max. :0 Max. :0 Max. :0 Max. :255.00000
## pixel733 pixel734 pixel735 pixel736
## Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.0000 Median : 0.0000 Median : 0.000 Median : 0.000
## Mean : 0.1397 Mean : 0.5031 Mean : 1.146 Mean : 2.162
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.0000 Max. :255.0000 Max. :255.000 Max. :255.000
## pixel737 pixel738 pixel739 pixel740
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.000
## Mean : 3.243 Mean : 4.637 Mean : 5.979 Mean : 6.605
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.000 Max. :255.000 Max. :255.000 Max. :255.000
## pixel741 pixel742 pixel743 pixel744
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.000
## Mean : 6.444 Mean : 5.681 Mean : 4.657 Mean : 3.773
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
## Max. :255.000 Max. :255.000 Max. :255.000 Max. :255.000
## pixel745 pixel746 pixel747 pixel748
## Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.0000
## Median : 0.000 Median : 0.000 Median : 0.00 Median : 0.0000
## Mean : 2.749 Mean : 1.796 Mean : 1.09 Mean : 0.5632
## 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.00 3rd Qu.: 0.0000
## Max. :255.000 Max. :255.000 Max. :255.00 Max. :255.0000
## pixel749 pixel750 pixel751 pixel752
## Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 Min. :0.00e+00
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.:0.00e+00
## Median : 0.0000 Median : 0.00000 Median : 0.00000 Median :0.00e+00
## Mean : 0.2396 Mean : 0.09352 Mean : 0.02483 Mean :8.57e-04
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.:0.00e+00
## Max. :255.0000 Max. :255.00000 Max. :253.00000 Max. :2.80e+01
## pixel753 pixel754 pixel755 pixel756 pixel757 pixel758
## Min. : 0.0000 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.: 0.0000 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median : 0.0000 Median :0 Median :0 Median :0 Median :0 Median :0
## Mean : 0.0014 Mean :0 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.: 0.0000 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :59.0000 Max. :0 Max. :0 Max. :0 Max. :0 Max. :0
## pixel759 pixel760 pixel761 pixel762
## Min. :0 Min. :0 Min. :0.00e+00 Min. : 0.00000
## 1st Qu.:0 1st Qu.:0 1st Qu.:0.00e+00 1st Qu.: 0.00000
## Median :0 Median :0 Median :0.00e+00 Median : 0.00000
## Mean :0 Mean :0 Mean :6.14e-03 Mean : 0.03583
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00e+00 3rd Qu.: 0.00000
## Max. :0 Max. :0 Max. :1.77e+02 Max. :231.00000
## pixel763 pixel764 pixel765 pixel766
## Min. : 0.00000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.00000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.00000 Median : 0.0000 Median : 0.0000 Median : 0.0000
## Mean : 0.08236 Mean : 0.1149 Mean : 0.1787 Mean : 0.3014
## 3rd Qu.: 0.00000 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :253.00000 Max. :254.0000 Max. :254.0000 Max. :255.0000
## pixel767 pixel768 pixel769 pixel770
## Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.0000 Median : 0.0000 Median : 0.0000 Median : 0.0000
## Mean : 0.4136 Mean : 0.5137 Mean : 0.5588 Mean : 0.6779
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :255.0000 Max. :255.0000 Max. :255.0000 Max. :255.0000
## pixel771 pixel772 pixel773 pixel774
## Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 0.0000 Median : 0.0000 Median : 0.0000 Median : 0.0000
## Mean : 0.6028 Mean : 0.4892 Mean : 0.3402 Mean : 0.2193
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :255.0000 Max. :255.0000 Max. :255.0000 Max. :254.0000
## pixel775 pixel776 pixel777 pixel778
## Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 Min. : 0.00000
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.: 0.00000
## Median : 0.0000 Median : 0.00000 Median : 0.00000 Median : 0.00000
## Mean : 0.1171 Mean : 0.05902 Mean : 0.02019 Mean : 0.01724
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.: 0.00000
## Max. :254.0000 Max. :253.00000 Max. :253.00000 Max. :254.00000
## pixel779 pixel780 pixel781 pixel782 pixel783
## Min. : 0.00000 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.: 0.00000 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median : 0.00000 Median :0 Median :0 Median :0 Median :0
## Mean : 0.00286 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.: 0.00000 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :62.00000 Max. :0 Max. :0 Max. :0 Max. :0
# plot to see overview of label
house_train%>%
ggplot( aes(x = label)) +
geom_histogram( binwidth = 0.5, fill = "blue", color = "#e9ecef", alpha = 10) +
ggtitle("Histogram of 'label'") +
theme_ipsum() +
theme(
plot.title = element_text(size = 15)
)
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
# selecting random columns to create a Correlogram
house_train%>%
ggpairs(columns = 44:53, ggplot2::aes(colour = 'label'))
colnames(house_train)
## [1] "label" "pixel0" "pixel1" "pixel2" "pixel3" "pixel4"
## [7] "pixel5" "pixel6" "pixel7" "pixel8" "pixel9" "pixel10"
## [13] "pixel11" "pixel12" "pixel13" "pixel14" "pixel15" "pixel16"
## [19] "pixel17" "pixel18" "pixel19" "pixel20" "pixel21" "pixel22"
## [25] "pixel23" "pixel24" "pixel25" "pixel26" "pixel27" "pixel28"
## [31] "pixel29" "pixel30" "pixel31" "pixel32" "pixel33" "pixel34"
## [37] "pixel35" "pixel36" "pixel37" "pixel38" "pixel39" "pixel40"
## [43] "pixel41" "pixel42" "pixel43" "pixel44" "pixel45" "pixel46"
## [49] "pixel47" "pixel48" "pixel49" "pixel50" "pixel51" "pixel52"
## [55] "pixel53" "pixel54" "pixel55" "pixel56" "pixel57" "pixel58"
## [61] "pixel59" "pixel60" "pixel61" "pixel62" "pixel63" "pixel64"
## [67] "pixel65" "pixel66" "pixel67" "pixel68" "pixel69" "pixel70"
## [73] "pixel71" "pixel72" "pixel73" "pixel74" "pixel75" "pixel76"
## [79] "pixel77" "pixel78" "pixel79" "pixel80" "pixel81" "pixel82"
## [85] "pixel83" "pixel84" "pixel85" "pixel86" "pixel87" "pixel88"
## [91] "pixel89" "pixel90" "pixel91" "pixel92" "pixel93" "pixel94"
## [97] "pixel95" "pixel96" "pixel97" "pixel98" "pixel99" "pixel100"
## [103] "pixel101" "pixel102" "pixel103" "pixel104" "pixel105" "pixel106"
## [109] "pixel107" "pixel108" "pixel109" "pixel110" "pixel111" "pixel112"
## [115] "pixel113" "pixel114" "pixel115" "pixel116" "pixel117" "pixel118"
## [121] "pixel119" "pixel120" "pixel121" "pixel122" "pixel123" "pixel124"
## [127] "pixel125" "pixel126" "pixel127" "pixel128" "pixel129" "pixel130"
## [133] "pixel131" "pixel132" "pixel133" "pixel134" "pixel135" "pixel136"
## [139] "pixel137" "pixel138" "pixel139" "pixel140" "pixel141" "pixel142"
## [145] "pixel143" "pixel144" "pixel145" "pixel146" "pixel147" "pixel148"
## [151] "pixel149" "pixel150" "pixel151" "pixel152" "pixel153" "pixel154"
## [157] "pixel155" "pixel156" "pixel157" "pixel158" "pixel159" "pixel160"
## [163] "pixel161" "pixel162" "pixel163" "pixel164" "pixel165" "pixel166"
## [169] "pixel167" "pixel168" "pixel169" "pixel170" "pixel171" "pixel172"
## [175] "pixel173" "pixel174" "pixel175" "pixel176" "pixel177" "pixel178"
## [181] "pixel179" "pixel180" "pixel181" "pixel182" "pixel183" "pixel184"
## [187] "pixel185" "pixel186" "pixel187" "pixel188" "pixel189" "pixel190"
## [193] "pixel191" "pixel192" "pixel193" "pixel194" "pixel195" "pixel196"
## [199] "pixel197" "pixel198" "pixel199" "pixel200" "pixel201" "pixel202"
## [205] "pixel203" "pixel204" "pixel205" "pixel206" "pixel207" "pixel208"
## [211] "pixel209" "pixel210" "pixel211" "pixel212" "pixel213" "pixel214"
## [217] "pixel215" "pixel216" "pixel217" "pixel218" "pixel219" "pixel220"
## [223] "pixel221" "pixel222" "pixel223" "pixel224" "pixel225" "pixel226"
## [229] "pixel227" "pixel228" "pixel229" "pixel230" "pixel231" "pixel232"
## [235] "pixel233" "pixel234" "pixel235" "pixel236" "pixel237" "pixel238"
## [241] "pixel239" "pixel240" "pixel241" "pixel242" "pixel243" "pixel244"
## [247] "pixel245" "pixel246" "pixel247" "pixel248" "pixel249" "pixel250"
## [253] "pixel251" "pixel252" "pixel253" "pixel254" "pixel255" "pixel256"
## [259] "pixel257" "pixel258" "pixel259" "pixel260" "pixel261" "pixel262"
## [265] "pixel263" "pixel264" "pixel265" "pixel266" "pixel267" "pixel268"
## [271] "pixel269" "pixel270" "pixel271" "pixel272" "pixel273" "pixel274"
## [277] "pixel275" "pixel276" "pixel277" "pixel278" "pixel279" "pixel280"
## [283] "pixel281" "pixel282" "pixel283" "pixel284" "pixel285" "pixel286"
## [289] "pixel287" "pixel288" "pixel289" "pixel290" "pixel291" "pixel292"
## [295] "pixel293" "pixel294" "pixel295" "pixel296" "pixel297" "pixel298"
## [301] "pixel299" "pixel300" "pixel301" "pixel302" "pixel303" "pixel304"
## [307] "pixel305" "pixel306" "pixel307" "pixel308" "pixel309" "pixel310"
## [313] "pixel311" "pixel312" "pixel313" "pixel314" "pixel315" "pixel316"
## [319] "pixel317" "pixel318" "pixel319" "pixel320" "pixel321" "pixel322"
## [325] "pixel323" "pixel324" "pixel325" "pixel326" "pixel327" "pixel328"
## [331] "pixel329" "pixel330" "pixel331" "pixel332" "pixel333" "pixel334"
## [337] "pixel335" "pixel336" "pixel337" "pixel338" "pixel339" "pixel340"
## [343] "pixel341" "pixel342" "pixel343" "pixel344" "pixel345" "pixel346"
## [349] "pixel347" "pixel348" "pixel349" "pixel350" "pixel351" "pixel352"
## [355] "pixel353" "pixel354" "pixel355" "pixel356" "pixel357" "pixel358"
## [361] "pixel359" "pixel360" "pixel361" "pixel362" "pixel363" "pixel364"
## [367] "pixel365" "pixel366" "pixel367" "pixel368" "pixel369" "pixel370"
## [373] "pixel371" "pixel372" "pixel373" "pixel374" "pixel375" "pixel376"
## [379] "pixel377" "pixel378" "pixel379" "pixel380" "pixel381" "pixel382"
## [385] "pixel383" "pixel384" "pixel385" "pixel386" "pixel387" "pixel388"
## [391] "pixel389" "pixel390" "pixel391" "pixel392" "pixel393" "pixel394"
## [397] "pixel395" "pixel396" "pixel397" "pixel398" "pixel399" "pixel400"
## [403] "pixel401" "pixel402" "pixel403" "pixel404" "pixel405" "pixel406"
## [409] "pixel407" "pixel408" "pixel409" "pixel410" "pixel411" "pixel412"
## [415] "pixel413" "pixel414" "pixel415" "pixel416" "pixel417" "pixel418"
## [421] "pixel419" "pixel420" "pixel421" "pixel422" "pixel423" "pixel424"
## [427] "pixel425" "pixel426" "pixel427" "pixel428" "pixel429" "pixel430"
## [433] "pixel431" "pixel432" "pixel433" "pixel434" "pixel435" "pixel436"
## [439] "pixel437" "pixel438" "pixel439" "pixel440" "pixel441" "pixel442"
## [445] "pixel443" "pixel444" "pixel445" "pixel446" "pixel447" "pixel448"
## [451] "pixel449" "pixel450" "pixel451" "pixel452" "pixel453" "pixel454"
## [457] "pixel455" "pixel456" "pixel457" "pixel458" "pixel459" "pixel460"
## [463] "pixel461" "pixel462" "pixel463" "pixel464" "pixel465" "pixel466"
## [469] "pixel467" "pixel468" "pixel469" "pixel470" "pixel471" "pixel472"
## [475] "pixel473" "pixel474" "pixel475" "pixel476" "pixel477" "pixel478"
## [481] "pixel479" "pixel480" "pixel481" "pixel482" "pixel483" "pixel484"
## [487] "pixel485" "pixel486" "pixel487" "pixel488" "pixel489" "pixel490"
## [493] "pixel491" "pixel492" "pixel493" "pixel494" "pixel495" "pixel496"
## [499] "pixel497" "pixel498" "pixel499" "pixel500" "pixel501" "pixel502"
## [505] "pixel503" "pixel504" "pixel505" "pixel506" "pixel507" "pixel508"
## [511] "pixel509" "pixel510" "pixel511" "pixel512" "pixel513" "pixel514"
## [517] "pixel515" "pixel516" "pixel517" "pixel518" "pixel519" "pixel520"
## [523] "pixel521" "pixel522" "pixel523" "pixel524" "pixel525" "pixel526"
## [529] "pixel527" "pixel528" "pixel529" "pixel530" "pixel531" "pixel532"
## [535] "pixel533" "pixel534" "pixel535" "pixel536" "pixel537" "pixel538"
## [541] "pixel539" "pixel540" "pixel541" "pixel542" "pixel543" "pixel544"
## [547] "pixel545" "pixel546" "pixel547" "pixel548" "pixel549" "pixel550"
## [553] "pixel551" "pixel552" "pixel553" "pixel554" "pixel555" "pixel556"
## [559] "pixel557" "pixel558" "pixel559" "pixel560" "pixel561" "pixel562"
## [565] "pixel563" "pixel564" "pixel565" "pixel566" "pixel567" "pixel568"
## [571] "pixel569" "pixel570" "pixel571" "pixel572" "pixel573" "pixel574"
## [577] "pixel575" "pixel576" "pixel577" "pixel578" "pixel579" "pixel580"
## [583] "pixel581" "pixel582" "pixel583" "pixel584" "pixel585" "pixel586"
## [589] "pixel587" "pixel588" "pixel589" "pixel590" "pixel591" "pixel592"
## [595] "pixel593" "pixel594" "pixel595" "pixel596" "pixel597" "pixel598"
## [601] "pixel599" "pixel600" "pixel601" "pixel602" "pixel603" "pixel604"
## [607] "pixel605" "pixel606" "pixel607" "pixel608" "pixel609" "pixel610"
## [613] "pixel611" "pixel612" "pixel613" "pixel614" "pixel615" "pixel616"
## [619] "pixel617" "pixel618" "pixel619" "pixel620" "pixel621" "pixel622"
## [625] "pixel623" "pixel624" "pixel625" "pixel626" "pixel627" "pixel628"
## [631] "pixel629" "pixel630" "pixel631" "pixel632" "pixel633" "pixel634"
## [637] "pixel635" "pixel636" "pixel637" "pixel638" "pixel639" "pixel640"
## [643] "pixel641" "pixel642" "pixel643" "pixel644" "pixel645" "pixel646"
## [649] "pixel647" "pixel648" "pixel649" "pixel650" "pixel651" "pixel652"
## [655] "pixel653" "pixel654" "pixel655" "pixel656" "pixel657" "pixel658"
## [661] "pixel659" "pixel660" "pixel661" "pixel662" "pixel663" "pixel664"
## [667] "pixel665" "pixel666" "pixel667" "pixel668" "pixel669" "pixel670"
## [673] "pixel671" "pixel672" "pixel673" "pixel674" "pixel675" "pixel676"
## [679] "pixel677" "pixel678" "pixel679" "pixel680" "pixel681" "pixel682"
## [685] "pixel683" "pixel684" "pixel685" "pixel686" "pixel687" "pixel688"
## [691] "pixel689" "pixel690" "pixel691" "pixel692" "pixel693" "pixel694"
## [697] "pixel695" "pixel696" "pixel697" "pixel698" "pixel699" "pixel700"
## [703] "pixel701" "pixel702" "pixel703" "pixel704" "pixel705" "pixel706"
## [709] "pixel707" "pixel708" "pixel709" "pixel710" "pixel711" "pixel712"
## [715] "pixel713" "pixel714" "pixel715" "pixel716" "pixel717" "pixel718"
## [721] "pixel719" "pixel720" "pixel721" "pixel722" "pixel723" "pixel724"
## [727] "pixel725" "pixel726" "pixel727" "pixel728" "pixel729" "pixel730"
## [733] "pixel731" "pixel732" "pixel733" "pixel734" "pixel735" "pixel736"
## [739] "pixel737" "pixel738" "pixel739" "pixel740" "pixel741" "pixel742"
## [745] "pixel743" "pixel744" "pixel745" "pixel746" "pixel747" "pixel748"
## [751] "pixel749" "pixel750" "pixel751" "pixel752" "pixel753" "pixel754"
## [757] "pixel755" "pixel756" "pixel757" "pixel758" "pixel759" "pixel760"
## [763] "pixel761" "pixel762" "pixel763" "pixel764" "pixel765" "pixel766"
## [769] "pixel767" "pixel768" "pixel769" "pixel770" "pixel771" "pixel772"
## [775] "pixel773" "pixel774" "pixel775" "pixel776" "pixel777" "pixel778"
## [781] "pixel779" "pixel780" "pixel781" "pixel782" "pixel783"
# plot for label and pixel781
house_train %>%
ggplot(aes(x = label, y = pixel781, color = pixel0)) +
geom_point(size = 3) +
geom_smooth(method = "lm", color = 'red') +
theme_ipsum()
## `geom_smooth()` using formula = 'y ~ x'
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
# plot for label and pixel227
house_train %>%
ggplot(aes(x = label, y = pixel227, color = pixel621)) +
geom_point(size = 3) +
geom_smooth(method = "lm", color = 'red') +
theme_ipsum()
## `geom_smooth()` using formula = 'y ~ x'
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
cor_house <- house_train %>%
dplyr::select(label, pixel227, pixel621)
cor_m <- cor(cor_house)
cor_m
## label pixel227 pixel621
## label 1.00000000 0.03833434 -0.14340160
## pixel227 0.03833434 1.00000000 -0.01371602
## pixel621 -0.14340160 -0.01371602 1.00000000
cor.test(house_train$label, house_train$pixel227, conf.level = 0.8)
##
## Pearson's product-moment correlation
##
## data: house_train$label and house_train$pixel227
## t = 7.8618, df = 41998, p-value = 3.877e-15
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.03208856 0.04457713
## sample estimates:
## cor
## 0.03833434
cor.test(house_train$label, house_train$pixel222, conf.level = 0.8)
##
## Pearson's product-moment correlation
##
## data: house_train$label and house_train$pixel222
## t = 4.2464, df = 41998, p-value = 2.177e-05
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.01446476 0.02696634
## sample estimates:
## cor
## 0.02071636
cor.test(house_train$pixel222, house_train$pixel227, conf.level = 0.8)
##
## Pearson's product-moment correlation
##
## data: house_train$pixel222 and house_train$pixel227
## t = -0.97887, df = 41998, p-value = 0.3277
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## -0.011029594 0.001477067
## sample estimates:
## cor
## -0.00477645
Linear Algebra and Correlation. Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix. 5 points
# invert correlation matrix from above
invert_cor <- solve(cor_m)
invert_cor
## label pixel227 pixel621
## label 1.02237661 -0.03718822 0.1461004
## pixel227 -0.03718822 1.00154086 0.0084043
## pixel621 0.14610036 0.00840430 1.0210663
# precision
precision_cor <- round(cor_m %*% invert_cor)
precision_cor
## label pixel227 pixel621
## label 1 0 0
## pixel227 0 1 0
## pixel621 0 0 1
# LU decomposition
lu_decom_cor <- lu.decomposition(cor_m)
lu_decom_cor
## $L
## [,1] [,2] [,3]
## [1,] 1.00000000 0.000000000 0
## [2,] 0.03833434 1.000000000 0
## [3,] -0.14340160 -0.008230905 1
##
## $U
## [,1] [,2] [,3]
## [1,] 1 0.03833434 -0.14340160
## [2,] 0 0.99853048 -0.00821881
## [3,] 0 0.00000000 0.97936833
Calculus-Based Probability & Statistics. Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/Rdevel/library/MASS/html/fitdistr.html ). Find the optimal value of λ for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, λ)). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss. 10 points
# Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary.
house_train%>%
filter(pixel437 < 350) %>%
ggplot( aes(x = pixel437)) +
geom_histogram( binwidth = 15, fill = "purple", color = "#e9ecef", alpha = 0.9) +
ggtitle("Histogram of 'pixel437'") +
theme_ipsum() +
theme(
plot.title = element_text(size=15)
)
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
# exponential distribution
expon_pixel437 <- fitdistr(house_train$pixel437, 'exponential')
# lambda
lamb_pixel437 <- expon_pixel437$estimate
lamb_pixel437
## rate
## 0.008216964
# sample of 1000
exp_samp <- rexp(1000, lamb_pixel437)
summary(exp_samp)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0176 34.0550 80.1771 119.8788 172.2020 871.2335
# Plot histogram and compare it with original histogram
hist(exp_samp, main = "Histogram of Exponential Sample of 'pixel437'")
# 5th and 95th percentiles
lower <- qexp(0.05, lamb_pixel437)
lower
## [1] 6.242366
upper <- qexp(0.95, lamb_pixel437)
upper
## [1] 364.579
# empirical 5th and 95th percentile
quantile(house_train$pixel437, c(0.05, 0.95))
## 5% 95%
## 0 254
print(paste('The 5th percentile is 0.00 and the 95th percentile is 175.05.'))
## [1] "The 5th percentile is 0.00 and the 95th percentile is 175.05."
Modeling. Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score. 10 points
# selection columns that are numeric only
house_train2 <- house_train %>%
dplyr::select_if(is.numeric)
# Check for missing values in data
colSums(is.na(house_train2))
## label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6
## 0 0 0 0 0 0 0 0
## pixel7 pixel8 pixel9 pixel10 pixel11 pixel12 pixel13 pixel14
## 0 0 0 0 0 0 0 0
## pixel15 pixel16 pixel17 pixel18 pixel19 pixel20 pixel21 pixel22
## 0 0 0 0 0 0 0 0
## pixel23 pixel24 pixel25 pixel26 pixel27 pixel28 pixel29 pixel30
## 0 0 0 0 0 0 0 0
## pixel31 pixel32 pixel33 pixel34 pixel35 pixel36 pixel37 pixel38
## 0 0 0 0 0 0 0 0
## pixel39 pixel40 pixel41 pixel42 pixel43 pixel44 pixel45 pixel46
## 0 0 0 0 0 0 0 0
## pixel47 pixel48 pixel49 pixel50 pixel51 pixel52 pixel53 pixel54
## 0 0 0 0 0 0 0 0
## pixel55 pixel56 pixel57 pixel58 pixel59 pixel60 pixel61 pixel62
## 0 0 0 0 0 0 0 0
## pixel63 pixel64 pixel65 pixel66 pixel67 pixel68 pixel69 pixel70
## 0 0 0 0 0 0 0 0
## pixel71 pixel72 pixel73 pixel74 pixel75 pixel76 pixel77 pixel78
## 0 0 0 0 0 0 0 0
## pixel79 pixel80 pixel81 pixel82 pixel83 pixel84 pixel85 pixel86
## 0 0 0 0 0 0 0 0
## pixel87 pixel88 pixel89 pixel90 pixel91 pixel92 pixel93 pixel94
## 0 0 0 0 0 0 0 0
## pixel95 pixel96 pixel97 pixel98 pixel99 pixel100 pixel101 pixel102
## 0 0 0 0 0 0 0 0
## pixel103 pixel104 pixel105 pixel106 pixel107 pixel108 pixel109 pixel110
## 0 0 0 0 0 0 0 0
## pixel111 pixel112 pixel113 pixel114 pixel115 pixel116 pixel117 pixel118
## 0 0 0 0 0 0 0 0
## pixel119 pixel120 pixel121 pixel122 pixel123 pixel124 pixel125 pixel126
## 0 0 0 0 0 0 0 0
## pixel127 pixel128 pixel129 pixel130 pixel131 pixel132 pixel133 pixel134
## 0 0 0 0 0 0 0 0
## pixel135 pixel136 pixel137 pixel138 pixel139 pixel140 pixel141 pixel142
## 0 0 0 0 0 0 0 0
## pixel143 pixel144 pixel145 pixel146 pixel147 pixel148 pixel149 pixel150
## 0 0 0 0 0 0 0 0
## pixel151 pixel152 pixel153 pixel154 pixel155 pixel156 pixel157 pixel158
## 0 0 0 0 0 0 0 0
## pixel159 pixel160 pixel161 pixel162 pixel163 pixel164 pixel165 pixel166
## 0 0 0 0 0 0 0 0
## pixel167 pixel168 pixel169 pixel170 pixel171 pixel172 pixel173 pixel174
## 0 0 0 0 0 0 0 0
## pixel175 pixel176 pixel177 pixel178 pixel179 pixel180 pixel181 pixel182
## 0 0 0 0 0 0 0 0
## pixel183 pixel184 pixel185 pixel186 pixel187 pixel188 pixel189 pixel190
## 0 0 0 0 0 0 0 0
## pixel191 pixel192 pixel193 pixel194 pixel195 pixel196 pixel197 pixel198
## 0 0 0 0 0 0 0 0
## pixel199 pixel200 pixel201 pixel202 pixel203 pixel204 pixel205 pixel206
## 0 0 0 0 0 0 0 0
## pixel207 pixel208 pixel209 pixel210 pixel211 pixel212 pixel213 pixel214
## 0 0 0 0 0 0 0 0
## pixel215 pixel216 pixel217 pixel218 pixel219 pixel220 pixel221 pixel222
## 0 0 0 0 0 0 0 0
## pixel223 pixel224 pixel225 pixel226 pixel227 pixel228 pixel229 pixel230
## 0 0 0 0 0 0 0 0
## pixel231 pixel232 pixel233 pixel234 pixel235 pixel236 pixel237 pixel238
## 0 0 0 0 0 0 0 0
## pixel239 pixel240 pixel241 pixel242 pixel243 pixel244 pixel245 pixel246
## 0 0 0 0 0 0 0 0
## pixel247 pixel248 pixel249 pixel250 pixel251 pixel252 pixel253 pixel254
## 0 0 0 0 0 0 0 0
## pixel255 pixel256 pixel257 pixel258 pixel259 pixel260 pixel261 pixel262
## 0 0 0 0 0 0 0 0
## pixel263 pixel264 pixel265 pixel266 pixel267 pixel268 pixel269 pixel270
## 0 0 0 0 0 0 0 0
## pixel271 pixel272 pixel273 pixel274 pixel275 pixel276 pixel277 pixel278
## 0 0 0 0 0 0 0 0
## pixel279 pixel280 pixel281 pixel282 pixel283 pixel284 pixel285 pixel286
## 0 0 0 0 0 0 0 0
## pixel287 pixel288 pixel289 pixel290 pixel291 pixel292 pixel293 pixel294
## 0 0 0 0 0 0 0 0
## pixel295 pixel296 pixel297 pixel298 pixel299 pixel300 pixel301 pixel302
## 0 0 0 0 0 0 0 0
## pixel303 pixel304 pixel305 pixel306 pixel307 pixel308 pixel309 pixel310
## 0 0 0 0 0 0 0 0
## pixel311 pixel312 pixel313 pixel314 pixel315 pixel316 pixel317 pixel318
## 0 0 0 0 0 0 0 0
## pixel319 pixel320 pixel321 pixel322 pixel323 pixel324 pixel325 pixel326
## 0 0 0 0 0 0 0 0
## pixel327 pixel328 pixel329 pixel330 pixel331 pixel332 pixel333 pixel334
## 0 0 0 0 0 0 0 0
## pixel335 pixel336 pixel337 pixel338 pixel339 pixel340 pixel341 pixel342
## 0 0 0 0 0 0 0 0
## pixel343 pixel344 pixel345 pixel346 pixel347 pixel348 pixel349 pixel350
## 0 0 0 0 0 0 0 0
## pixel351 pixel352 pixel353 pixel354 pixel355 pixel356 pixel357 pixel358
## 0 0 0 0 0 0 0 0
## pixel359 pixel360 pixel361 pixel362 pixel363 pixel364 pixel365 pixel366
## 0 0 0 0 0 0 0 0
## pixel367 pixel368 pixel369 pixel370 pixel371 pixel372 pixel373 pixel374
## 0 0 0 0 0 0 0 0
## pixel375 pixel376 pixel377 pixel378 pixel379 pixel380 pixel381 pixel382
## 0 0 0 0 0 0 0 0
## pixel383 pixel384 pixel385 pixel386 pixel387 pixel388 pixel389 pixel390
## 0 0 0 0 0 0 0 0
## pixel391 pixel392 pixel393 pixel394 pixel395 pixel396 pixel397 pixel398
## 0 0 0 0 0 0 0 0
## pixel399 pixel400 pixel401 pixel402 pixel403 pixel404 pixel405 pixel406
## 0 0 0 0 0 0 0 0
## pixel407 pixel408 pixel409 pixel410 pixel411 pixel412 pixel413 pixel414
## 0 0 0 0 0 0 0 0
## pixel415 pixel416 pixel417 pixel418 pixel419 pixel420 pixel421 pixel422
## 0 0 0 0 0 0 0 0
## pixel423 pixel424 pixel425 pixel426 pixel427 pixel428 pixel429 pixel430
## 0 0 0 0 0 0 0 0
## pixel431 pixel432 pixel433 pixel434 pixel435 pixel436 pixel437 pixel438
## 0 0 0 0 0 0 0 0
## pixel439 pixel440 pixel441 pixel442 pixel443 pixel444 pixel445 pixel446
## 0 0 0 0 0 0 0 0
## pixel447 pixel448 pixel449 pixel450 pixel451 pixel452 pixel453 pixel454
## 0 0 0 0 0 0 0 0
## pixel455 pixel456 pixel457 pixel458 pixel459 pixel460 pixel461 pixel462
## 0 0 0 0 0 0 0 0
## pixel463 pixel464 pixel465 pixel466 pixel467 pixel468 pixel469 pixel470
## 0 0 0 0 0 0 0 0
## pixel471 pixel472 pixel473 pixel474 pixel475 pixel476 pixel477 pixel478
## 0 0 0 0 0 0 0 0
## pixel479 pixel480 pixel481 pixel482 pixel483 pixel484 pixel485 pixel486
## 0 0 0 0 0 0 0 0
## pixel487 pixel488 pixel489 pixel490 pixel491 pixel492 pixel493 pixel494
## 0 0 0 0 0 0 0 0
## pixel495 pixel496 pixel497 pixel498 pixel499 pixel500 pixel501 pixel502
## 0 0 0 0 0 0 0 0
## pixel503 pixel504 pixel505 pixel506 pixel507 pixel508 pixel509 pixel510
## 0 0 0 0 0 0 0 0
## pixel511 pixel512 pixel513 pixel514 pixel515 pixel516 pixel517 pixel518
## 0 0 0 0 0 0 0 0
## pixel519 pixel520 pixel521 pixel522 pixel523 pixel524 pixel525 pixel526
## 0 0 0 0 0 0 0 0
## pixel527 pixel528 pixel529 pixel530 pixel531 pixel532 pixel533 pixel534
## 0 0 0 0 0 0 0 0
## pixel535 pixel536 pixel537 pixel538 pixel539 pixel540 pixel541 pixel542
## 0 0 0 0 0 0 0 0
## pixel543 pixel544 pixel545 pixel546 pixel547 pixel548 pixel549 pixel550
## 0 0 0 0 0 0 0 0
## pixel551 pixel552 pixel553 pixel554 pixel555 pixel556 pixel557 pixel558
## 0 0 0 0 0 0 0 0
## pixel559 pixel560 pixel561 pixel562 pixel563 pixel564 pixel565 pixel566
## 0 0 0 0 0 0 0 0
## pixel567 pixel568 pixel569 pixel570 pixel571 pixel572 pixel573 pixel574
## 0 0 0 0 0 0 0 0
## pixel575 pixel576 pixel577 pixel578 pixel579 pixel580 pixel581 pixel582
## 0 0 0 0 0 0 0 0
## pixel583 pixel584 pixel585 pixel586 pixel587 pixel588 pixel589 pixel590
## 0 0 0 0 0 0 0 0
## pixel591 pixel592 pixel593 pixel594 pixel595 pixel596 pixel597 pixel598
## 0 0 0 0 0 0 0 0
## pixel599 pixel600 pixel601 pixel602 pixel603 pixel604 pixel605 pixel606
## 0 0 0 0 0 0 0 0
## pixel607 pixel608 pixel609 pixel610 pixel611 pixel612 pixel613 pixel614
## 0 0 0 0 0 0 0 0
## pixel615 pixel616 pixel617 pixel618 pixel619 pixel620 pixel621 pixel622
## 0 0 0 0 0 0 0 0
## pixel623 pixel624 pixel625 pixel626 pixel627 pixel628 pixel629 pixel630
## 0 0 0 0 0 0 0 0
## pixel631 pixel632 pixel633 pixel634 pixel635 pixel636 pixel637 pixel638
## 0 0 0 0 0 0 0 0
## pixel639 pixel640 pixel641 pixel642 pixel643 pixel644 pixel645 pixel646
## 0 0 0 0 0 0 0 0
## pixel647 pixel648 pixel649 pixel650 pixel651 pixel652 pixel653 pixel654
## 0 0 0 0 0 0 0 0
## pixel655 pixel656 pixel657 pixel658 pixel659 pixel660 pixel661 pixel662
## 0 0 0 0 0 0 0 0
## pixel663 pixel664 pixel665 pixel666 pixel667 pixel668 pixel669 pixel670
## 0 0 0 0 0 0 0 0
## pixel671 pixel672 pixel673 pixel674 pixel675 pixel676 pixel677 pixel678
## 0 0 0 0 0 0 0 0
## pixel679 pixel680 pixel681 pixel682 pixel683 pixel684 pixel685 pixel686
## 0 0 0 0 0 0 0 0
## pixel687 pixel688 pixel689 pixel690 pixel691 pixel692 pixel693 pixel694
## 0 0 0 0 0 0 0 0
## pixel695 pixel696 pixel697 pixel698 pixel699 pixel700 pixel701 pixel702
## 0 0 0 0 0 0 0 0
## pixel703 pixel704 pixel705 pixel706 pixel707 pixel708 pixel709 pixel710
## 0 0 0 0 0 0 0 0
## pixel711 pixel712 pixel713 pixel714 pixel715 pixel716 pixel717 pixel718
## 0 0 0 0 0 0 0 0
## pixel719 pixel720 pixel721 pixel722 pixel723 pixel724 pixel725 pixel726
## 0 0 0 0 0 0 0 0
## pixel727 pixel728 pixel729 pixel730 pixel731 pixel732 pixel733 pixel734
## 0 0 0 0 0 0 0 0
## pixel735 pixel736 pixel737 pixel738 pixel739 pixel740 pixel741 pixel742
## 0 0 0 0 0 0 0 0
## pixel743 pixel744 pixel745 pixel746 pixel747 pixel748 pixel749 pixel750
## 0 0 0 0 0 0 0 0
## pixel751 pixel752 pixel753 pixel754 pixel755 pixel756 pixel757 pixel758
## 0 0 0 0 0 0 0 0
## pixel759 pixel760 pixel761 pixel762 pixel763 pixel764 pixel765 pixel766
## 0 0 0 0 0 0 0 0
## pixel767 pixel768 pixel769 pixel770 pixel771 pixel772 pixel773 pixel774
## 0 0 0 0 0 0 0 0
## pixel775 pixel776 pixel777 pixel778 pixel779 pixel780 pixel781 pixel782
## 0 0 0 0 0 0 0 0
## pixel783
## 0
model_house <- lm(pixel310 ~., house_train2)
summary(model_house)
##
## Call:
## lm(formula = pixel310 ~ ., data = house_train2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -95.502 -0.211 -0.004 0.191 138.818
##
## Coefficients: (80 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.318e-02 8.020e-02 0.663 0.507282
## label 9.889e-03 9.705e-03 1.019 0.308265
## pixel0 NA NA NA NA
## pixel1 NA NA NA NA
## pixel2 NA NA NA NA
## pixel3 NA NA NA NA
## pixel4 NA NA NA NA
## pixel5 NA NA NA NA
## pixel6 NA NA NA NA
## pixel7 NA NA NA NA
## pixel8 NA NA NA NA
## pixel9 NA NA NA NA
## pixel10 NA NA NA NA
## pixel11 NA NA NA NA
## pixel12 2.283e-03 5.398e-02 0.042 0.966272
## pixel13 -8.690e-04 1.887e-02 -0.046 0.963261
## pixel14 NA NA NA NA
## pixel15 NA NA NA NA
## pixel16 NA NA NA NA
## pixel17 NA NA NA NA
## pixel18 NA NA NA NA
## pixel19 NA NA NA NA
## pixel20 NA NA NA NA
## pixel21 NA NA NA NA
## pixel22 NA NA NA NA
## pixel23 NA NA NA NA
## pixel24 NA NA NA NA
## pixel25 NA NA NA NA
## pixel26 NA NA NA NA
## pixel27 NA NA NA NA
## pixel28 NA NA NA NA
## pixel29 NA NA NA NA
## pixel30 NA NA NA NA
## pixel31 NA NA NA NA
## pixel32 2.037e-01 2.202e+00 0.093 0.926291
## pixel33 -6.785e-02 7.462e-01 -0.091 0.927550
## pixel34 1.177e-03 5.340e-02 0.022 0.982410
## pixel35 -1.803e-04 2.260e-02 -0.008 0.993636
## pixel36 -1.521e-04 8.962e-03 -0.017 0.986461
## pixel37 -1.006e-06 8.905e-03 0.000 0.999910
## pixel38 -6.120e-04 6.240e-03 -0.098 0.921873
## pixel39 1.744e-04 5.608e-03 0.031 0.975190
## pixel40 -1.930e-04 5.014e-03 -0.038 0.969304
## pixel41 1.190e-04 5.368e-03 0.022 0.982314
## pixel42 -2.795e-04 5.308e-03 -0.053 0.958001
## pixel43 -2.042e-04 4.886e-03 -0.042 0.966661
## pixel44 -4.036e-04 5.206e-03 -0.078 0.938209
## pixel45 1.695e-04 5.497e-03 0.031 0.975406
## pixel46 -5.777e-04 5.940e-03 -0.097 0.922524
## pixel47 -5.645e-04 8.828e-03 -0.064 0.949015
## pixel48 3.692e-04 1.067e-02 0.035 0.972385
## pixel49 -1.340e-03 2.303e-02 -0.058 0.953586
## pixel50 2.647e-03 3.347e-02 0.079 0.936957
## pixel51 -1.300e-03 3.087e-02 -0.042 0.966404
## pixel52 NA NA NA NA
## pixel53 NA NA NA NA
## pixel54 NA NA NA NA
## pixel55 NA NA NA NA
## pixel56 NA NA NA NA
## pixel57 NA NA NA NA
## pixel58 -8.889e-02 8.989e-01 -0.099 0.921232
## pixel59 1.897e-03 2.099e-01 0.009 0.992791
## pixel60 3.289e-04 1.958e-02 0.017 0.986601
## pixel61 5.639e-05 2.728e-02 0.002 0.998351
## pixel62 -1.570e-04 1.162e-02 -0.014 0.989216
## pixel63 9.277e-04 7.291e-03 0.127 0.898752
## pixel64 1.288e-04 4.906e-03 0.026 0.979053
## pixel65 -6.152e-04 3.909e-03 -0.157 0.874953
## pixel66 1.875e-04 3.095e-03 0.061 0.951689
## pixel67 2.585e-04 2.544e-03 0.102 0.919066
## pixel68 1.353e-04 2.108e-03 0.064 0.948829
## pixel69 3.785e-04 1.859e-03 0.204 0.838669
## pixel70 6.631e-05 1.695e-03 0.039 0.968787
## pixel71 3.068e-04 1.604e-03 0.191 0.848334
## pixel72 1.039e-04 1.599e-03 0.065 0.948188
## pixel73 -8.745e-05 1.653e-03 -0.053 0.957822
## pixel74 2.752e-04 1.817e-03 0.151 0.879612
## pixel75 1.027e-04 2.062e-03 0.050 0.960269
## pixel76 -1.285e-04 2.649e-03 -0.049 0.961308
## pixel77 5.848e-04 3.714e-03 0.157 0.874893
## pixel78 -8.306e-04 5.114e-03 -0.162 0.870987
## pixel79 1.470e-03 8.936e-03 0.165 0.869306
## pixel80 -2.727e-03 1.604e-02 -0.170 0.865037
## pixel81 7.974e-03 3.131e-02 0.255 0.798977
## pixel82 NA NA NA NA
## pixel83 NA NA NA NA
## pixel84 NA NA NA NA
## pixel85 NA NA NA NA
## pixel86 3.877e-02 4.073e-01 0.095 0.924163
## pixel87 2.624e-03 6.014e-02 0.044 0.965202
## pixel88 3.573e-03 1.793e-02 0.199 0.842077
## pixel89 1.149e-03 8.127e-03 0.141 0.887597
## pixel90 -3.824e-04 6.297e-03 -0.061 0.951574
## pixel91 -5.452e-04 4.545e-03 -0.120 0.904516
## pixel92 -3.195e-04 2.930e-03 -0.109 0.913163
## pixel93 3.713e-04 2.307e-03 0.161 0.872139
## pixel94 -1.575e-04 1.910e-03 -0.082 0.934269
## pixel95 1.607e-04 1.658e-03 0.097 0.922798
## pixel96 -5.167e-05 1.452e-03 -0.036 0.971624
## pixel97 -1.501e-05 1.288e-03 -0.012 0.990702
## pixel98 4.463e-05 1.178e-03 0.038 0.969783
## pixel99 -1.421e-04 1.099e-03 -0.129 0.897110
## pixel100 2.769e-04 1.090e-03 0.254 0.799562
## pixel101 1.677e-04 1.107e-03 0.151 0.879590
## pixel102 -2.740e-04 1.206e-03 -0.227 0.820302
## pixel103 1.579e-04 1.384e-03 0.114 0.909174
## pixel104 4.215e-05 1.670e-03 0.025 0.979863
## pixel105 -4.801e-04 2.129e-03 -0.226 0.821578
## pixel106 5.564e-04 3.017e-03 0.184 0.853696
## pixel107 -1.487e-04 4.267e-03 -0.035 0.972192
## pixel108 6.075e-04 5.809e-03 0.105 0.916706
## pixel109 -1.825e-03 1.627e-02 -0.112 0.910691
## pixel110 2.869e-03 3.124e-02 0.092 0.926840
## pixel111 NA NA NA NA
## pixel112 NA NA NA NA
## pixel113 4.899e-04 9.390e-02 0.005 0.995838
## pixel114 -6.789e-03 6.495e-02 -0.105 0.916754
## pixel115 2.372e-03 2.265e-02 0.105 0.916587
## pixel116 -1.746e-03 7.491e-03 -0.233 0.815702
## pixel117 1.023e-03 4.147e-03 0.247 0.805198
## pixel118 7.176e-05 3.138e-03 0.023 0.981756
## pixel119 2.800e-05 2.296e-03 0.012 0.990270
## pixel120 8.963e-05 1.790e-03 0.050 0.960062
## pixel121 -4.355e-04 1.421e-03 -0.307 0.759171
## pixel122 1.505e-04 1.167e-03 0.129 0.897338
## pixel123 -1.732e-04 9.879e-04 -0.175 0.860831
## pixel124 -7.636e-05 8.517e-04 -0.090 0.928560
## pixel125 1.008e-04 7.510e-04 0.134 0.893227
## pixel126 -1.125e-04 6.839e-04 -0.164 0.869400
## pixel127 1.178e-04 6.513e-04 0.181 0.856493
## pixel128 -1.237e-04 6.531e-04 -0.189 0.849845
## pixel129 3.597e-05 6.745e-04 0.053 0.957475
## pixel130 -1.415e-04 7.334e-04 -0.193 0.846992
## pixel131 5.930e-05 8.010e-04 0.074 0.940984
## pixel132 -9.643e-05 9.230e-04 -0.104 0.916791
## pixel133 1.175e-04 1.134e-03 0.104 0.917445
## pixel134 -3.717e-05 1.446e-03 -0.026 0.979488
## pixel135 5.771e-05 2.028e-03 0.028 0.977302
## pixel136 -2.289e-04 2.951e-03 -0.078 0.938171
## pixel137 5.992e-05 5.225e-03 0.011 0.990851
## pixel138 -5.573e-04 9.450e-03 -0.059 0.952978
## pixel139 NA NA NA NA
## pixel140 NA NA NA NA
## pixel141 NA NA NA NA
## pixel142 -2.637e-03 2.097e-02 -0.126 0.899928
## pixel143 -2.077e-03 1.177e-02 -0.176 0.859953
## pixel144 1.357e-03 4.222e-03 0.321 0.747981
## pixel145 -1.362e-03 2.663e-03 -0.511 0.609118
## pixel146 -3.963e-04 1.927e-03 -0.206 0.837037
## pixel147 3.805e-06 1.507e-03 0.003 0.997985
## pixel148 2.683e-04 1.191e-03 0.225 0.821746
## pixel149 3.061e-05 9.766e-04 0.031 0.974995
## pixel150 4.779e-05 8.254e-04 0.058 0.953830
## pixel151 2.448e-04 7.446e-04 0.329 0.742301
## pixel152 -3.572e-05 6.789e-04 -0.053 0.958036
## pixel153 4.243e-05 6.289e-04 0.067 0.946217
## pixel154 2.077e-04 5.935e-04 0.350 0.726336
## pixel155 1.038e-04 5.697e-04 0.182 0.855483
## pixel156 2.899e-04 5.593e-04 0.518 0.604264
## pixel157 2.144e-04 5.600e-04 0.383 0.701827
## pixel158 1.062e-04 5.786e-04 0.184 0.854333
## pixel159 2.489e-05 6.276e-04 0.040 0.968360
## pixel160 1.119e-04 7.060e-04 0.159 0.874027
## pixel161 5.863e-05 8.344e-04 0.070 0.943986
## pixel162 1.185e-04 1.034e-03 0.115 0.908791
## pixel163 -1.166e-04 1.366e-03 -0.085 0.931988
## pixel164 7.790e-05 1.802e-03 0.043 0.965528
## pixel165 3.891e-04 2.871e-03 0.136 0.892180
## pixel166 -1.083e-04 5.757e-03 -0.019 0.984992
## pixel167 4.218e-03 2.072e-01 0.020 0.983759
## pixel168 NA NA NA NA
## pixel169 -6.525e-01 9.014e-01 -0.724 0.469151
## pixel170 7.192e-03 1.454e-02 0.495 0.620785
## pixel171 5.665e-03 4.919e-03 1.152 0.249470
## pixel172 1.916e-03 2.820e-03 0.679 0.496848
## pixel173 3.644e-04 1.877e-03 0.194 0.846052
## pixel174 1.863e-03 1.445e-03 1.289 0.197553
## pixel175 -2.320e-05 1.112e-03 -0.021 0.983352
## pixel176 -1.142e-04 9.185e-04 -0.124 0.901039
## pixel177 6.014e-04 7.767e-04 0.774 0.438744
## pixel178 -5.848e-05 6.846e-04 -0.085 0.931923
## pixel179 -2.101e-04 6.275e-04 -0.335 0.737749
## pixel180 3.355e-04 5.992e-04 0.560 0.575532
## pixel181 7.810e-05 5.770e-04 0.135 0.892331
## pixel182 -1.357e-04 5.618e-04 -0.242 0.809104
## pixel183 -5.239e-04 5.490e-04 -0.954 0.339912
## pixel184 -2.298e-04 5.396e-04 -0.426 0.670228
## pixel185 -2.169e-04 5.339e-04 -0.406 0.684543
## pixel186 2.577e-04 5.441e-04 0.474 0.635747
## pixel187 3.342e-04 5.773e-04 0.579 0.562679
## pixel188 3.122e-06 6.435e-04 0.005 0.996129
## pixel189 2.544e-04 7.565e-04 0.336 0.736614
## pixel190 -1.138e-04 9.253e-04 -0.123 0.902150
## pixel191 3.014e-04 1.186e-03 0.254 0.799378
## pixel192 -8.855e-05 1.496e-03 -0.059 0.952810
## pixel193 1.695e-05 2.012e-03 0.008 0.993277
## pixel194 -5.078e-04 3.598e-03 -0.141 0.887787
## pixel195 -5.776e-04 1.599e-02 -0.036 0.971174
## pixel196 NA NA NA NA
## pixel197 9.702e-02 1.942e-02 4.996 5.88e-07 ***
## pixel198 -9.236e-03 7.118e-03 -1.298 0.194409
## pixel199 -1.420e-02 3.674e-03 -3.863 0.000112 ***
## pixel200 -1.872e-03 2.135e-03 -0.876 0.380785
## pixel201 -8.905e-04 1.587e-03 -0.561 0.574697
## pixel202 -1.874e-03 1.181e-03 -1.587 0.112462
## pixel203 5.517e-04 9.448e-04 0.584 0.559305
## pixel204 -7.404e-04 7.804e-04 -0.949 0.342705
## pixel205 -1.034e-03 6.710e-04 -1.541 0.123222
## pixel206 3.529e-04 5.987e-04 0.589 0.555537
## pixel207 -5.491e-04 5.624e-04 -0.976 0.328895
## pixel208 -2.044e-04 5.501e-04 -0.372 0.710155
## pixel209 -2.365e-04 5.458e-04 -0.433 0.664779
## pixel210 7.901e-05 5.382e-04 0.147 0.883295
## pixel211 5.006e-04 5.255e-04 0.953 0.340752
## pixel212 3.161e-04 5.163e-04 0.612 0.540362
## pixel213 2.655e-04 5.145e-04 0.516 0.605847
## pixel214 -5.563e-04 5.260e-04 -1.058 0.290159
## pixel215 -5.058e-04 5.557e-04 -0.910 0.362690
## pixel216 -4.651e-04 6.182e-04 -0.752 0.451831
## pixel217 6.472e-05 7.166e-04 0.090 0.928039
## pixel218 -2.206e-04 8.739e-04 -0.252 0.800689
## pixel219 4.491e-04 1.088e-03 0.413 0.679866
## pixel220 -2.293e-05 1.339e-03 -0.017 0.986334
## pixel221 2.382e-04 1.782e-03 0.134 0.893651
## pixel222 2.303e-04 3.112e-03 0.074 0.941000
## pixel223 -4.014e-05 1.779e-02 -0.002 0.998200
## pixel224 -3.900e-03 6.687e-02 -0.058 0.953487
## pixel225 -2.356e-02 1.155e-02 -2.041 0.041298 *
## pixel226 6.209e-02 4.243e-03 14.632 < 2e-16 ***
## pixel227 9.325e-03 2.931e-03 3.181 0.001467 **
## pixel228 1.478e-03 1.858e-03 0.796 0.426295
## pixel229 -1.421e-04 1.399e-03 -0.102 0.919097
## pixel230 5.495e-04 1.080e-03 0.509 0.610906
## pixel231 -7.910e-05 8.675e-04 -0.091 0.927343
## pixel232 8.838e-04 7.237e-04 1.221 0.222001
## pixel233 1.783e-04 6.251e-04 0.285 0.775405
## pixel234 5.843e-04 5.791e-04 1.009 0.313025
## pixel235 1.036e-04 5.545e-04 0.187 0.851752
## pixel236 -2.993e-04 5.492e-04 -0.545 0.585704
## pixel237 2.271e-04 5.423e-04 0.419 0.675304
## pixel238 9.493e-05 5.356e-04 0.177 0.859310
## pixel239 -7.073e-04 5.283e-04 -1.339 0.180650
## pixel240 -2.556e-05 5.218e-04 -0.049 0.960931
## pixel241 -4.753e-04 5.178e-04 -0.918 0.358670
## pixel242 7.020e-04 5.297e-04 1.325 0.185061
## pixel243 1.349e-04 5.585e-04 0.242 0.809153
## pixel244 3.105e-04 6.168e-04 0.503 0.614670
## pixel245 -3.708e-05 7.088e-04 -0.052 0.958277
## pixel246 8.651e-05 8.608e-04 0.100 0.919954
## pixel247 -2.521e-04 1.066e-03 -0.237 0.813025
## pixel248 -2.535e-04 1.339e-03 -0.189 0.849801
## pixel249 -1.384e-05 1.786e-03 -0.008 0.993815
## pixel250 -5.348e-04 3.233e-03 -0.165 0.868640
## pixel251 1.593e-03 1.233e-02 0.129 0.897224
## pixel252 3.526e+00 2.085e-01 16.908 < 2e-16 ***
## pixel253 3.245e-03 9.410e-03 0.345 0.730221
## pixel254 -2.158e-01 4.209e-03 -51.281 < 2e-16 ***
## pixel255 2.060e-02 2.783e-03 7.403 1.36e-13 ***
## pixel256 -2.949e-03 1.838e-03 -1.605 0.108596
## pixel257 1.129e-03 1.395e-03 0.809 0.418367
## pixel258 8.451e-04 1.045e-03 0.809 0.418749
## pixel259 2.589e-04 8.396e-04 0.308 0.757852
## pixel260 1.322e-05 6.986e-04 0.019 0.984899
## pixel261 -3.414e-04 6.157e-04 -0.555 0.579167
## pixel262 -5.759e-04 5.756e-04 -1.000 0.317078
## pixel263 8.241e-04 5.586e-04 1.475 0.140176
## pixel264 3.567e-04 5.541e-04 0.644 0.519757
## pixel265 -1.156e-05 5.466e-04 -0.021 0.983129
## pixel266 4.381e-04 5.386e-04 0.813 0.416044
## pixel267 -2.756e-04 5.356e-04 -0.515 0.606892
## pixel268 8.381e-04 5.294e-04 1.583 0.113391
## pixel269 -2.168e-04 5.330e-04 -0.407 0.684237
## pixel270 -5.611e-04 5.481e-04 -1.024 0.305997
## pixel271 5.343e-04 5.770e-04 0.926 0.354460
## pixel272 -6.595e-05 6.374e-04 -0.103 0.917585
## pixel273 1.128e-03 7.381e-04 1.528 0.126470
## pixel274 -8.187e-04 8.761e-04 -0.935 0.350017
## pixel275 9.744e-04 1.100e-03 0.886 0.375510
## pixel276 -4.956e-04 1.471e-03 -0.337 0.736106
## pixel277 1.821e-04 2.018e-03 0.090 0.928101
## pixel278 1.206e-04 3.718e-03 0.032 0.974118
## pixel279 -2.341e-03 1.350e-02 -0.173 0.862261
## pixel280 -4.104e+00 2.221e-01 -18.475 < 2e-16 ***
## pixel281 -5.914e-02 7.717e-03 -7.664 1.84e-14 ***
## pixel282 5.490e-01 3.625e-03 151.438 < 2e-16 ***
## pixel283 -9.059e-02 2.740e-03 -33.059 < 2e-16 ***
## pixel284 8.500e-03 1.927e-03 4.411 1.03e-05 ***
## pixel285 -3.500e-03 1.348e-03 -2.596 0.009444 **
## pixel286 -1.124e-04 1.035e-03 -0.109 0.913495
## pixel287 -3.252e-04 8.310e-04 -0.391 0.695543
## pixel288 2.535e-04 6.947e-04 0.365 0.715217
## pixel289 5.260e-04 6.188e-04 0.850 0.395285
## pixel290 -2.436e-04 5.804e-04 -0.420 0.674686
## pixel291 -7.206e-04 5.613e-04 -1.284 0.199210
## pixel292 -3.331e-04 5.532e-04 -0.602 0.547002
## pixel293 -2.517e-04 5.530e-04 -0.455 0.649073
## pixel294 3.957e-04 5.583e-04 0.709 0.478457
## pixel295 4.931e-04 5.561e-04 0.887 0.375272
## pixel296 -1.525e-03 5.464e-04 -2.791 0.005264 **
## pixel297 1.441e-03 5.393e-04 2.671 0.007562 **
## pixel298 7.341e-04 5.559e-04 1.321 0.186599
## pixel299 -1.083e-03 5.889e-04 -1.839 0.065929 .
## pixel300 2.490e-04 6.569e-04 0.379 0.704708
## pixel301 3.892e-05 7.699e-04 0.051 0.959685
## pixel302 -1.967e-03 9.335e-04 -2.107 0.035100 *
## pixel303 1.712e-03 1.178e-03 1.453 0.146224
## pixel304 -6.361e-04 1.680e-03 -0.379 0.705022
## pixel305 3.781e-04 2.447e-03 0.154 0.877220
## pixel306 -4.550e-05 4.590e-03 -0.010 0.992090
## pixel307 2.525e-03 1.531e-02 0.165 0.868955
## pixel308 1.007e+01 4.879e-01 20.630 < 2e-16 ***
## pixel309 2.873e-01 1.092e-02 26.319 < 2e-16 ***
## pixel311 2.007e-01 2.992e-03 67.081 < 2e-16 ***
## pixel312 -1.904e-02 2.060e-03 -9.245 < 2e-16 ***
## pixel313 7.387e-03 1.397e-03 5.286 1.26e-07 ***
## pixel314 -2.818e-04 1.047e-03 -0.269 0.787949
## pixel315 2.151e-04 8.276e-04 0.260 0.794960
## pixel316 -3.762e-04 6.940e-04 -0.542 0.587800
## pixel317 -7.437e-04 6.236e-04 -1.193 0.233034
## pixel318 8.611e-04 5.814e-04 1.481 0.138567
## pixel319 3.305e-04 5.623e-04 0.588 0.556762
## pixel320 1.278e-04 5.571e-04 0.229 0.818559
## pixel321 3.787e-04 5.598e-04 0.676 0.498785
## pixel322 -1.058e-03 5.691e-04 -1.859 0.062980 .
## pixel323 8.097e-04 5.651e-04 1.433 0.151913
## pixel324 5.723e-04 5.472e-04 1.046 0.295648
## pixel325 -1.529e-03 5.403e-04 -2.830 0.004661 **
## pixel326 3.707e-04 5.578e-04 0.665 0.506320
## pixel327 5.554e-04 5.953e-04 0.933 0.350815
## pixel328 -7.548e-04 6.630e-04 -1.138 0.254973
## pixel329 1.629e-03 7.916e-04 2.058 0.039622 *
## pixel330 -1.227e-03 1.000e-03 -1.227 0.219749
## pixel331 1.383e-03 1.277e-03 1.084 0.278552
## pixel332 -9.204e-04 1.870e-03 -0.492 0.622632
## pixel333 5.533e-04 3.337e-03 0.166 0.868297
## pixel334 -7.241e-04 6.329e-03 -0.114 0.908911
## pixel335 -6.609e-03 2.776e-02 -0.238 0.811829
## pixel336 -8.705e+00 4.489e-01 -19.393 < 2e-16 ***
## pixel337 -2.422e-01 1.604e-02 -15.100 < 2e-16 ***
## pixel338 7.867e-01 4.602e-03 170.933 < 2e-16 ***
## pixel339 -3.692e-02 3.697e-03 -9.986 < 2e-16 ***
## pixel340 1.882e-03 2.258e-03 0.833 0.404658
## pixel341 -7.400e-03 1.425e-03 -5.193 2.08e-07 ***
## pixel342 -9.178e-04 1.052e-03 -0.873 0.382847
## pixel343 -3.119e-04 8.256e-04 -0.378 0.705631
## pixel344 1.283e-04 6.979e-04 0.184 0.854171
## pixel345 6.120e-04 6.179e-04 0.991 0.321926
## pixel346 -9.480e-04 5.776e-04 -1.641 0.100760
## pixel347 2.613e-04 5.588e-04 0.468 0.640030
## pixel348 -7.067e-04 5.563e-04 -1.270 0.203919
## pixel349 -1.540e-06 5.566e-04 -0.003 0.997793
## pixel350 8.646e-04 5.763e-04 1.500 0.133533
## pixel351 -1.199e-03 5.602e-04 -2.140 0.032394 *
## pixel352 -1.035e-04 5.362e-04 -0.193 0.847015
## pixel353 5.901e-04 5.307e-04 1.112 0.266220
## pixel354 -3.041e-04 5.503e-04 -0.553 0.580480
## pixel355 3.646e-04 5.916e-04 0.616 0.537658
## pixel356 3.389e-04 6.638e-04 0.510 0.609743
## pixel357 -6.653e-04 8.097e-04 -0.822 0.411252
## pixel358 2.376e-05 1.059e-03 0.022 0.982095
## pixel359 3.618e-04 1.359e-03 0.266 0.790097
## pixel360 -6.313e-04 1.896e-03 -0.333 0.739136
## pixel361 3.271e-04 3.987e-03 0.082 0.934618
## pixel362 4.166e-04 7.716e-03 0.054 0.956940
## pixel363 3.476e-03 2.401e-02 0.145 0.884889
## pixel364 1.385e-03 1.106e-01 0.013 0.990007
## pixel365 6.210e-01 4.263e-02 14.566 < 2e-16 ***
## pixel366 -5.723e-01 8.083e-03 -70.804 < 2e-16 ***
## pixel367 -2.668e-02 4.645e-03 -5.744 9.34e-09 ***
## pixel368 1.026e-03 2.364e-03 0.434 0.664113
## pixel369 5.816e-03 1.428e-03 4.074 4.64e-05 ***
## pixel370 1.925e-03 1.040e-03 1.852 0.064058 .
## pixel371 5.745e-04 8.295e-04 0.693 0.488545
## pixel372 2.727e-04 6.859e-04 0.398 0.690884
## pixel373 -4.251e-05 6.041e-04 -0.070 0.943899
## pixel374 4.690e-04 5.675e-04 0.826 0.408593
## pixel375 -2.240e-04 5.590e-04 -0.401 0.688625
## pixel376 6.073e-04 5.523e-04 1.099 0.271574
## pixel377 -3.201e-04 5.609e-04 -0.571 0.568197
## pixel378 -1.494e-04 5.686e-04 -0.263 0.792764
## pixel379 7.528e-04 5.402e-04 1.394 0.163445
## pixel380 1.620e-04 5.171e-04 0.313 0.754006
## pixel381 -1.500e-04 5.236e-04 -0.286 0.774600
## pixel382 3.572e-05 5.435e-04 0.066 0.947600
## pixel383 -1.492e-04 5.818e-04 -0.256 0.797593
## pixel384 7.540e-06 6.624e-04 0.011 0.990918
## pixel385 3.429e-04 8.231e-04 0.417 0.677020
## pixel386 -5.628e-04 1.058e-03 -0.532 0.594849
## pixel387 9.030e-04 1.382e-03 0.653 0.513500
## pixel388 -6.867e-04 1.836e-03 -0.374 0.708337
## pixel389 3.687e-04 3.688e-03 0.100 0.920368
## pixel390 -1.358e-05 7.854e-03 -0.002 0.998620
## pixel391 -5.545e-04 1.508e-02 -0.037 0.970672
## pixel392 NA NA NA NA
## pixel393 -1.389e+00 5.498e-02 -25.268 < 2e-16 ***
## pixel394 3.852e-01 1.108e-02 34.772 < 2e-16 ***
## pixel395 1.561e-02 4.848e-03 3.220 0.001284 **
## pixel396 9.253e-04 2.254e-03 0.411 0.681393
## pixel397 -4.088e-03 1.338e-03 -3.056 0.002246 **
## pixel398 -2.083e-03 9.973e-04 -2.089 0.036759 *
## pixel399 -4.735e-04 8.089e-04 -0.585 0.558267
## pixel400 -4.459e-04 6.713e-04 -0.664 0.506514
## pixel401 -2.796e-04 5.920e-04 -0.472 0.636742
## pixel402 -4.007e-04 5.623e-04 -0.712 0.476172
## pixel403 1.578e-04 5.522e-04 0.286 0.775035
## pixel404 -5.505e-04 5.529e-04 -0.996 0.319429
## pixel405 5.104e-04 5.706e-04 0.895 0.371057
## pixel406 -5.502e-04 5.598e-04 -0.983 0.325702
## pixel407 -7.616e-05 5.190e-04 -0.147 0.883338
## pixel408 -4.031e-05 5.085e-04 -0.079 0.936827
## pixel409 -4.289e-04 5.215e-04 -0.822 0.410905
## pixel410 1.661e-04 5.402e-04 0.308 0.758422
## pixel411 -3.798e-04 5.789e-04 -0.656 0.511740
## pixel412 1.069e-03 6.726e-04 1.589 0.112114
## pixel413 -1.012e-03 8.297e-04 -1.220 0.222460
## pixel414 -7.306e-05 1.039e-03 -0.070 0.943947
## pixel415 4.393e-04 1.347e-03 0.326 0.744363
## pixel416 -3.128e-04 1.802e-03 -0.174 0.862177
## pixel417 2.201e-04 3.256e-03 0.068 0.946093
## pixel418 -9.234e-04 9.704e-03 -0.095 0.924192
## pixel419 -3.790e-03 1.452e-01 -0.026 0.979167
## pixel420 NA NA NA NA
## pixel421 NA NA NA NA
## pixel422 -3.427e-02 1.315e-02 -2.606 0.009163 **
## pixel423 -1.513e-02 4.681e-03 -3.233 0.001225 **
## pixel424 -2.235e-03 2.069e-03 -1.081 0.279912
## pixel425 1.459e-03 1.233e-03 1.183 0.236753
## pixel426 8.380e-04 9.499e-04 0.882 0.377701
## pixel427 1.684e-04 7.751e-04 0.217 0.828007
## pixel428 -1.855e-04 6.613e-04 -0.280 0.779102
## pixel429 1.416e-04 6.015e-04 0.235 0.813930
## pixel430 -1.411e-04 5.744e-04 -0.246 0.806007
## pixel431 4.482e-04 5.669e-04 0.791 0.429153
## pixel432 -1.769e-04 5.700e-04 -0.310 0.756321
## pixel433 -1.040e-04 5.742e-04 -0.181 0.856280
## pixel434 2.914e-04 5.487e-04 0.531 0.595434
## pixel435 -9.862e-05 5.091e-04 -0.194 0.846403
## pixel436 -4.020e-05 5.107e-04 -0.079 0.937256
## pixel437 -2.041e-04 5.270e-04 -0.387 0.698595
## pixel438 6.527e-04 5.403e-04 1.208 0.227028
## pixel439 -2.475e-04 5.929e-04 -0.417 0.676318
## pixel440 -9.600e-04 6.851e-04 -1.401 0.161173
## pixel441 6.505e-04 8.387e-04 0.776 0.437946
## pixel442 4.142e-04 1.037e-03 0.399 0.689696
## pixel443 1.561e-04 1.290e-03 0.121 0.903723
## pixel444 -6.294e-04 1.752e-03 -0.359 0.719367
## pixel445 2.017e-04 3.007e-03 0.067 0.946515
## pixel446 2.882e-04 6.491e-03 0.044 0.964593
## pixel447 1.566e-03 4.018e-02 0.039 0.968902
## pixel448 NA NA NA NA
## pixel449 -2.025e-02 6.415e-02 -0.316 0.752254
## pixel450 1.363e-02 1.283e-02 1.062 0.288385
## pixel451 5.505e-03 4.165e-03 1.322 0.186218
## pixel452 7.120e-04 1.806e-03 0.394 0.693416
## pixel453 7.666e-05 1.168e-03 0.066 0.947671
## pixel454 -4.378e-04 9.232e-04 -0.474 0.635393
## pixel455 3.290e-04 7.619e-04 0.432 0.665873
## pixel456 -3.269e-05 6.624e-04 -0.049 0.960641
## pixel457 1.068e-04 6.149e-04 0.174 0.862098
## pixel458 -3.466e-04 5.975e-04 -0.580 0.561890
## pixel459 -2.667e-04 5.896e-04 -0.452 0.651034
## pixel460 2.456e-04 5.860e-04 0.419 0.675186
## pixel461 -1.939e-04 5.739e-04 -0.338 0.735523
## pixel462 -2.023e-04 5.388e-04 -0.375 0.707326
## pixel463 -3.814e-04 5.189e-04 -0.735 0.462387
## pixel464 4.287e-04 5.282e-04 0.812 0.417030
## pixel465 4.319e-05 5.314e-04 0.081 0.935224
## pixel466 -6.094e-05 5.516e-04 -0.110 0.912028
## pixel467 -1.440e-04 6.146e-04 -0.234 0.814779
## pixel468 1.099e-03 6.989e-04 1.572 0.115989
## pixel469 -3.787e-04 8.340e-04 -0.454 0.649812
## pixel470 -1.101e-03 1.027e-03 -1.072 0.283699
## pixel471 1.004e-03 1.266e-03 0.793 0.427799
## pixel472 -2.615e-04 1.643e-03 -0.159 0.873530
## pixel473 2.196e-04 2.752e-03 0.080 0.936410
## pixel474 -9.943e-05 5.607e-03 -0.018 0.985853
## pixel475 1.034e-03 1.973e-02 0.052 0.958191
## pixel476 NA NA NA NA
## pixel477 8.905e-02 7.338e-02 1.213 0.224961
## pixel478 -9.301e-03 9.733e-03 -0.956 0.339304
## pixel479 7.180e-04 3.502e-03 0.205 0.837540
## pixel480 3.707e-04 1.629e-03 0.228 0.819944
## pixel481 2.418e-04 1.103e-03 0.219 0.826568
## pixel482 -6.425e-04 8.952e-04 -0.718 0.472886
## pixel483 2.021e-04 7.529e-04 0.268 0.788322
## pixel484 -1.883e-04 6.715e-04 -0.280 0.779180
## pixel485 3.999e-05 6.318e-04 0.063 0.949537
## pixel486 1.403e-05 6.180e-04 0.023 0.981881
## pixel487 9.027e-05 6.070e-04 0.149 0.881781
## pixel488 7.480e-05 5.983e-04 0.125 0.900504
## pixel489 3.596e-04 5.722e-04 0.628 0.529727
## pixel490 -1.055e-04 5.389e-04 -0.196 0.844864
## pixel491 6.004e-04 5.293e-04 1.134 0.256678
## pixel492 -5.030e-04 5.359e-04 -0.939 0.347943
## pixel493 -3.048e-04 5.440e-04 -0.560 0.575296
## pixel494 4.135e-04 5.703e-04 0.725 0.468426
## pixel495 -7.782e-05 6.296e-04 -0.124 0.901628
## pixel496 -2.380e-04 7.111e-04 -0.335 0.737867
## pixel497 7.408e-04 8.228e-04 0.900 0.367948
## pixel498 -3.300e-04 1.001e-03 -0.330 0.741772
## pixel499 6.073e-04 1.238e-03 0.491 0.623630
## pixel500 -8.179e-04 1.592e-03 -0.514 0.607403
## pixel501 4.399e-04 2.446e-03 0.180 0.857257
## pixel502 2.224e-05 4.856e-03 0.005 0.996345
## pixel503 -5.064e-04 1.893e-02 -0.027 0.978653
## pixel504 -1.760e-03 4.500e-02 -0.039 0.968808
## pixel505 -5.200e-01 1.521e-01 -3.418 0.000630 ***
## pixel506 2.627e-03 6.936e-03 0.379 0.704880
## pixel507 -8.045e-04 3.023e-03 -0.266 0.790173
## pixel508 -6.907e-04 1.571e-03 -0.440 0.660159
## pixel509 6.106e-04 1.077e-03 0.567 0.570706
## pixel510 1.105e-04 8.772e-04 0.126 0.899789
## pixel511 1.933e-04 7.511e-04 0.257 0.796905
## pixel512 4.058e-05 6.704e-04 0.061 0.951730
## pixel513 -1.334e-04 6.326e-04 -0.211 0.833035
## pixel514 -2.320e-04 6.158e-04 -0.377 0.706410
## pixel515 -8.836e-05 6.083e-04 -0.145 0.884514
## pixel516 1.002e-04 5.917e-04 0.169 0.865541
## pixel517 -1.899e-04 5.691e-04 -0.334 0.738602
## pixel518 -6.882e-04 5.503e-04 -1.251 0.211057
## pixel519 7.275e-05 5.396e-04 0.135 0.892743
## pixel520 2.133e-04 5.375e-04 0.397 0.691416
## pixel521 4.232e-04 5.551e-04 0.762 0.445839
## pixel522 -2.770e-05 5.910e-04 -0.047 0.962621
## pixel523 -5.694e-05 6.402e-04 -0.089 0.929129
## pixel524 -1.342e-04 7.174e-04 -0.187 0.851586
## pixel525 -5.505e-04 8.330e-04 -0.661 0.508695
## pixel526 5.100e-04 1.013e-03 0.503 0.614620
## pixel527 1.208e-04 1.253e-03 0.096 0.923143
## pixel528 -1.885e-04 1.615e-03 -0.117 0.907090
## pixel529 2.645e-04 2.397e-03 0.110 0.912162
## pixel530 -7.190e-05 5.624e-03 -0.013 0.989799
## pixel531 1.520e-03 2.611e-02 0.058 0.953585
## pixel532 NA NA NA NA
## pixel533 2.510e-01 7.601e-02 3.301 0.000963 ***
## pixel534 3.234e-03 6.280e-03 0.515 0.606577
## pixel535 8.336e-04 2.598e-03 0.321 0.748322
## pixel536 -2.977e-04 1.514e-03 -0.197 0.844076
## pixel537 -4.617e-04 1.045e-03 -0.442 0.658731
## pixel538 -2.487e-04 8.630e-04 -0.288 0.773240
## pixel539 2.553e-05 7.386e-04 0.035 0.972426
## pixel540 -1.500e-04 6.618e-04 -0.227 0.820691
## pixel541 1.940e-04 6.153e-04 0.315 0.752495
## pixel542 1.282e-04 6.037e-04 0.212 0.831801
## pixel543 -3.239e-04 5.954e-04 -0.544 0.586444
## pixel544 7.668e-06 5.806e-04 0.013 0.989464
## pixel545 -2.235e-04 5.634e-04 -0.397 0.691601
## pixel546 8.502e-04 5.506e-04 1.544 0.122555
## pixel547 -2.549e-04 5.424e-04 -0.470 0.638438
## pixel548 -2.982e-04 5.488e-04 -0.543 0.586914
## pixel549 -3.317e-06 5.693e-04 -0.006 0.995351
## pixel550 -1.056e-04 6.060e-04 -0.174 0.861700
## pixel551 3.807e-04 6.518e-04 0.584 0.559238
## pixel552 -3.130e-04 7.415e-04 -0.422 0.672904
## pixel553 -9.372e-04 8.717e-04 -1.075 0.282339
## pixel554 5.241e-04 1.059e-03 0.495 0.620604
## pixel555 2.629e-04 1.328e-03 0.198 0.843118
## pixel556 -3.254e-04 1.799e-03 -0.181 0.856437
## pixel557 2.306e-04 2.776e-03 0.083 0.933795
## pixel558 -1.488e-04 5.408e-03 -0.028 0.978041
## pixel559 3.783e-05 3.585e-02 0.001 0.999158
## pixel560 NA NA NA NA
## pixel561 5.568e-03 4.571e-02 0.122 0.903046
## pixel562 -5.254e-03 6.127e-03 -0.857 0.391188
## pixel563 -1.517e-04 2.438e-03 -0.062 0.950399
## pixel564 -7.802e-04 1.484e-03 -0.526 0.599149
## pixel565 -2.669e-05 1.041e-03 -0.026 0.979552
## pixel566 3.121e-04 8.520e-04 0.366 0.714091
## pixel567 -2.046e-04 7.337e-04 -0.279 0.780338
## pixel568 1.607e-04 6.506e-04 0.247 0.804967
## pixel569 -1.996e-04 6.040e-04 -0.330 0.741050
## pixel570 1.925e-04 5.812e-04 0.331 0.740427
## pixel571 9.113e-05 5.707e-04 0.160 0.873132
## pixel572 -8.506e-05 5.631e-04 -0.151 0.879939
## pixel573 1.802e-04 5.551e-04 0.325 0.745382
## pixel574 -8.176e-04 5.484e-04 -1.491 0.135987
## pixel575 7.544e-04 5.439e-04 1.387 0.165441
## pixel576 1.158e-04 5.576e-04 0.208 0.835438
## pixel577 -2.679e-04 5.834e-04 -0.459 0.646113
## pixel578 2.355e-04 6.213e-04 0.379 0.704724
## pixel579 8.805e-05 6.832e-04 0.129 0.897449
## pixel580 3.552e-04 7.916e-04 0.449 0.653690
## pixel581 4.876e-04 9.402e-04 0.519 0.604056
## pixel582 -7.978e-04 1.177e-03 -0.678 0.497883
## pixel583 7.347e-04 1.502e-03 0.489 0.624731
## pixel584 -5.979e-04 2.011e-03 -0.297 0.766184
## pixel585 3.016e-04 3.196e-03 0.094 0.924815
## pixel586 7.632e-04 6.795e-03 0.112 0.910578
## pixel587 8.909e-04 7.112e-02 0.013 0.990006
## pixel588 1.669e+00 6.843e-01 2.439 0.014744 *
## pixel589 -4.499e-03 5.771e-02 -0.078 0.937854
## pixel590 2.644e-03 5.708e-03 0.463 0.643242
## pixel591 -4.390e-05 2.574e-03 -0.017 0.986391
## pixel592 1.278e-03 1.547e-03 0.826 0.408551
## pixel593 4.125e-04 1.089e-03 0.379 0.704952
## pixel594 -4.513e-04 8.580e-04 -0.526 0.598924
## pixel595 3.547e-04 7.335e-04 0.484 0.628697
## pixel596 -2.994e-04 6.554e-04 -0.457 0.647784
## pixel597 7.919e-05 6.050e-04 0.131 0.895862
## pixel598 -2.269e-04 5.761e-04 -0.394 0.693614
## pixel599 5.239e-05 5.563e-04 0.094 0.924967
## pixel600 -2.949e-04 5.486e-04 -0.538 0.590887
## pixel601 6.765e-04 5.520e-04 1.226 0.220336
## pixel602 -5.019e-04 5.505e-04 -0.912 0.361888
## pixel603 -4.180e-04 5.572e-04 -0.750 0.453176
## pixel604 5.487e-04 5.708e-04 0.961 0.336445
## pixel605 -9.605e-04 6.061e-04 -1.585 0.113030
## pixel606 1.312e-03 6.639e-04 1.976 0.048200 *
## pixel607 -1.862e-03 7.534e-04 -2.471 0.013479 *
## pixel608 -2.044e-05 8.749e-04 -0.023 0.981358
## pixel609 3.393e-04 1.092e-03 0.311 0.756061
## pixel610 2.348e-04 1.409e-03 0.167 0.867689
## pixel611 3.857e-04 1.809e-03 0.213 0.831180
## pixel612 -6.067e-04 2.505e-03 -0.242 0.808609
## pixel613 3.751e-04 4.006e-03 0.094 0.925397
## pixel614 -8.877e-04 8.445e-03 -0.105 0.916281
## pixel615 8.199e-04 9.094e-02 0.009 0.992806
## pixel616 NA NA NA NA
## pixel617 -5.352e+00 2.160e+00 -2.478 0.013219 *
## pixel618 -2.330e-03 6.479e-03 -0.360 0.719125
## pixel619 1.038e-03 2.990e-03 0.347 0.728567
## pixel620 -1.681e-03 1.777e-03 -0.946 0.344030
## pixel621 -1.821e-04 1.206e-03 -0.151 0.879986
## pixel622 1.215e-04 9.159e-04 0.133 0.894449
## pixel623 -2.465e-04 7.665e-04 -0.322 0.747735
## pixel624 3.691e-04 6.696e-04 0.551 0.581499
## pixel625 -5.595e-04 6.143e-04 -0.911 0.362422
## pixel626 1.657e-04 5.856e-04 0.283 0.777211
## pixel627 8.635e-05 5.729e-04 0.151 0.880190
## pixel628 -3.060e-04 5.679e-04 -0.539 0.589978
## pixel629 -1.512e-04 5.655e-04 -0.267 0.789161
## pixel630 1.113e-03 5.671e-04 1.963 0.049621 *
## pixel631 -9.970e-04 5.828e-04 -1.711 0.087158 .
## pixel632 -1.117e-04 6.088e-04 -0.183 0.854444
## pixel633 1.007e-03 6.583e-04 1.530 0.125991
## pixel634 4.055e-05 7.409e-04 0.055 0.956352
## pixel635 1.388e-03 8.725e-04 1.591 0.111551
## pixel636 -5.978e-04 1.059e-03 -0.564 0.572531
## pixel637 -1.190e-03 1.347e-03 -0.884 0.376937
## pixel638 3.974e-04 1.756e-03 0.226 0.820993
## pixel639 1.017e-03 2.344e-03 0.434 0.664377
## pixel640 -1.099e-03 3.482e-03 -0.316 0.752383
## pixel641 1.136e-04 5.800e-03 0.020 0.984377
## pixel642 6.479e-04 1.340e-02 0.048 0.961444
## pixel643 NA NA NA NA
## pixel644 NA NA NA NA
## pixel645 NA NA NA NA
## pixel646 3.815e-03 1.148e-02 0.332 0.739681
## pixel647 -9.099e-04 4.145e-03 -0.220 0.826258
## pixel648 5.215e-04 2.396e-03 0.218 0.827700
## pixel649 5.280e-04 1.581e-03 0.334 0.738457
## pixel650 -3.460e-04 1.121e-03 -0.309 0.757559
## pixel651 4.288e-04 8.722e-04 0.492 0.623029
## pixel652 -4.511e-04 7.293e-04 -0.619 0.536169
## pixel653 -1.680e-05 6.588e-04 -0.026 0.979650
## pixel654 3.974e-04 6.107e-04 0.651 0.515302
## pixel655 -3.704e-04 5.808e-04 -0.638 0.523676
## pixel656 -2.011e-04 5.709e-04 -0.352 0.724684
## pixel657 4.920e-04 5.707e-04 0.862 0.388616
## pixel658 -1.050e-03 5.798e-04 -1.812 0.070041 .
## pixel659 8.930e-04 6.081e-04 1.469 0.141976
## pixel660 -5.002e-04 6.633e-04 -0.754 0.450796
## pixel661 -5.738e-04 7.462e-04 -0.769 0.441915
## pixel662 3.908e-04 8.804e-04 0.444 0.657142
## pixel663 -3.204e-03 1.058e-03 -3.030 0.002449 **
## pixel664 4.221e-03 1.345e-03 3.138 0.001704 **
## pixel665 -3.338e-03 1.780e-03 -1.875 0.060814 .
## pixel666 1.357e-03 2.383e-03 0.570 0.568976
## pixel667 6.904e-04 3.147e-03 0.219 0.826368
## pixel668 -1.490e-03 4.594e-03 -0.324 0.745634
## pixel669 1.590e-03 8.222e-03 0.193 0.846629
## pixel670 7.845e-04 1.739e-02 0.045 0.964023
## pixel671 NA NA NA NA
## pixel672 NA NA NA NA
## pixel673 NA NA NA NA
## pixel674 8.696e-03 1.674e-02 0.519 0.603511
## pixel675 -1.375e-02 6.871e-03 -2.002 0.045308 *
## pixel676 2.082e-03 4.020e-03 0.518 0.604553
## pixel677 -7.496e-04 2.419e-03 -0.310 0.756601
## pixel678 2.905e-05 1.671e-03 0.017 0.986129
## pixel679 1.064e-04 1.252e-03 0.085 0.932309
## pixel680 -6.807e-04 1.009e-03 -0.674 0.500058
## pixel681 5.503e-04 8.416e-04 0.654 0.513186
## pixel682 -1.213e-04 7.431e-04 -0.163 0.870371
## pixel683 -2.727e-04 6.801e-04 -0.401 0.688406
## pixel684 3.902e-04 6.522e-04 0.598 0.549682
## pixel685 -3.253e-04 6.403e-04 -0.508 0.611416
## pixel686 1.795e-04 6.549e-04 0.274 0.784003
## pixel687 3.906e-04 7.046e-04 0.554 0.579405
## pixel688 2.046e-04 7.880e-04 0.260 0.795142
## pixel689 8.081e-04 9.138e-04 0.884 0.376515
## pixel690 4.943e-06 1.118e-03 0.004 0.996474
## pixel691 -3.953e-03 1.341e-03 -2.949 0.003192 **
## pixel692 4.875e-03 1.718e-03 2.837 0.004552 **
## pixel693 -3.980e-03 2.323e-03 -1.713 0.086722 .
## pixel694 2.867e-03 3.447e-03 0.832 0.405554
## pixel695 1.161e-03 4.877e-03 0.238 0.811840
## pixel696 -4.259e-03 8.538e-03 -0.499 0.617897
## pixel697 3.682e-03 2.016e-02 0.183 0.855121
## pixel698 -2.090e-02 2.294e-01 -0.091 0.927402
## pixel699 NA NA NA NA
## pixel700 NA NA NA NA
## pixel701 NA NA NA NA
## pixel702 -7.391e-03 8.492e-02 -0.087 0.930646
## pixel703 1.136e-02 1.243e-02 0.914 0.360647
## pixel704 -1.247e-03 5.718e-03 -0.218 0.827408
## pixel705 -8.883e-04 4.164e-03 -0.213 0.831069
## pixel706 1.055e-03 2.747e-03 0.384 0.700900
## pixel707 3.033e-05 1.919e-03 0.016 0.987389
## pixel708 -7.669e-04 1.432e-03 -0.536 0.592274
## pixel709 1.143e-03 1.175e-03 0.973 0.330572
## pixel710 -1.309e-03 1.011e-03 -1.295 0.195194
## pixel711 1.410e-03 9.208e-04 1.532 0.125561
## pixel712 1.252e-03 8.647e-04 1.448 0.147565
## pixel713 -3.177e-03 8.556e-04 -3.713 0.000205 ***
## pixel714 4.274e-03 8.738e-04 4.891 1.01e-06 ***
## pixel715 -3.082e-03 9.458e-04 -3.258 0.001122 **
## pixel716 2.223e-03 1.058e-03 2.101 0.035631 *
## pixel717 -3.678e-04 1.211e-03 -0.304 0.761407
## pixel718 1.068e-03 1.459e-03 0.732 0.464145
## pixel719 2.898e-03 1.888e-03 1.535 0.124852
## pixel720 -4.707e-03 2.387e-03 -1.972 0.048577 *
## pixel721 4.085e-03 3.151e-03 1.296 0.194819
## pixel722 -1.684e-03 4.673e-03 -0.360 0.718644
## pixel723 -7.192e-04 7.176e-03 -0.100 0.920177
## pixel724 -2.587e-03 1.855e-02 -0.139 0.889113
## pixel725 -1.395e-02 4.728e-02 -0.295 0.768034
## pixel726 3.065e-02 2.184e-01 0.140 0.888387
## pixel727 NA NA NA NA
## pixel728 NA NA NA NA
## pixel729 NA NA NA NA
## pixel730 NA NA NA NA
## pixel731 NA NA NA NA
## pixel732 9.234e-04 1.003e-02 0.092 0.926664
## pixel733 -1.845e-04 6.853e-03 -0.027 0.978521
## pixel734 -8.276e-04 3.897e-03 -0.212 0.831794
## pixel735 1.057e-03 2.774e-03 0.381 0.703053
## pixel736 -2.352e-03 2.022e-03 -1.163 0.244837
## pixel737 1.310e-03 1.681e-03 0.780 0.435587
## pixel738 -2.390e-03 1.423e-03 -1.680 0.092939 .
## pixel739 1.215e-04 1.276e-03 0.095 0.924166
## pixel740 -6.782e-04 1.205e-03 -0.563 0.573622
## pixel741 2.002e-04 1.206e-03 0.166 0.868209
## pixel742 -6.239e-03 1.254e-03 -4.976 6.53e-07 ***
## pixel743 7.013e-03 1.370e-03 5.118 3.10e-07 ***
## pixel744 -8.715e-03 1.521e-03 -5.728 1.02e-08 ***
## pixel745 1.003e-02 1.779e-03 5.634 1.77e-08 ***
## pixel746 -1.567e-02 2.189e-03 -7.162 8.11e-13 ***
## pixel747 5.388e-03 2.769e-03 1.946 0.051631 .
## pixel748 5.413e-03 3.749e-03 1.444 0.148837
## pixel749 -2.181e-03 5.492e-03 -0.397 0.691339
## pixel750 -1.100e-02 7.846e-03 -1.402 0.160997
## pixel751 1.004e-02 1.217e-02 0.825 0.409182
## pixel752 6.239e-02 1.613e-01 0.387 0.698995
## pixel753 -3.900e-03 6.064e-02 -0.064 0.948720
## pixel754 NA NA NA NA
## pixel755 NA NA NA NA
## pixel756 NA NA NA NA
## pixel757 NA NA NA NA
## pixel758 NA NA NA NA
## pixel759 NA NA NA NA
## pixel760 NA NA NA NA
## pixel761 -3.328e-03 2.573e-02 -0.129 0.897078
## pixel762 -1.831e-03 1.353e-02 -0.135 0.892359
## pixel763 -1.319e-03 8.938e-03 -0.148 0.882719
## pixel764 2.607e-03 7.177e-03 0.363 0.716403
## pixel765 1.136e-04 5.022e-03 0.023 0.981955
## pixel766 2.044e-03 4.233e-03 0.483 0.629199
## pixel767 -1.773e-02 3.636e-03 -4.878 1.08e-06 ***
## pixel768 1.561e-02 3.135e-03 4.979 6.42e-07 ***
## pixel769 -1.225e-02 3.234e-03 -3.787 0.000152 ***
## pixel770 7.356e-03 3.112e-03 2.363 0.018118 *
## pixel771 -1.042e-02 3.466e-03 -3.006 0.002653 **
## pixel772 -3.221e-03 3.801e-03 -0.847 0.396734
## pixel773 -2.546e-02 4.190e-03 -6.076 1.24e-09 ***
## pixel774 -1.706e-03 4.852e-03 -0.352 0.725136
## pixel775 5.445e-03 6.888e-03 0.791 0.429198
## pixel776 3.720e-02 1.129e-02 3.295 0.000986 ***
## pixel777 -5.442e-02 1.800e-02 -3.024 0.002495 **
## pixel778 -2.183e-02 2.419e-02 -0.902 0.366926
## pixel779 1.980e-01 1.058e-01 1.872 0.061264 .
## pixel780 NA NA NA NA
## pixel781 NA NA NA NA
## pixel782 NA NA NA NA
## pixel783 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.531 on 41295 degrees of freedom
## Multiple R-squared: 0.8508, Adjusted R-squared: 0.8482
## F-statistic: 334.5 on 704 and 41295 DF, p-value: < 2.2e-16
plot(model_house)
## Warning: not plotting observations with leverage one:
## 7282, 7896, 17491, 19297, 20611, 20740, 22510, 23459, 29554, 30102, 35364, 38324, 38895
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
model_house2 <- lm(label ~ pixel0 + pixel1 + pixel2 + pixel3 + pixel4 + pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 + pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 + pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 + pixel24 + pixel25 + pixel26 + pixel27 + pixel28 + pixel29 + pixel30 + pixel31 + pixel32 + pixel33 + pixel34 + pixel35, house_train2)
summary(model_house2)
##
## Call:
## lm(formula = label ~ pixel0 + pixel1 + pixel2 + pixel3 + pixel4 +
## pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 +
## pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 +
## pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 +
## pixel24 + pixel25 + pixel26 + pixel27 + pixel28 + pixel29 +
## pixel30 + pixel31 + pixel32 + pixel33 + pixel34 + pixel35,
## data = house_train2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4564 -2.4564 -0.4564 2.5436 4.5436
##
## Coefficients: (30 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.45641 0.01409 316.219 <2e-16 ***
## pixel0 NA NA NA NA
## pixel1 NA NA NA NA
## pixel2 NA NA NA NA
## pixel3 NA NA NA NA
## pixel4 NA NA NA NA
## pixel5 NA NA NA NA
## pixel6 NA NA NA NA
## pixel7 NA NA NA NA
## pixel8 NA NA NA NA
## pixel9 NA NA NA NA
## pixel10 NA NA NA NA
## pixel11 NA NA NA NA
## pixel12 0.04252 0.04276 0.994 0.320
## pixel13 -0.01334 0.01493 -0.893 0.372
## pixel14 NA NA NA NA
## pixel15 NA NA NA NA
## pixel16 NA NA NA NA
## pixel17 NA NA NA NA
## pixel18 NA NA NA NA
## pixel19 NA NA NA NA
## pixel20 NA NA NA NA
## pixel21 NA NA NA NA
## pixel22 NA NA NA NA
## pixel23 NA NA NA NA
## pixel24 NA NA NA NA
## pixel25 NA NA NA NA
## pixel26 NA NA NA NA
## pixel27 NA NA NA NA
## pixel28 NA NA NA NA
## pixel29 NA NA NA NA
## pixel30 NA NA NA NA
## pixel31 NA NA NA NA
## pixel32 -0.29252 1.72876 -0.169 0.866
## pixel33 0.13242 0.58530 0.226 0.821
## pixel34 -0.01162 0.03988 -0.291 0.771
## pixel35 0.01172 0.01581 0.741 0.459
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.888 on 41993 degrees of freedom
## Multiple R-squared: 6.981e-05, Adjusted R-squared: -7.306e-05
## F-statistic: 0.4886 on 6 and 41993 DF, p-value: 0.8174
plot(model_house2)
## Warning: not plotting observations with leverage one:
## 19297, 20740, 35364
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
# Using only significant columns
model_house3 <- lm(label ~ pixel0 + pixel1 + pixel2 + pixel3 + pixel4 + pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 + pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 + pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 + pixel24 + pixel25 + pixel26 + pixel27 + pixel28 + pixel29 + pixel30, house_train2)
summary(model_house3)
##
## Call:
## lm(formula = label ~ pixel0 + pixel1 + pixel2 + pixel3 + pixel4 +
## pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 +
## pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 +
## pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 +
## pixel24 + pixel25 + pixel26 + pixel27 + pixel28 + pixel29 +
## pixel30, data = house_train2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4567 -2.4567 -0.4567 2.5433 4.5433
##
## Coefficients: (29 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.45666 0.01409 316.273 <2e-16 ***
## pixel0 NA NA NA NA
## pixel1 NA NA NA NA
## pixel2 NA NA NA NA
## pixel3 NA NA NA NA
## pixel4 NA NA NA NA
## pixel5 NA NA NA NA
## pixel6 NA NA NA NA
## pixel7 NA NA NA NA
## pixel8 NA NA NA NA
## pixel9 NA NA NA NA
## pixel10 NA NA NA NA
## pixel11 NA NA NA NA
## pixel12 0.04252 0.04276 0.994 0.320
## pixel13 -0.01334 0.01493 -0.893 0.372
## pixel14 NA NA NA NA
## pixel15 NA NA NA NA
## pixel16 NA NA NA NA
## pixel17 NA NA NA NA
## pixel18 NA NA NA NA
## pixel19 NA NA NA NA
## pixel20 NA NA NA NA
## pixel21 NA NA NA NA
## pixel22 NA NA NA NA
## pixel23 NA NA NA NA
## pixel24 NA NA NA NA
## pixel25 NA NA NA NA
## pixel26 NA NA NA NA
## pixel27 NA NA NA NA
## pixel28 NA NA NA NA
## pixel29 NA NA NA NA
## pixel30 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.888 on 41997 degrees of freedom
## Multiple R-squared: 2.403e-05, Adjusted R-squared: -2.359e-05
## F-statistic: 0.5047 on 2 and 41997 DF, p-value: 0.6037
plot(model_house3)
## Warning: not plotting observations with leverage one:
## 19297, 20740
# Removing 5 more columns
model_house4 <- lm(label ~ pixel0 + pixel1 + pixel2 + pixel3 + pixel4 + pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 + pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 + pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 + pixel24 + pixel25, house_train2)
summary(model_house4)
##
## Call:
## lm(formula = label ~ pixel0 + pixel1 + pixel2 + pixel3 + pixel4 +
## pixel5 + pixel6 + pixel7 + pixel8 + pixel9 + pixel10 + pixel11 +
## pixel12 + pixel13 + pixel14 + pixel15 + pixel16 + pixel17 +
## pixel18 + pixel19 + pixel20 + pixel21 + pixel22 + pixel23 +
## pixel24 + pixel25, data = house_train2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4567 -2.4567 -0.4567 2.5433 4.5433
##
## Coefficients: (24 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.45666 0.01409 316.273 <2e-16 ***
## pixel0 NA NA NA NA
## pixel1 NA NA NA NA
## pixel2 NA NA NA NA
## pixel3 NA NA NA NA
## pixel4 NA NA NA NA
## pixel5 NA NA NA NA
## pixel6 NA NA NA NA
## pixel7 NA NA NA NA
## pixel8 NA NA NA NA
## pixel9 NA NA NA NA
## pixel10 NA NA NA NA
## pixel11 NA NA NA NA
## pixel12 0.04252 0.04276 0.994 0.320
## pixel13 -0.01334 0.01493 -0.893 0.372
## pixel14 NA NA NA NA
## pixel15 NA NA NA NA
## pixel16 NA NA NA NA
## pixel17 NA NA NA NA
## pixel18 NA NA NA NA
## pixel19 NA NA NA NA
## pixel20 NA NA NA NA
## pixel21 NA NA NA NA
## pixel22 NA NA NA NA
## pixel23 NA NA NA NA
## pixel24 NA NA NA NA
## pixel25 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.888 on 41997 degrees of freedom
## Multiple R-squared: 2.403e-05, Adjusted R-squared: -2.359e-05
## F-statistic: 0.5047 on 2 and 41997 DF, p-value: 0.6037
# Using model_house4 we'll create a scatterplot
plot(model_house4)
## Warning: not plotting observations with leverage one:
## 19297, 20740
# Predict prices for test data
house_test <- read.csv("C:/Users/Ivan/OneDrive/Desktop/test.csv/test.csv")
house_test2 <- house_test %>%
dplyr::select_if(is.numeric) %>%
replace(is.na(.), 0)
prediction <- predict(model_house4, house_test2, type = "response")
## Warning in predict.lm(model_house4, house_test2, type = "response"): prediction
## from a rank-deficient fit may be misleading
head(prediction)
## 1 2 3 4 5 6
## 4.456665 4.456665 4.456665 4.456665 4.456665 4.456665
# Prepare data frame for submission
kaggle_prediction <- data.frame(pixel50 = house_test2$pixel50 , label = prediction)
head(kaggle_prediction)
## pixel50 label
## 1 0 4.456665
## 2 0 4.456665
## 3 0 4.456665
## 4 0 4.456665
## 5 0 4.456665
## 6 0 4.456665
General References https://stackoverflow.com/questions/16496210/rotate-a-matrix-in-r-by-90-degrees-clockwise https://www.rdocumentation.org/packages/igraph/versions/1.3.1/topics/graph_from_adjacency_matrix