MRT stands for Mass Rapid transit which is the distant to the subway which is equal to 0. the average age for the houses is 43.8 years to 0 years. the five number summary of the price per unit is (7.60,27.70,38.45,46.60,117.50)
## 0% 25% 50% 75% 100%
## 7.60 27.70 38.45 46.60 117.50
summary (model_estate)
##
## Call:
## lm(formula = price_per_unit_area ~ house_age + stores + distance_MRT,
## data = Real_estate)
##
## Coefficients:
## (Intercept) house_age stores distance_MRT
## 42.977286 -0.252856 1.297442 -0.005379
##
## Call:
## lm(formula = price_per_unit_area ~ house_age + stores + distance_MRT,
## data = Real_estate)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.304 -5.430 -1.738 4.325 77.315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.977286 1.384542 31.041 < 2e-16 ***
## house_age -0.252856 0.040105 -6.305 7.47e-10 ***
## stores 1.297443 0.194290 6.678 7.91e-11 ***
## distance_MRT -0.005379 0.000453 -11.874 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.251 on 410 degrees of freedom
## Multiple R-squared: 0.5411, Adjusted R-squared: 0.5377
## F-statistic: 161.1 on 3 and 410 DF, p-value: < 2.2e-16
the R-square is high and is fit for the model and the quality is good
because the variables reduces the adjusted R-sqaure.the p-value is equal
to 2.2e16 which is small and equal to zero and is good for the changes
in the value being predicted.
the
quality of the model is good because the points are near the zero line
which means the quality is good.
## house_age distance_MRT stores price_per_unit_area
## house_age 1.00 0.03 0.05 -0.21
## distance_MRT 0.03 1.00 -0.60 -0.67
## stores 0.05 -0.60 1.00 0.57
## price_per_unit_area -0.21 -0.67 0.57 1.00
this shows the matrix of the correlation between variables, the variable number was removed because it had a higher p-value and there is a negative correlation between the distance MRT and number of stores.
##
## Call:
## lm(formula = price_per_unit_area ~ distance_MRT + house_age,
## data = Real_estate)
##
## Coefficients:
## (Intercept) distance_MRT house_age
## 49.885586 -0.007209 -0.231027
##
## Call:
## lm(formula = price_per_unit_area ~ distance_MRT + house_age,
## data = Real_estate)
##
## Residuals:
## Min 1Q Median 3Q Max
## -36.032 -4.742 -1.037 4.533 71.930
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 49.8855858 0.9677644 51.547 < 2e-16 ***
## distance_MRT -0.0072086 0.0003795 -18.997 < 2e-16 ***
## house_age -0.2310266 0.0420383 -5.496 6.84e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.73 on 411 degrees of freedom
## Multiple R-squared: 0.4911, Adjusted R-squared: 0.4887
## F-statistic: 198.3 on 2 and 411 DF, p-value: < 2.2e-16