
Analísis Dra Amanda
Objetivos
library(readxl)
dbdraamanda <- read_excel("C:/Users/fidel/OneDrive - CINVESTAV/PROYECTO MDatos/TRABAJOS/Dra. Amanda Azócar/dbdraamanda.xlsx",sheet=1)
str(dbdraamanda)
## tibble [45 × 11] (S3: tbl_df/tbl/data.frame)
## $ EXPEDIENTE : chr [1:45] "225106" "223140" "225341" "142234" ...
## $ DIAGNÓSTICO ONCOLÓGICO: chr [1:45] "CA. DE MAMA IZQUIERDO" "CARCINOMA EPIDERMOIDE IV B" "LINFOMA DIFUSO DE CEULAS GRANDES B" "LINFOMA DIFUSO DE CEULAS GRANDES B + CA DE ENDOMETRIO" ...
## $ DIAGNÓSTICO ALGOLÓGICO: chr [1:45] "SX. DOLOROSO NOCICEPTIVO SOMATICO CON COMPOENTE NEUROPATICO EN MPD SEC A SINDROME MEDULAR INCOMPLETO" "SX. DOLOROSO NOCICEPTIVO VISCERAL EN HEMIABDOMEN INFERIOR PB SEC A AT" "SX. DOLOROSO NOCICEPTIVO SOMATICO EN MIEMBRO PELVICO IZQUIERDO OB SEC A AT" "DOLOR ABDOMINAL AGUDO DE ORIGEN A DETERMINAR + NEUROPATIA SENSITIVA PERIFERICA + SINDROME DOLOROSO NEUROPATICO "| __truncated__ ...
## $ EDAD : num [1:45] 66 52 76 56 51 36 41 48 50 51 ...
## $ SEXO : chr [1:45] "F" "F" "F" "F" ...
## $ ENAB : num [1:45] 5 6 5 3 6 4 10 5 7 5 ...
## $ ENA A LOS 5 MIN : num [1:45] 2 3 1 0 6 1 4 0 3 1 ...
## $ ENA A LOS 10 MIN : num [1:45] 2 2 1 0 6 1 2 0 2 1 ...
## $ EFECTOS ADVERSOS : chr [1:45] "NO" "NO" "MAREO" "NO" ...
## $ LIKERT : num [1:45] NA 4 4 4 4 3 4 4 4 4 ...
## $ MEDD DE MORFINA: : logi [1:45] NA NA NA NA NA NA ...
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(stringr)
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
library(funModeling)
## funModeling v.1.9.4 :)
## Examples and tutorials at livebook.datascienceheroes.com
## / Now in Spanish: librovivodecienciadedatos.ai
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble 3.1.7 ✔ purrr 0.3.4
## ✔ tidyr 1.2.0 ✔ forcats 0.5.1
## ✔ readr 2.1.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ✖ Hmisc::src() masks dplyr::src()
## ✖ Hmisc::summarize() masks dplyr::summarize()
library(gtsummary)
glimpse(dbdraamanda)
## Rows: 45
## Columns: 11
## $ EXPEDIENTE <chr> "225106", "223140", "225341", "142234", "2216…
## $ `DIAGNÓSTICO ONCOLÓGICO` <chr> "CA. DE MAMA IZQUIERDO", "CARCINOMA EPIDERMOI…
## $ `DIAGNÓSTICO ALGOLÓGICO` <chr> "SX. DOLOROSO NOCICEPTIVO SOMATICO CON COMPOE…
## $ EDAD <dbl> 66, 52, 76, 56, 51, 36, 41, 48, 50, 51, 47, 4…
## $ SEXO <chr> "F", "F", "F", "F", "F", "F", "F", "F", "F", …
## $ ENAB <dbl> 5, 6, 5, 3, 6, 4, 10, 5, 7, 5, 6, 6, 10, 7, 6…
## $ `ENA A LOS 5 MIN` <dbl> 2, 3, 1, 0, 6, 1, 4, 0, 3, 1, 1, 1, 2, 2, 3, …
## $ `ENA A LOS 10 MIN` <dbl> 2, 2, 1, 0, 6, 1, 2, 0, 2, 1, 1, 0, 2, 1, 1, …
## $ `EFECTOS ADVERSOS` <chr> "NO", "NO", "MAREO", "NO", "NO", "NO", "NO", …
## $ LIKERT <dbl> NA, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3,…
## $ `MEDD DE MORFINA:` <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
cancer <- dbdraamanda %>% mutate(dxca = case_when(str_detect(`DIAGNÓSTICO ONCOLÓGICO`,"\\MAMA") ~ "CA MAMA",str_detect(`DIAGNÓSTICO ONCOLÓGICO`,"\\CERVIX ") ~ "CA CERVIX",str_detect(`DIAGNÓSTICO ONCOLÓGICO`,"\\LINFOMA") ~ "LINFOMA", str_detect(`DIAGNÓSTICO ONCOLÓGICO`,"\\OVARIO") ~ "CA OVARIO", str_detect(`DIAGNÓSTICO ONCOLÓGICO`,"\\OVARIO ") ~ "CA OVARIO", str_detect(`DIAGNÓSTICO ONCOLÓGICO`,"\\ENDOMETRIO ") ~ "CA ENDOMETRIO",str_detect(`DIAGNÓSTICO ONCOLÓGICO`,"\\GERMINAL ") ~ "TUMOR GERMINAL"))
dbdraamanda$`ENA A LOS 5 MIN`= as.character(dbdraamanda$`ENA A LOS 5 MIN`)
dbdraamanda$`ENA A LOS 10 MIN`=as.character(dbdraamanda$`ENA A LOS 10 MIN`)
dbdraamanda$LIKERT = as.character(dbdraamanda$LIKERT )
dbdraamanda %>% select(`DIAGNÓSTICO ONCOLÓGICO`,`DIAGNÓSTICO ALGOLÓGICO`,EDAD,SEXO,ENAB,`ENA A LOS 5 MIN`,`ENA A LOS 10 MIN`,`EFECTOS ADVERSOS`,LIKERT) %>% tbl_summary()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic |
N = 45 |
| DIAGNÓSTICO ONCOLÓGICO |
|
| ADENOCARCINOMA DE ENDOMETRIO + ADENOCARCINOMA ENDOMETRIOIDE DE OVARIO |
1 (2.2%) |
| ADENOCARCINOMA DE PULMON |
1 (2.2%) |
| ADENOCARCINOMA DE PULMON EC IIIC |
1 (2.2%) |
| CA. DE MAMA DERECHA + CA RENAL DERECHO |
1 (2.2%) |
| CA. DE MAMA IZQUIERDO |
1 (2.2%) |
| CANCER DE CERVIX EC IIIC |
1 (2.2%) |
| CANCER DE CERVIX EN ESTUDIO |
1 (2.2%) |
| CANCER DE CERVIX IIB |
1 (2.2%) |
| CANCER DE ENDOMETRIO |
1 (2.2%) |
| CANCER DE ENDOMETRIO EC IB G2 |
1 (2.2%) |
| CANCER DE ENDOMETRIO IVB |
1 (2.2%) |
| CANCER DE ESOFAGO |
1 (2.2%) |
| CANCER DE MAMA |
1 (2.2%) |
| CANCER DE MAMA EC IV |
1 (2.2%) |
| CANCER DE MAMA EN ESTUDIO |
1 (2.2%) |
| CANCER DE MAMA IZQUIERDO EC IIA |
1 (2.2%) |
| CANCER DE MAMA TRIPLE NEGATIVO |
1 (2.2%) |
| CANCER DE OVARIO |
1 (2.2%) |
| CANCER DE PROSTATA |
1 (2.2%) |
| CANCER DE PROSTATA METASTASICO |
1 (2.2%) |
| CANCER DE RECTO |
1 (2.2%) |
| CANCER EPIDERMOIDE DE LENGUA |
1 (2.2%) |
| CANCER UROTELIAL DE VEJIGA |
1 (2.2%) |
| CANCINOMA EPIDERMOIDE DE CAVIDAD ORAL |
1 (2.2%) |
| CARCINOMA DE OVARIO SEROSO |
1 (2.2%) |
| CARCINOMA EPIDERMOIDE DE CERVIX |
2 (4.4%) |
| CARCINOMA EPIDERMOIDE DE CERVIX EC IIIC2 |
1 (2.2%) |
| CARCINOMA EPIDERMOIDE DE PULMON IVB |
1 (2.2%) |
| CARCINOMA EPIDERMOIDE IV B |
1 (2.2%) |
| CONDROSARCOMA |
1 (2.2%) |
| LINFOMA DIFUSO DE CEULAS GRANDES B |
1 (2.2%) |
| LINFOMA DIFUSO DE CEULAS GRANDES B + CA DE ENDOMETRIO |
1 (2.2%) |
| LINFOMA FOLICULAR GRADO 1 |
1 (2.2%) |
| LINFOMA FOLICULAR TRANSFORMADO A LBDCG |
1 (2.2%) |
| LIPOSARCOMA BIEN DIFERENCIADO DE MUSLO DERECHO |
1 (2.2%) |
| MIELOMA MULTIPLE |
1 (2.2%) |
| OSTEOSARCOMA DE ALTO GRADO |
1 (2.2%) |
| SARCOMA SINOVIAL METASTATICO |
1 (2.2%) |
| TUMOR DE KRUKENBERG |
1 (2.2%) |
| TUMOR GENITOURINARIO EN ESTUDIO |
1 (2.2%) |
| TUMOR GERMINAL NO SEMINOMATOSO |
1 (2.2%) |
| TUMOR GERMINAL SEMINOMATOSO |
1 (2.2%) |
| TUMOR PELVICO EN ESTUDIO |
2 (4.4%) |
| DIAGNÓSTICO ALGOLÓGICO |
|
| CEFALEA AGUDA EN ESTUDIO |
1 (2.2%) |
| CEFALEA AGUDA EN ESTUDIO PB ECV ISQUEMICO |
1 (2.2%) |
| CEFALEA EN ESTUDIO + SINDROME DOLOROSO NOCICEPTIVO SOMATICO EN HOMBRO DERECHO |
1 (2.2%) |
| DOLOR ABDOMINAL AGUDO DE ORIGEN A DETERMINAR + NEUROPATIA SENSITIVA PERIFERICA + SINDROME DOLOROSO NEUROPATICO EN MUSLO DERECHO |
1 (2.2%) |
| DOLOR ABDOMINAL AGUDO DE ORIGEN VISCERAL SEC A PROBABLE AT |
1 (2.2%) |
| DOLOR ABDOMINAL AGUDO EN ESTUDIO |
4 (8.9%) |
| DOLOR ABDOMINAL AGUDO OB SEC A AT |
1 (2.2%) |
| DOLOR ABDOMINAL AGUDO PB SEC A AT |
1 (2.2%) |
| DOLOR ABDOMINAL EN ESTUDIO PB SEC A AT |
1 (2.2%) |
| DOLOR AGUDO EN SITIO DE COLOCACION DE CATETER PERCUTÁNEO |
1 (2.2%) |
| DOLOR AGUDO POSTOPERATORIO ABDOMINAL |
1 (2.2%) |
| DOLOR AGUDO POSTQUIRÚRGICO |
1 (2.2%) |
| DOLOR AGUDO POSTQUIRURGICO EN TOMA DE INJERTO DE MPI |
1 (2.2%) |
| DOLOR AGUDO VISCERAL ABDOMINAL SEC A AT |
1 (2.2%) |
| DOLOR AGUDO VISCERAL SEC A RETIRO DE DOBLE JJ |
1 (2.2%) |
| DOLOR VISCERAL EN RECTO SEC A AT |
1 (2.2%) |
| LUMBALGIA AGUDA EN ESTUDIO |
2 (4.4%) |
| LUMBALGIA CRONICA EN ESTUDIO |
1 (2.2%) |
| LUMBALGIA EN ESTUDIO |
1 (2.2%) |
| NEURALGIA DE LA 3ERA RAMA DEL NERVIO TRIGEMINO + PB NEURALGIA DEL GLOSOFARINGEO |
1 (2.2%) |
| NEURALGIA POSTHERPETICA |
1 (2.2%) |
| NEURALGIA POSTHERPETICA AGUDA |
1 (2.2%) |
| SINDROME DOLOROSO DE MIEMBRO FANTASMA |
1 (2.2%) |
| SINDROME DOLOROSO NOCICEPTIVO SOMATICO EN PARRILLA COSTAL DERECHA SEC A POSTTORACOTOMIA (AGUDO) |
1 (2.2%) |
| SINDROME DOLOROSO NOCICEPTIVO VISCERAL ABDOMINAL PB SEC A AT |
1 (2.2%) |
| SINDROME DOLOROSO NOCICEPTIVO Y NEUROPATICO EN MPD SEC A TROMBOSIS VENOSA PROFUNDA |
1 (2.2%) |
| SINDROME MIOFASCIAL EN TRAPECIO DERECHO AGUDO |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO SOMATICO AXIAL SEC A RT |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO SOMATICO CON COMPONENTE NEUROPATCIO EN REGIÓN SACRA SEC A AT |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO SOMATICO CON COMPONENTE NEUROPATICO EN MPD SEC A PB AT |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO SOMATICO EN HEMICUELLO DERECHO SEC A PB AT |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO SOMATICO EN MPD SEC A TVP |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO SOMATICO EN MUSLO DERECHO SEC A INFECCION DE SITIO QUIRURGICO (AGUDO) |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO SOMATICO EN REGION COSTAL SEC A TRAUMA (AGUDO) |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO SOMATICO EN TORAX SEC A PROCEDIMIENTO QUIRURGICO (AGUDO) |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO VISCERAL CON COMPONENTE NEUROPATICO EN HIPOGASTRIO PB SEC A AT |
1 (2.2%) |
| SX DOLOROSO NOCICEPTIVO VISCERAL EN HEMIABDOMEN INFERIOR SEC A AT |
1 (2.2%) |
| SX DOLOROSO NOCICPETIVO SOMATICO CON COMPONENTE NEUROPATICO EN REGION MANDIBULAR IZQ PB SEC A AT |
1 (2.2%) |
| SX. DOLOROSO NOCICEPTIVO SOMATICO CON COMPOENTE NEUROPATICO EN MPD SEC A SINDROME MEDULAR INCOMPLETO |
1 (2.2%) |
| SX. DOLOROSO NOCICEPTIVO SOMATICO EN MIEMBRO PELVICO IZQUIERDO OB SEC A AT |
1 (2.2%) |
| SX. DOLOROSO NOCICEPTIVO VISCERAL EN HEMIABDOMEN INFERIOR PB SEC A AT |
1 (2.2%) |
| EDAD |
52 (46, 63) |
| SEXO |
|
| F |
36 (80%) |
| M |
9 (20%) |
| ENAB |
|
| 3 |
1 (2.2%) |
| 4 |
4 (8.9%) |
| 5 |
10 (22%) |
| 6 |
12 (27%) |
| 7 |
2 (4.4%) |
| 8 |
8 (18%) |
| 9 |
1 (2.2%) |
| 10 |
7 (16%) |
| ENA A LOS 5 MIN |
|
| 0 |
6 (13%) |
| 1 |
7 (16%) |
| 2 |
10 (22%) |
| 3 |
9 (20%) |
| 4 |
5 (11%) |
| 5 |
6 (13%) |
| 6 |
2 (4.4%) |
| ENA A LOS 10 MIN |
|
| 0 |
14 (31%) |
| 1 |
14 (31%) |
| 2 |
13 (29%) |
| 3 |
2 (4.4%) |
| 5 |
1 (2.2%) |
| 6 |
1 (2.2%) |
| EFECTOS ADVERSOS |
|
| MAREO |
1 (2.2%) |
| NO |
44 (98%) |
| LIKERT |
|
| 3 |
7 (16%) |
| 4 |
32 (73%) |
| 5 |
5 (11%) |
| Unknown |
1 |
dbdraamandacode <- read_excel("C:/Users/fidel/OneDrive - CINVESTAV/PROYECTO MDatos/TRABAJOS/Dra. Amanda Azócar/dbdraamanda.xlsx",sheet=2)
dbamandacod<-dbdraamandacode
dbamanda <- dbdraamandacode %>% mutate(`DIAGNÓSTICO ONCOLÓGICO`=recode(`DIAGNÓSTICO ONCOLÓGICO`, `1`= "CANCER DE MAMA",
`2` ="CANCER DE CERVIX",
`3` ="LINFOMA",
`4` = "CANCER DE OVARIO Y ENDOMETRIO",
`5` = "TUMOR GERMINAL",
`6` = "CANCER DE PROSTATA",
`7` = "CANCER DE PULMON",
`8` = "CANCER GENITOURINARIO",
`9` = "CA CAVIDAD ORAL",
`10` = "SARCOMAS",
`11` = "OTROS",
),
`DIAGNÓSTICO ALGOLÓGICO`=recode(`DIAGNÓSTICO ALGOLÓGICO`, `1` = "CANCER",
`2` = "TX QUIRURGICO",
`3` = "TX QT/RT",
`4` = "NO RELACIONADO A CANCER"), EDAD=recode(EDAD, `1` = "18-29",
`2` = "30-49",
`3` = "50-59",
`4` = "60-69",
`5` = "70-79",
`6` = "80-89"),
SEXO=recode(SEXO, `1`="Femenino",
`2`= "Masculino"),
ENAB=recode(ENAB, `1`= "0-3",
`2`="4-6",
`3`="7-10"),
`ENA A LOS 5 MIN`=recode(`ENA A LOS 5 MIN`, `1`= "0-3",
`2`="4-6", `3`="7-10"),
`ENA A LOS 10 MIN`=recode(`ENA A LOS 10 MIN`, `1`="0-3",
`2`="4-6", `3`="7-10"),
`EFECTOS ADVERSOS` = recode(`EFECTOS ADVERSOS`, `1`="MAREO",
`2`= "NINGUNO"))
glimpse(dbamanda)
## Rows: 45
## Columns: 14
## $ EXPEDIENTE <chr> "225106", "223140", "225341", "142234", "2216…
## $ `DIAGNÓSTICO ONCOLÓGICO` <chr> "CANCER DE MAMA", "CANCER DE CERVIX", "LINFOM…
## $ `DIAGNÓSTICO ALGOLÓGICO` <chr> "CANCER", "CANCER", "CANCER", "CANCER", "CANC…
## $ EDAD <chr> "60-69", "50-59", "70-79", "50-59", "50-59", …
## $ SEXO <chr> "Femenino", "Femenino", "Femenino", "Femenino…
## $ ENAB <chr> "4-6", "4-6", "4-6", "0-3", "4-6", "4-6", "7-…
## $ `ENA A LOS 5 MIN` <chr> "0-3", "0-3", "0-3", "0-3", "4-6", "0-3", "4-…
## $ `ENA A LOS 10 MIN` <chr> "0-3", "0-3", "0-3", "0-3", "4-6", "0-3", "0-…
## $ `EFECTOS ADVERSOS` <chr> "NINGUNO", "NINGUNO", "MAREO", "NINGUNO", "NI…
## $ LIKERT <dbl> 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 5, 3, 3, …
## $ `MEDD DE MORFINA` <dbl> 1, 1, 3, 1, 1, 2, 1, 1, 5, 1, 1, 6, 1, 1, 2, …
## $ `ENA 5 MIN` <dbl> 2, 3, 1, 0, 6, 1, 4, 0, 3, 1, 1, 1, 2, 2, 3, …
## $ `ENA 10 MIN` <dbl> 2, 2, 1, 0, 6, 1, 2, 0, 2, 1, 1, 0, 2, 1, 1, …
## $ `MEDD_MORFINA:` <dbl> 0.00, 18.75, 41.58, 10.00, 0.00, 28.12, 9.37,…
Distribución edades
##
## Attaching package: 'dlookr'
## The following object is masked from 'package:tidyr':
##
## extract
## The following object is masked from 'package:Hmisc':
##
## describe
## The following object is masked from 'package:base':
##
## transform
## # A tibble: 1 × 4
## vars statistic p_value sample
## <chr> <dbl> <dbl> <dbl>
## 1 EDAD 0.989 0.941 45
## Warning: geom_vline(): Ignoring `mapping` because `xintercept` was provided.
## Warning: geom_vline(): Ignoring `data` because `xintercept` was provided.


dbdraamanda%>% select(EDAD, SEXO) %>% drop_na() %>% tbl_summary(by=SEXO) %>% add_p() %>% add_overall()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic |
Overall, N = 45 |
F, N = 36 |
M, N = 9 |
p-value |
| EDAD |
52 (46, 63) |
52 (46, 61) |
53 (48, 65) |
0.9 |
EDADES y Sexo, boxplots
bpl <- ggplot(dbdraamanda, aes(x="", y=EDAD))
A<-bpl + geom_boxplot(fill="skyblue") + theme_pubclean() +labs(y = "Años", x ="")
A

sex <- bpl + geom_boxplot(aes(fill=SEXO)) + theme_pubclean()
sx<-sex + theme(legend.position = "none")+labs(y = "Años", x ="")
sx

library(cowplot)
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggpubr':
##
## get_legend
plot_grid(A, sex, labels = c('A', 'B'), label_size = 12, ncol = 1, nrow = 2)

ggarrange(A, sex + rremove("x.text"),
labels = c("A", "B"),
ncol = 1, nrow = 2, common.legend = TRUE, legend = "top")

freq(dbamanda)
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## EXPEDIENTE frequency percentage cumulative_perc
## 1 120933 1 2.22 2.22
## 2 131993 1 2.22 4.44
## 3 141864 1 2.22 6.66
## 4 142234 1 2.22 8.88
## 5 165339 1 2.22 11.10
## 6 170037 1 2.22 13.32
## 7 171270 1 2.22 15.54
## 8 172809 1 2.22 17.76
## 9 185132 1 2.22 19.98
## 10 185523 1 2.22 22.20
## 11 194817 1 2.22 24.42
## 12 195296 1 2.22 26.64
## 13 212934 1 2.22 28.86
## 14 213974 1 2.22 31.08
## 15 215381 1 2.22 33.30
## 16 220458 1 2.22 35.52
## 17 221477 1 2.22 37.74
## 18 221698 1 2.22 39.96
## 19 223140 1 2.22 42.18
## 20 223175 1 2.22 44.40
## 21 223387 1 2.22 46.62
## 22 223714 1 2.22 48.84
## 23 223901 1 2.22 51.06
## 24 223984 1 2.22 53.28
## 25 224442 1 2.22 55.50
## 26 224695 1 2.22 57.72
## 27 225106 1 2.22 59.94
## 28 225127 1 2.22 62.16
## 29 225164 1 2.22 64.38
## 30 225203 1 2.22 66.60
## 31 225208 1 2.22 68.82
## 32 225304 1 2.22 71.04
## 33 225341 1 2.22 73.26
## 34 225505 1 2.22 75.48
## 35 225558 1 2.22 77.70
## 36 225662 1 2.22 79.92
## 37 225666 1 2.22 82.14
## 38 225759 1 2.22 84.36
## 39 225829 1 2.22 86.58
## 40 225837 1 2.22 88.80
## 41 225914 1 2.22 91.02
## 42 80784 1 2.22 93.24
## 43 81644 1 2.22 95.46
## 44 81850 1 2.22 97.68
## 45 FOL016586 1 2.22 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

## DIAGNÓSTICO.ONCOLÓGICO frequency percentage cumulative_perc
## 1 CANCER DE CERVIX 9 20.00 20.00
## 2 CANCER DE MAMA 7 15.56 35.56
## 3 OTROS 6 13.33 48.89
## 4 CANCER DE OVARIO Y ENDOMETRIO 4 8.89 57.78
## 5 LINFOMA 4 8.89 66.67
## 6 SARCOMAS 4 8.89 75.56
## 7 CANCER DE PULMON 3 6.67 82.23
## 8 CA CAVIDAD ORAL 2 4.44 86.67
## 9 CANCER DE PROSTATA 2 4.44 91.11
## 10 CANCER GENITOURINARIO 2 4.44 95.55
## 11 TUMOR GERMINAL 2 4.44 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

## DIAGNÓSTICO.ALGOLÓGICO frequency percentage cumulative_perc
## 1 CANCER 21 46.67 46.67
## 2 NO RELACIONADO A CANCER 14 31.11 77.78
## 3 TX QUIRURGICO 9 20.00 97.78
## 4 TX QT/RT 1 2.22 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

## EDAD frequency percentage cumulative_perc
## 1 50-59 16 35.56 35.56
## 2 30-49 14 31.11 66.67
## 3 60-69 9 20.00 86.67
## 4 70-79 4 8.89 95.56
## 5 18-29 2 4.44 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

## SEXO frequency percentage cumulative_perc
## 1 Femenino 36 80 80
## 2 Masculino 9 20 100
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

## ENAB frequency percentage cumulative_perc
## 1 4-6 26 57.78 57.78
## 2 7-10 18 40.00 97.78
## 3 0-3 1 2.22 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

## ENA.A.LOS.5.MIN frequency percentage cumulative_perc
## 1 0-3 33 73.33 73.33
## 2 4-6 12 26.67 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

## ENA.A.LOS.10.MIN frequency percentage cumulative_perc
## 1 0-3 43 95.56 95.56
## 2 4-6 2 4.44 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.


## EFECTOS.ADVERSOS frequency percentage cumulative_perc
## 1 NINGUNO 41 91.11 91.11
## 2 MAREO 4 8.89 100.00
## [1] "Variables processed: EXPEDIENTE, DIAGNÓSTICO.ONCOLÓGICO, DIAGNÓSTICO.ALGOLÓGICO, EDAD, SEXO, ENAB, ENA.A.LOS.5.MIN, ENA.A.LOS.10.MIN, EFECTOS.ADVERSOS"
sex <- dbamanda %>%
group_by(SEXO) %>%
summarise(counts = n())
sex <- sex%>%
arrange(desc(SEXO)) %>%
mutate(prop = round(counts*100/sum(counts), 1),
res = str_c(counts, "(", prop, "%)"),
lab.ypos = cumsum(prop) - 0.5*prop)
head(df, 4)
##
## 1 function (x, df1, df2, ncp, log = FALSE)
## 2 {
## 3 if (missing(ncp))
## 4 .Call(C_df, x, df1, df2, log)
sexpie<-ggplot(sex , aes(x = "", y = prop, fill = SEXO)) +
geom_bar(width = 1, stat = "identity", color = "white") +
geom_text(aes(y = lab.ypos, label = res), color = "black",
fontface=2, size= 6)+
coord_polar("y", start = 0)+
ggpubr::fill_palette("")+
theme_void() + labs(fill = "SEXO") +
theme(text = element_text(size = 16, face="bold"))
sexpie

tab1<-dbdraamanda %>% select(EDAD,SEXO) %>% tbl_summary(by=SEXO) %>% add_p() %>% add_overall()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
tab1
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic |
Overall, N = 45 |
F, N = 36 |
M, N = 9 |
p-value |
| EDAD |
52 (46, 63) |
52 (46, 61) |
53 (48, 65) |
0.9 |
ggarrange(sexpie, A, sex, tab1,
labels = c("A", "B", "C", "D"),
ncol = 2, nrow = 2)
## Warning in as_grob.default(plot): Cannot convert object of class
## tbl_dftbldata.frame into a grob.
## Warning in as_grob.default(plot): Cannot convert object of class
## tbl_summarygtsummary into a grob.

ggarrange(sexpie, # First row with scatter plot
ggarrange(A, sx, ncol = 2, labels = c("B", "C")), # Second row with box and dot plots
nrow = 2,
labels = "A", common.legend = TRUE, legend = "top"# Labels of the scatter plot
)

glimpse(dbamanda)
## Rows: 45
## Columns: 14
## $ EXPEDIENTE <chr> "225106", "223140", "225341", "142234", "2216…
## $ `DIAGNÓSTICO ONCOLÓGICO` <chr> "CANCER DE MAMA", "CANCER DE CERVIX", "LINFOM…
## $ `DIAGNÓSTICO ALGOLÓGICO` <chr> "CANCER", "CANCER", "CANCER", "CANCER", "CANC…
## $ EDAD <chr> "60-69", "50-59", "70-79", "50-59", "50-59", …
## $ SEXO <chr> "Femenino", "Femenino", "Femenino", "Femenino…
## $ ENAB <chr> "4-6", "4-6", "4-6", "0-3", "4-6", "4-6", "7-…
## $ `ENA A LOS 5 MIN` <chr> "0-3", "0-3", "0-3", "0-3", "4-6", "0-3", "4-…
## $ `ENA A LOS 10 MIN` <chr> "0-3", "0-3", "0-3", "0-3", "4-6", "0-3", "0-…
## $ `EFECTOS ADVERSOS` <chr> "NINGUNO", "NINGUNO", "MAREO", "NINGUNO", "NI…
## $ LIKERT <dbl> 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 5, 3, 3, …
## $ `MEDD DE MORFINA` <dbl> 1, 1, 3, 1, 1, 2, 1, 1, 5, 1, 1, 6, 1, 1, 2, …
## $ `ENA 5 MIN` <dbl> 2, 3, 1, 0, 6, 1, 4, 0, 3, 1, 1, 1, 2, 2, 3, …
## $ `ENA 10 MIN` <dbl> 2, 2, 1, 0, 6, 1, 2, 0, 2, 1, 1, 0, 2, 1, 1, …
## $ `MEDD_MORFINA:` <dbl> 0.00, 18.75, 41.58, 10.00, 0.00, 28.12, 9.37,…
ENAB CHART PIE
dbamandaca <- dbamanda %>% filter(`DIAGNÓSTICO ALGOLÓGICO` == "CANCER"| `DIAGNÓSTICO ALGOLÓGICO` =="TX QUIRURGICO" | `DIAGNÓSTICO ALGOLÓGICO` == "TX QT/RT")
dbamandaca
## # A tibble: 31 × 14
## EXPEDIENTE DIAGNÓS…¹ DIAGN…² EDAD SEXO ENAB ENA A…³ ENA A…⁴ EFECT…⁵ LIKERT
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
## 1 225106 CANCER D… CANCER 60-69 Feme… 4-6 0-3 0-3 NINGUNO 4
## 2 223140 CANCER D… CANCER 50-59 Feme… 4-6 0-3 0-3 NINGUNO 4
## 3 225341 LINFOMA CANCER 70-79 Feme… 4-6 0-3 0-3 MAREO 4
## 4 142234 LINFOMA CANCER 50-59 Feme… 0-3 0-3 0-3 NINGUNO 4
## 5 221698 CA CAVID… CANCER 50-59 Feme… 4-6 4-6 4-6 NINGUNO 4
## 6 223175 SARCOMAS TX QUI… 30-49 Feme… 4-6 0-3 0-3 NINGUNO 3
## 7 223714 CANCER D… TX QUI… 30-49 Feme… 4-6 0-3 0-3 NINGUNO 4
## 8 225662 OTROS CANCER 50-59 Masc… 4-6 0-3 0-3 NINGUNO 4
## 9 225829 SARCOMAS CANCER 30-49 Feme… 4-6 0-3 0-3 NINGUNO 3
## 10 225666 OTROS CANCER 30-49 Feme… 7-10 0-3 0-3 NINGUNO 3
## # … with 21 more rows, 4 more variables: `MEDD DE MORFINA` <dbl>,
## # `ENA 5 MIN` <dbl>, `ENA 10 MIN` <dbl>, `MEDD_MORFINA:` <dbl>, and
## # abbreviated variable names ¹`DIAGNÓSTICO ONCOLÓGICO`,
## # ²`DIAGNÓSTICO ALGOLÓGICO`, ³`ENA A LOS 5 MIN`, ⁴`ENA A LOS 10 MIN`,
## # ⁵`EFECTOS ADVERSOS`
enab <- dbamandaca %>%
group_by(ENAB) %>%
summarise(counts = n())
enab <- enab%>%
arrange(desc(ENAB)) %>%
mutate(prop = round(counts*100/sum(counts), 1),
res = str_c(counts, "(", prop, "%)"),
lab.ypos = cumsum(prop) - 0.5*prop)
head(df, 4)
##
## 1 function (x, df1, df2, ncp, log = FALSE)
## 2 {
## 3 if (missing(ncp))
## 4 .Call(C_df, x, df1, df2, log)
enabpie<-ggplot(enab , aes(x = "", y = prop, fill = ENAB)) +
geom_bar(width = 1, stat = "identity", color = "white") +
geom_text(aes(y = lab.ypos, label = res), color = "black",
fontface=2, size= 6)+
coord_polar("y", start = 0)+
ggpubr::fill_palette("")+
theme_void() + labs(fill = "ENAB") +
theme(text = element_text(size = 16, face="bold"))
enabpie

enaev <- dbamandaca %>% select(`ENA A LOS 5 MIN`,`ENA A LOS 10 MIN`)
enaev
## # A tibble: 31 × 2
## `ENA A LOS 5 MIN` `ENA A LOS 10 MIN`
## <chr> <chr>
## 1 0-3 0-3
## 2 0-3 0-3
## 3 0-3 0-3
## 4 0-3 0-3
## 5 4-6 4-6
## 6 0-3 0-3
## 7 0-3 0-3
## 8 0-3 0-3
## 9 0-3 0-3
## 10 0-3 0-3
## # … with 21 more rows
enaevo <-gather(enaev, key="tiempo", value="ENA")
enaevo <- enaevo %>% mutate(tiempo = factor(tiempo, levels=c("ENA A LOS 5 MIN", "ENA A LOS 10 MIN")))
df <- enaevo %>% group_by(tiempo, ENA) %>% summarise(n = n()) %>%
mutate(
perc = round(proportions(n) * 100, 1),
res = str_c(n, "(", perc, "%)"))
## Warning in gzfile(file, mode): cannot open compressed file 'C:/Users/fidel/
## AppData/Local/Temp/RtmpymG1AW\file34846515a0c', probable reason 'No such file or
## directory'
## `summarise()` has grouped output by 'tiempo'. You can override using the
## `.groups` argument.
# Use position = position_dodge()
p <- ggplot(df, aes(x = tiempo, y = n)) +
geom_bar(
aes(color = ENA, fill = ENA),
stat = "identity", position = position_dodge(0.8),
width = 0.7
)
p + theme_pubclean()+ylab("conteo")+xlab("") + geom_text(
aes(label = res, group = ENA),
position = position_dodge(0.8),
vjust = -0.3, size = 3.5
)

Tablas cruzadas
t1<-dbamandaca %>%
tbl_cross(
row = ENAB,
col = `ENA A LOS 5 MIN`,
percent = "cell"
) %>%
add_p()
t2<-dbamandaca %>%
tbl_cross(
row = ENAB,
col = `ENA A LOS 10 MIN`,
percent = "cell"
) %>%
add_p()
tbl_merge_ex2 <-
tbl_merge(tbls = list(t1, t2),
tab_spanner = c("**ENA A LOS 5 MIN**", "**ENA A LOS 10 MIN**")
)
tbl_merge_ex2
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
|
ENA A LOS 5 MIN
|
ENA A LOS 10 MIN
|
| 0-3 |
4-6 |
Total |
p-value |
0-3 |
4-6 |
Total |
p-value |
| ENAB |
|
|
|
0.052 |
|
|
|
>0.9 |
| 0-3 |
1 (3.2%) |
0 (0%) |
1 (3.2%) |
|
1 (3.2%) |
0 (0%) |
1 (3.2%) |
|
| 4-6 |
18 (58%) |
2 (6.5%) |
20 (65%) |
|
19 (61%) |
1 (3.2%) |
20 (65%) |
|
| 7-10 |
5 (16%) |
5 (16%) |
10 (32%) |
|
10 (32%) |
0 (0%) |
10 (32%) |
|
| Total |
24 (77%) |
7 (23%) |
31 (100%) |
|
30 (97%) |
1 (3.2%) |
31 (100%) |
|
dbamandaca %>%
tbl_cross(
row = `ENA A LOS 5 MIN`,
col = `ENA A LOS 10 MIN`,
percent = "cell"
) %>%
add_p(source_note = TRUE)
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
|
ENA A LOS 10 MIN
|
Total |
| 0-3 |
4-6 |
| ENA A LOS 5 MIN |
|
|
|
| 0-3 |
24 (77%) |
0 (0%) |
24 (77%) |
| 4-6 |
6 (19%) |
1 (3.2%) |
7 (23%) |
| Total |
30 (97%) |
1 (3.2%) |
31 (100%) |
| Fisher's exact test, p=0.2 |
glimpse(dbamanda)
## Rows: 45
## Columns: 14
## $ EXPEDIENTE <chr> "225106", "223140", "225341", "142234", "2216…
## $ `DIAGNÓSTICO ONCOLÓGICO` <chr> "CANCER DE MAMA", "CANCER DE CERVIX", "LINFOM…
## $ `DIAGNÓSTICO ALGOLÓGICO` <chr> "CANCER", "CANCER", "CANCER", "CANCER", "CANC…
## $ EDAD <chr> "60-69", "50-59", "70-79", "50-59", "50-59", …
## $ SEXO <chr> "Femenino", "Femenino", "Femenino", "Femenino…
## $ ENAB <chr> "4-6", "4-6", "4-6", "0-3", "4-6", "4-6", "7-…
## $ `ENA A LOS 5 MIN` <chr> "0-3", "0-3", "0-3", "0-3", "4-6", "0-3", "4-…
## $ `ENA A LOS 10 MIN` <chr> "0-3", "0-3", "0-3", "0-3", "4-6", "0-3", "0-…
## $ `EFECTOS ADVERSOS` <chr> "NINGUNO", "NINGUNO", "MAREO", "NINGUNO", "NI…
## $ LIKERT <dbl> 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 5, 3, 3, …
## $ `MEDD DE MORFINA` <dbl> 1, 1, 3, 1, 1, 2, 1, 1, 5, 1, 1, 6, 1, 1, 2, …
## $ `ENA 5 MIN` <dbl> 2, 3, 1, 0, 6, 1, 4, 0, 3, 1, 1, 1, 2, 2, 3, …
## $ `ENA 10 MIN` <dbl> 2, 2, 1, 0, 6, 1, 2, 0, 2, 1, 1, 0, 2, 1, 1, …
## $ `MEDD_MORFINA:` <dbl> 0.00, 18.75, 41.58, 10.00, 0.00, 28.12, 9.37,…
#https://rstudio-pubs-static.s3.amazonaws.com/158214_3e5cc0d244f942f2a2dc33fecdf87764.html
Se me ocurrio la idea dividir cancer y no cancer y ver que efecto
tiene a los 5 y 10 minutos
CANCER 21 46.67 46.67
NO RELACIONADO A CANCER 14 31.11 77.78
TX QUIRURGICO 9 20.00 97.78
TX QT/RT
cadb<-dbamandacod %>% mutate(`DIAGNÓSTICO ALGOLÓGICO`=recode(`DIAGNÓSTICO ALGOLÓGICO`, `1` = "CANCER",
`2` = "CANCER",
`3` = "CANCER",
`4` = "NO CANCER"),
`ENA A LOS 5 MIN`=recode(`ENA A LOS 5 MIN`, `1`= "0-3",
`2`="4-6", `3`="7-10"),
`ENA A LOS 10 MIN`=recode(`ENA A LOS 10 MIN`, `1`="0-3",
`2`="4-6", `3`="7-10"),
`MEDD DE MORFINA` =recode(`MEDD DE MORFINA` , `1`="0-20", `2`="21-40",`3`="41-60",`4`="61-80",`5`="81-100", `6`="más de 100"))
cadb$`ENA A LOS 10 MIN` = as.numeric(cadb$`ENA A LOS 10 MIN` )
## Warning: NAs introducidos por coerción
cadb$`ENA A LOS 5 MIN` = as.numeric(cadb$`ENA A LOS 5 MIN` )
## Warning: NAs introducidos por coerción
cadb %>% select(`DIAGNÓSTICO ALGOLÓGICO`,`ENA 5 MIN`, `ENA 10 MIN`,`ENA A LOS 5 MIN`, `ENA A LOS 10 MIN`) %>% tbl_summary(by= `DIAGNÓSTICO ALGOLÓGICO`,type = list(where(is.numeric) ~ "continuous2")) %>% add_p() %>% add_overall()
## Warning for variable 'ENA 5 MIN':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ENA 10 MIN':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## There was an error in 'add_p()/add_difference()' for variable 'ENA A LOS 5 MIN', p-value omitted:
## Error in wilcox.test.formula(as.numeric(`ENA A LOS 5 MIN`) ~ as.factor(`DIAGNÓSTICO ALGOLÓGICO`), : grouping factor must have exactly 2 levels
## There was an error in 'add_p()/add_difference()' for variable 'ENA A LOS 10 MIN', p-value omitted:
## Error in wilcox.test.formula(as.numeric(`ENA A LOS 10 MIN`) ~ as.factor(`DIAGNÓSTICO ALGOLÓGICO`), : grouping factor must have exactly 2 levels
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic |
Overall, N = 45 |
CANCER, N = 31 |
NO CANCER, N = 14 |
p-value |
| ENA 5 MIN |
|
|
|
0.3 |
| Median (IQR) |
2.00 (1.00, 4.00) |
2.00 (1.00, 3.50) |
3.00 (2.00, 4.00) |
|
| ENA 10 MIN |
|
|
|
0.3 |
| Median (IQR) |
1.00 (0.00, 2.00) |
1.00 (0.00, 2.00) |
1.50 (0.25, 2.00) |
|
| ENA A LOS 5 MIN |
|
|
|
|
| Median (IQR) |
NA (NA, NA) |
NA (NA, NA) |
NA (NA, NA) |
|
| Unknown |
45 |
31 |
14 |
|
| ENA A LOS 10 MIN |
|
|
|
|
| Median (IQR) |
NA (NA, NA) |
NA (NA, NA) |
NA (NA, NA) |
|
| Unknown |
45 |
31 |
14 |
|
MEDD MORFINA
cadb %>% select(`DIAGNÓSTICO ALGOLÓGICO`,`MEDD_MORFINA:`,`MEDD DE MORFINA`) %>% tbl_summary(by= `DIAGNÓSTICO ALGOLÓGICO`,type = list(where(is.numeric) ~ "continuous2")) %>% add_p() %>% add_overall()
## Warning for variable 'MEDD_MORFINA:':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic |
Overall, N = 45 |
CANCER, N = 31 |
NO CANCER, N = 14 |
p-value |
| MEDD_MORFINA: |
|
|
|
0.4 |
| Median (IQR) |
9 (0, 28) |
0 (0, 28) |
15 (0, 37) |
|
| MEDD DE MORFINA |
|
|
|
0.7 |
| 0-20 |
28 (62%) |
20 (65%) |
8 (57%) |
|
| 21-40 |
6 (13%) |
4 (13%) |
2 (14%) |
|
| 41-60 |
4 (8.9%) |
3 (9.7%) |
1 (7.1%) |
|
| 61-80 |
2 (4.4%) |
1 (3.2%) |
1 (7.1%) |
|
| 81-100 |
3 (6.7%) |
1 (3.2%) |
2 (14%) |
|
| más de 100 |
2 (4.4%) |
2 (6.5%) |
0 (0%) |
|