Link

#https://hrsdata.isr.umich.edu/data-products/2020-hrs-core

libraries

library(haven)# used for  dta or stata data
## Warning: package 'haven' was built under R version 4.2.2
library(dplyr)# for data management
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(car)# recoding and renaming
## Warning: package 'car' was built under R version 4.2.2
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.2.2
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
library(compareGroups)# making table
## Warning: package 'compareGroups' was built under R version 4.2.2
library(foreign)# recode function

Read data

2F. Identification Variables The primary Identification variables (IDs) are: HHID PN HOUSEHOLD IDENTIFIER PERSON NUMBER Records in the data files are sorted in order by HHID and PN. Identification variables in the 2020 HRS COVID-19 Project data are stored in character format.

main_data <- read_dta(file = "C:/Users/ali_r/Downloads/trk2020tr_r.dta")
nrow(main_data)
## [1] 43559
baseline<-main_data %>% 
  filter(PN=="010")

# data for PA
HRS_RC <- read_dta(file = "C:/Users/ali_r/Downloads/h20C_r.dta")


# number of rows in the dataset
nrow(HRS_RC)
## [1] 15723
#  Filter data by pn==10
HRS_RC_new<-HRS_RC %>% 
  filter(pn=="010")


# data for demo
HRS_demo <- read_dta(file = "C:/Users/ali_r/Downloads/h20b_r.dta")
nrow(HRS_demo)
## [1] 15723
HRS_demo_new<-HRS_demo %>% 
  filter(pn=="010")







# data join
df_full<- full_join(HRS_RC_new, HRS_demo_new, by="hhid")


head(df_full)
## # A tibble: 6 × 429
##   hhid   pn.x  rsubhh.x qsubh…¹ RPN_S…² rcsr.x rfamr.x rfinr.x RC231 RC234 RC235
##   <chr>  <chr> <chr>    <chr>   <chr>    <dbl>   <dbl>   <dbl> <dbl> <dbl> <dbl>
## 1 010038 010   0        0       "040"        1       5       1     1     0     1
## 2 010050 010   0        0       ""           1       1       1     1     0     1
## 3 010106 010   0        0       "020"        5       1       1     1     0     1
## 4 010299 010   1        1       ""           1       1       1     1     0     1
## 5 010372 010   0        0       ""           1       1       1     1     0     1
## 6 010397 010   0        0       ""           1       1       1     1     0     1
## # … with 418 more variables: RC239 <dbl>, RC248 <dbl>, RC185 <dbl>,
## #   RC001 <dbl>, RC002 <dbl>, RC005 <dbl>, RC006 <dbl>, RC010 <dbl>,
## #   RC285 <dbl>, RC011 <dbl>, RC012 <dbl>, RC236 <dbl>, RC214 <dbl>,
## #   RC018 <dbl>, RC019 <dbl>, RC020 <dbl>, RC021M1 <dbl>, RC021M2 <dbl>,
## #   RC021M3 <dbl>, RC021M4 <dbl>, RC021M5 <dbl>, RC021M6 <dbl>, RC021M7 <dbl>,
## #   RC023 <dbl>, RC024 <dbl>, RC028 <dbl>, RC029 <dbl>, RC030 <dbl>,
## #   RC031 <dbl>, RC032 <dbl>, RC033 <dbl>, RC034 <dbl>, RC036 <dbl>, …
head(baseline)
## # A tibble: 6 × 552
##   HHID   PN    BIRTHMO BIRTHYR DEGREE EFTFASSIGN EXDEA…¹ EXDEA…² EXDOD…³ FIRSTIW
##   <chr>  <chr>   <dbl>   <dbl>  <dbl>      <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1 000001 010         2    1938      4          9       4    1995       1    1992
## 2 000002 010        10    1934      0          9      11    2001       1    1992
## 3 000003 010         1    1936      2          1       8    2013       1    1992
## 4 010001 010         6    1939      2          2      NA      NA      NA    1992
## 5 010004 010        12    1939      4          1       9    2011       1    1992
## 6 010013 010         3    1938      2          1       3    2016       1    1992
## # … with 542 more variables: GENDER <dbl>, HISPANIC <dbl>, IMMGYEAR <dbl>,
## #   KNOWNDECEASEDMO <dbl>, KNOWNDECEASEDYR <dbl>, KNOWNDECEASEDSOURCE <dbl>,
## #   LASTALIVEMO <dbl>, LASTALIVEYR <dbl>, LASTALIVESOURCE <dbl>, MOSFLAG <dbl>,
## #   OVHHID <chr>, OVPN <chr>, OVRESULT <dbl>, OVYEAR <dbl>, RACE <dbl>,
## #   SCHLYRS <dbl>, SECU <dbl>, STRATUM <dbl>, STUDY <dbl>, USBORN <dbl>,
## #   WTCOHORT <dbl>, YRENTER <dbl>, ADAMS1 <dbl>, CAMS01 <dbl>, CAMS03 <dbl>,
## #   CAMS05 <dbl>, CAMS07 <dbl>, CAMS09 <dbl>, CAMS11 <dbl>, CAMS13 <dbl>, …
# renaming ID variable in baseline

baseline<- baseline %>% 
  rename(hhid= HHID)

head(baseline)
## # A tibble: 6 × 552
##   hhid   PN    BIRTHMO BIRTHYR DEGREE EFTFASSIGN EXDEA…¹ EXDEA…² EXDOD…³ FIRSTIW
##   <chr>  <chr>   <dbl>   <dbl>  <dbl>      <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1 000001 010         2    1938      4          9       4    1995       1    1992
## 2 000002 010        10    1934      0          9      11    2001       1    1992
## 3 000003 010         1    1936      2          1       8    2013       1    1992
## 4 010001 010         6    1939      2          2      NA      NA      NA    1992
## 5 010004 010        12    1939      4          1       9    2011       1    1992
## 6 010013 010         3    1938      2          1       3    2016       1    1992
## # … with 542 more variables: GENDER <dbl>, HISPANIC <dbl>, IMMGYEAR <dbl>,
## #   KNOWNDECEASEDMO <dbl>, KNOWNDECEASEDYR <dbl>, KNOWNDECEASEDSOURCE <dbl>,
## #   LASTALIVEMO <dbl>, LASTALIVEYR <dbl>, LASTALIVESOURCE <dbl>, MOSFLAG <dbl>,
## #   OVHHID <chr>, OVPN <chr>, OVRESULT <dbl>, OVYEAR <dbl>, RACE <dbl>,
## #   SCHLYRS <dbl>, SECU <dbl>, STRATUM <dbl>, STUDY <dbl>, USBORN <dbl>,
## #   WTCOHORT <dbl>, YRENTER <dbl>, ADAMS1 <dbl>, CAMS01 <dbl>, CAMS03 <dbl>,
## #   CAMS05 <dbl>, CAMS07 <dbl>, CAMS09 <dbl>, CAMS11 <dbl>, CAMS13 <dbl>, …
# data join
df_full<- left_join(df_full, baseline, by="hhid")

make a new dataset for our research

df_final<-df_full %>% 
  select(hhid,  RC001, RC272, RC273, RC079 , RC080  , RC081  , RC082, GENDER , BIRTHYR, DEGREE, RC298, RC210, RACE  )

Coding

table(df_final$RC001)
## 
##    1    2    3    4    5    8    9 
##  576 2511 3119 2051  573    7    2
hist(df_final$RC001)

# Make general health
df_final$general_heath<-Recode(df_final$RC001, recodes="1:3='good';4:5='bad';8:9=NA; else= 'No'",as.factor=T)

# Make alzhaimer
table(df_final$RC272)
## 
##   -8    1    4    5    8 
##    7  129    3 8696    4
df_final$ALZHEIMERS<-Recode(df_final$RC272, recodes="1='Yes';4:5='No';-8=NA;8=NA; else= 'No'",as.factor=T)

df_final$PRESCRIPTION_MEMORYPROBLEM<-Recode(df_final$RC298, recodes="1='Yes';4:5='No';-8=NA;8=NA; else= 'No'",as.factor=T)

df_final$PRESCRIPTION_MEMORYPROBLEM1<-Recode(df_final$RC210, recodes="1='Yes';4:5='No';-8=NA;8=NA; else= 'No'",as.factor=T)

table(df_final$ALZHEIMERS, exclude = NULL)
## 
##   No  Yes <NA> 
## 8699  129   11
# Make DEMENTIA

table(df_final$RC273)
## 
##   -8    1    4    5    8    9 
##    5  227    7 8460   10    1
df_final$DEMENTIA<-Recode(df_final$RC273, recodes="1='Yes';4:5='No';-8=NA;8=NA;9=NA; else= 'No'",as.factor=T)

# make FALLEN

table(df_final$RC079)
## 
##   -8    1    5    8    9 
##    5 1734 3128    9    2
df_final$FALLEN<-Recode(df_final$RC079, recodes="1='Yes';5='No';-8=NA;8=NA;9=NA; else= 'No' ",as.factor=T)

table(df_final$FALLEN, exclude = NULL)
## 
##   No  Yes <NA> 
## 7089 1734   16
# number of fall

table(df_final$RC080)
## 
##  -8   0   1   2   3   4   5   6   7   8   9  10  11  12  15  18  20  24  25  30 
##   2   5 537 467 275 122  78  58  12  12   1  56   2  22  10   1  11   2   3   6 
##  35  40  48  50  98  99 
##   1   1   1   6  40   3
df_final$FALLEN_num<-Recode(df_final$RC080, recodes="NA=0;-8=NA",as.numeric=T)

table(df_final$FALLEN_num)
## 
##    0    1    2    3    4    5    6    7    8    9   10   11   12   15   18   20 
## 7110  537  467  275  122   78   58   12   12    1   56    2   22   10    1   11 
##   24   25   30   35   40   48   50   98   99 
##    2    3    6    1    1    1    6   40    3
hist(df_final$FALLEN_num)

# injury fall

table(df_final$RC081)
## 
##   -8    1    5    8 
##    1  531 1196    6
df_final$FALLEN_injury<-Recode(df_final$RC081, recodes="1='Yes';5='No';-8=NA;8=NA; else= 'No'",as.factor=T)


table(df_final$FALLEN_injury)
## 
##   No  Yes 
## 8301  531
# hip

table(df_final$RC082)
## 
##   -8    1    5    8    9 
##    1   59 4810    7    1
df_final$HIP<-Recode(df_final$RC082, recodes="1='Yes';5='No';-8=NA;8=NA;9=NA; else= 'No'",as.factor=T)

table(df_final$HIP)
## 
##   No  Yes 
## 8771   59
df_final %>% 
  select(general_heath, RC001)
## # A tibble: 8,839 × 2
##    general_heath RC001
##    <fct>         <dbl>
##  1 good              2
##  2 good              3
##  3 bad               4
##  4 bad               4
##  5 good              3
##  6 bad               4
##  7 good              3
##  8 good              2
##  9 good              2
## 10 good              3
## # … with 8,829 more rows
table(df_final$general_heath, exclude = NULL)
## 
##  bad good <NA> 
## 2624 6206    9
# Degree

df_final$DEGREE<-Recode(df_final$DEGREE, recodes="0='LTHS';1:2='HS'; else= 'COLACA'",as.factor=T)

table(df_final$DEGREE, exclude = NULL)
## 
## COLACA     HS   LTHS 
##   3520   3949   1370
df_final$RACE<-Recode(df_final$RACE, recodes="1='White';2='Black'; else= 'Other'",as.factor=T)

table(df_final$DEGREE, exclude = NULL)
## 
## COLACA     HS   LTHS 
##   3520   3949   1370

Code demography

# education 

table(df_final$GENDER, exclude = NULL)
## 
##    1    2 
## 4004 4835
df_final$GENDER<-Recode(df_final$GENDER, recodes="1='Male';2='Female'",as.factor=T)

# make age

df_final$Age<- 2022 - (df_final$BIRTHYR)

df_final %>% 
  select(BIRTHYR, Age)
## # A tibble: 8,839 × 2
##    BIRTHYR   Age
##      <dbl> <dbl>
##  1    1936    86
##  2    1941    81
##  3    1931    91
##  4    1940    82
##  5    1935    87
##  6    1941    81
##  7    1939    83
##  8    1938    84
##  9    1937    85
## 10    1940    82
## # … with 8,829 more rows
library(compareGroups)
resu1 <- compareGroups(~., data = df_final, 
    method = c(waist = 2))
## Warning in compareGroups.fit(X = X, y = y, include.label = include.label, :
## variables waist specified in 'method' not found
## Warning in compareGroups.fit(X = X, y = y, include.label = include.label, :
## Variables 'hhid' have been removed since some errors occurred
createTable(resu1)
## 
## --------Summary descriptives table ---------
## 
## _________________________________________________ 
##                                    [ALL]      N   
##                                    N=8839         
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## RATE HEALTH                     2.95 (1.03)  8839 
## EVER HAD ALZHEIMERS             4.93 (0.61)  8839 
## EVER HAD DEMENTIA               4.89 (0.72)  8710 
## FALLEN IN PAST TWO YEARS        3.57 (1.96)  4878 
## NUMBER TIMES FALLEN             5.69 (15.5)  1734 
## INJURY DUE TO FALL              3.78 (1.88)  1734 
## BROKEN HIP                      4.95 (0.49)  4878 
## GENDER:                                      8839 
##     Female                      4835 (54.7%)      
##     Male                        4004 (45.3%)      
## BIRTHDATE: YEAR                 1952 (10.1)  8839 
## DEGREE:                                      8839 
##     COLACA                      3520 (39.8%)      
##     HS                          3949 (44.7%)      
##     LTHS                        1370 (15.5%)      
## PRESCRIPTION FOR MEMORY PROBLEM 2.55 (1.98)  132  
## PRESCRIPTION FOR MEMORY PROBLEM 3.14 (2.10)  363  
## RACE:                                        8839 
##     Black                       2292 (25.9%)      
##     Other                       1175 (13.3%)      
##     White                       5372 (60.8%)      
## general_heath:                               8830 
##     bad                         2624 (29.7%)      
##     good                        6206 (70.3%)      
## ALZHEIMERS:                                  8828 
##     No                          8699 (98.5%)      
##     Yes                         129 (1.46%)       
## PRESCRIPTION_MEMORYPROBLEM:                  8838 
##     No                          8757 (99.1%)      
##     Yes                          81 (0.92%)       
## PRESCRIPTION_MEMORYPROBLEM1:                 8831 
##     No                          8658 (98.0%)      
##     Yes                         173 (1.96%)       
## DEMENTIA:                                    8823 
##     No                          8596 (97.4%)      
##     Yes                         227 (2.57%)       
## FALLEN:                                      8823 
##     No                          7089 (80.3%)      
##     Yes                         1734 (19.7%)      
## NUMBER TIMES FALLEN             1.12 (7.21)  8837 
## FALLEN_injury:                               8832 
##     No                          8301 (94.0%)      
##     Yes                         531 (6.01%)       
## HIP:                                         8830 
##     No                          8771 (99.3%)      
##     Yes                          59 (0.67%)       
## BIRTHDATE: YEAR                 70.5 (10.1)  8839 
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
xx<-df_final %>% 
  select(FALLEN, FALLEN_injury,FALLEN_num,DEMENTIA,ALZHEIMERS, PRESCRIPTION_MEMORYPROBLEM, PRESCRIPTION_MEMORYPROBLEM1, Age, GENDER,RACE,DEGREE )

table(xx$FALLEN, exclude = NULL)
## 
##   No  Yes <NA> 
## 7089 1734   16
y<-na.omit(xx)



library(table1)
## Warning: package 'table1' was built under R version 4.2.2
## 
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
## 
##     units, units<-
table1(~ FALLEN+FALLEN_injury+FALLEN_num+DEMENTIA+ALZHEIMERS+ PRESCRIPTION_MEMORYPROBLEM+ PRESCRIPTION_MEMORYPROBLEM1+ Age+ GENDER+RACE+DEGREE , data=y)
Overall
(N=8782)
FALLEN
No 7067 (80.5%)
Yes 1715 (19.5%)
FALLEN_injury
No 8256 (94.0%)
Yes 526 (6.0%)
NUMBER TIMES FALLEN
Mean (SD) 1.10 (7.08)
Median [Min, Max] 0 [0, 99.0]
DEMENTIA
No 8565 (97.5%)
Yes 217 (2.5%)
ALZHEIMERS
No 8654 (98.5%)
Yes 128 (1.5%)
PRESCRIPTION_MEMORYPROBLEM
No 8701 (99.1%)
Yes 81 (0.9%)
PRESCRIPTION_MEMORYPROBLEM1
No 8611 (98.1%)
Yes 171 (1.9%)
BIRTHDATE: YEAR
Mean (SD) 70.4 (10.1)
Median [Min, Max] 68.0 [37.0, 106]
GENDER
Female 4807 (54.7%)
Male 3975 (45.3%)
RACE
Black 2282 (26.0%)
Other 1169 (13.3%)
White 5331 (60.7%)
DEGREE
COLACA 3499 (39.8%)
HS 3919 (44.6%)
LTHS 1364 (15.5%)
df_final$FALLENNUM<-as.numeric(df_final$FALLEN)


df_final$FALLENNUM<-Recode(df_final$FALLENNUM, recodes="2=1;1=0",as.numeric=T)

#df_final <- df_final[complete.cases(df_final), ]


df_final %>% 
  select(FALLENNUM, FALLEN, ALZHEIMERS)
## # A tibble: 8,839 × 3
##    FALLENNUM FALLEN ALZHEIMERS
##        <dbl> <fct>  <fct>     
##  1         0 No     No        
##  2         0 No     No        
##  3         0 No     No        
##  4         0 No     No        
##  5         0 No     No        
##  6         0 No     No        
##  7         0 No     No        
##  8         0 No     No        
##  9         1 Yes    No        
## 10         0 No     No        
## # … with 8,829 more rows
#df_final$FALLENNUM<-as.numeric(df_final$FALLENNUM)
MODEL_FALL_UNADJ<- lm(FALLENNUM~ALZHEIMERS+DEMENTIA+PRESCRIPTION_MEMORYPROBLEM+PRESCRIPTION_MEMORYPROBLEM1, data = df_final)

summary(MODEL_FALL_UNADJ)
## 
## Call:
## lm(formula = FALLENNUM ~ ALZHEIMERS + DEMENTIA + PRESCRIPTION_MEMORYPROBLEM + 
##     PRESCRIPTION_MEMORYPROBLEM1, data = df_final)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5926 -0.1854 -0.1854 -0.1854  0.8146 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     0.185435   0.004279  43.336  < 2e-16 ***
## ALZHEIMERSYes                   0.303927   0.057518   5.284 1.29e-07 ***
## DEMENTIAYes                     0.168896   0.035155   4.804 1.58e-06 ***
## PRESCRIPTION_MEMORYPROBLEMYes  -0.003977   0.090088  -0.044   0.9648    
## PRESCRIPTION_MEMORYPROBLEM1Yes  0.107208   0.054007   1.985   0.0472 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3932 on 8786 degrees of freedom
##   (48 observations deleted due to missingness)
## Multiple R-squared:  0.01972,    Adjusted R-squared:  0.01927 
## F-statistic: 44.18 on 4 and 8786 DF,  p-value: < 2.2e-16
exp(coef(MODEL_FALL_UNADJ))
##                    (Intercept)                  ALZHEIMERSYes 
##                       1.203742                       1.355169 
##                    DEMENTIAYes  PRESCRIPTION_MEMORYPROBLEMYes 
##                       1.183996                       0.996031 
## PRESCRIPTION_MEMORYPROBLEM1Yes 
##                       1.113165
MODEL_FALL_ADJ<- lm(FALLENNUM~ALZHEIMERS+DEMENTIA+PRESCRIPTION_MEMORYPROBLEM+PRESCRIPTION_MEMORYPROBLEM1+Age+GENDER+DEGREE+RACE, data = df_final)

summary(MODEL_FALL_ADJ)
## 
## Call:
## lm(formula = FALLENNUM ~ ALZHEIMERS + DEMENTIA + PRESCRIPTION_MEMORYPROBLEM + 
##     PRESCRIPTION_MEMORYPROBLEM1 + Age + GENDER + DEGREE + RACE, 
##     data = df_final)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.89553 -0.19984 -0.07998  0.01131  0.90414 
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    -0.9404197  0.0284126 -33.099  < 2e-16 ***
## ALZHEIMERSYes                   0.1512884  0.0526933   2.871 0.004100 ** 
## DEMENTIAYes                     0.1083655  0.0321414   3.372 0.000751 ***
## PRESCRIPTION_MEMORYPROBLEMYes   0.0253505  0.0822860   0.308 0.758030    
## PRESCRIPTION_MEMORYPROBLEM1Yes  0.0146201  0.0493696   0.296 0.767134    
## Age                             0.0158757  0.0004072  38.986  < 2e-16 ***
## GENDERMale                     -0.0273950  0.0077361  -3.541 0.000400 ***
## DEGREEHS                        0.0115494  0.0085121   1.357 0.174873    
## DEGREELTHS                     -0.0035987  0.0117725  -0.306 0.759852    
## RACEOther                       0.0241940  0.0130313   1.857 0.063400 .  
## RACEWhite                       0.0289597  0.0092165   3.142 0.001683 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.359 on 8780 degrees of freedom
##   (48 observations deleted due to missingness)
## Multiple R-squared:  0.1833, Adjusted R-squared:  0.1824 
## F-statistic: 197.1 on 10 and 8780 DF,  p-value: < 2.2e-16
exp(coef(MODEL_FALL_ADJ))
##                    (Intercept)                  ALZHEIMERSYes 
##                      0.3904639                      1.1633321 
##                    DEMENTIAYes  PRESCRIPTION_MEMORYPROBLEMYes 
##                      1.1144550                      1.0256746 
## PRESCRIPTION_MEMORYPROBLEM1Yes                            Age 
##                      1.0147275                      1.0160024 
##                     GENDERMale                       DEGREEHS 
##                      0.9729769                      1.0116164 
##                     DEGREELTHS                      RACEOther 
##                      0.9964078                      1.0244891 
##                      RACEWhite 
##                      1.0293831
df_final$FALLEN_injuryNUM<-as.numeric(df_final$FALLEN_injury)


df_final$FALLEN_injuryNUM<-Recode(df_final$FALLEN_injuryNUM, recodes="2=1;1=0",as.numeric=T)

#df_final <- df_final[complete.cases(df_final), ]


df_final %>% 
  select(FALLEN_injuryNUM, FALLEN_injury, ALZHEIMERS)
## # A tibble: 8,839 × 3
##    FALLEN_injuryNUM FALLEN_injury ALZHEIMERS
##               <dbl> <fct>         <fct>     
##  1                0 No            No        
##  2                0 No            No        
##  3                0 No            No        
##  4                0 No            No        
##  5                0 No            No        
##  6                0 No            No        
##  7                0 No            No        
##  8                0 No            No        
##  9                0 No            No        
## 10                0 No            No        
## # … with 8,829 more rows
#df_final$FALLENNUM<-as.numeric(df_final$FALLENNUM)
MODEL_FALL_UNADJ<- lm(FALLEN_injuryNUM~ALZHEIMERS+DEMENTIA+PRESCRIPTION_MEMORYPROBLEM+PRESCRIPTION_MEMORYPROBLEM1, data = df_final)

summary(MODEL_FALL_UNADJ)
## 
## Call:
## lm(formula = FALLEN_injuryNUM ~ ALZHEIMERS + DEMENTIA + PRESCRIPTION_MEMORYPROBLEM + 
##     PRESCRIPTION_MEMORYPROBLEM1, data = df_final)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2469 -0.0543 -0.0543 -0.0543  0.9457 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    0.054300   0.002561  21.206  < 2e-16 ***
## ALZHEIMERSYes                  0.073359   0.034435   2.130   0.0332 *  
## DEMENTIAYes                    0.103180   0.021046   4.903 9.63e-07 ***
## PRESCRIPTION_MEMORYPROBLEMYes  0.045965   0.053933   0.852   0.3941    
## PRESCRIPTION_MEMORYPROBLEM1Yes 0.073289   0.032333   2.267   0.0234 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2354 on 8794 degrees of freedom
##   (40 observations deleted due to missingness)
## Multiple R-squared:  0.01452,    Adjusted R-squared:  0.01407 
## F-statistic: 32.39 on 4 and 8794 DF,  p-value: < 2.2e-16
exp(coef(MODEL_FALL_UNADJ))
##                    (Intercept)                  ALZHEIMERSYes 
##                       1.055802                       1.076117 
##                    DEMENTIAYes  PRESCRIPTION_MEMORYPROBLEMYes 
##                       1.108691                       1.047038 
## PRESCRIPTION_MEMORYPROBLEM1Yes 
##                       1.076041
MODEL_FALL_ADJ<- lm(FALLEN_injuryNUM~ALZHEIMERS+DEMENTIA+PRESCRIPTION_MEMORYPROBLEM+PRESCRIPTION_MEMORYPROBLEM1+Age+GENDER+DEGREE+RACE, data = df_final)

summary(MODEL_FALL_ADJ)
## 
## Call:
## lm(formula = FALLEN_injuryNUM ~ ALZHEIMERS + DEMENTIA + PRESCRIPTION_MEMORYPROBLEM + 
##     PRESCRIPTION_MEMORYPROBLEM1 + Age + GENDER + DEGREE + RACE, 
##     data = df_final)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.35317 -0.08564 -0.03928 -0.00922  0.99243 
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    -0.2917457  0.0181578 -16.067  < 2e-16 ***
## ALZHEIMERSYes                   0.0254275  0.0336934   0.755 0.450465    
## DEMENTIAYes                     0.0834422  0.0205519   4.060 4.95e-05 ***
## PRESCRIPTION_MEMORYPROBLEMYes   0.0528788  0.0526176   1.005 0.314942    
## PRESCRIPTION_MEMORYPROBLEM1Yes  0.0466076  0.0315686   1.476 0.139875    
## Age                             0.0049684  0.0002602  19.098  < 2e-16 ***
## GENDERMale                     -0.0318180  0.0049442  -6.435 1.30e-10 ***
## DEGREEHS                       -0.0050838  0.0054390  -0.935 0.349974    
## DEGREELTHS                     -0.0067200  0.0075251  -0.893 0.371873    
## RACEOther                       0.0259599  0.0083298   3.117 0.001836 ** 
## RACEWhite                       0.0197704  0.0058919   3.356 0.000795 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2296 on 8788 degrees of freedom
##   (40 observations deleted due to missingness)
## Multiple R-squared:  0.06338,    Adjusted R-squared:  0.06231 
## F-statistic: 59.47 on 10 and 8788 DF,  p-value: < 2.2e-16
exp(coef(MODEL_FALL_ADJ))
##                    (Intercept)                  ALZHEIMERSYes 
##                      0.7469585                      1.0257535 
##                    DEMENTIAYes  PRESCRIPTION_MEMORYPROBLEMYes 
##                      1.0870224                      1.0543018 
## PRESCRIPTION_MEMORYPROBLEM1Yes                            Age 
##                      1.0477108                      1.0049808 
##                     GENDERMale                       DEGREEHS 
##                      0.9686829                      0.9949291 
##                     DEGREELTHS                      RACEOther 
##                      0.9933025                      1.0262998 
##                      RACEWhite 
##                      1.0199671
MODEL_FALL_UNADJ<- lm(FALLEN_num~ALZHEIMERS+DEMENTIA+PRESCRIPTION_MEMORYPROBLEM+PRESCRIPTION_MEMORYPROBLEM1, data = df_final)

summary(MODEL_FALL_UNADJ)
## 
## Call:
## lm(formula = FALLEN_num ~ ALZHEIMERS + DEMENTIA + PRESCRIPTION_MEMORYPROBLEM + 
##     PRESCRIPTION_MEMORYPROBLEM1, data = df_final)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.170  -0.944  -0.944  -0.944  98.056 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     0.94419    0.07633  12.369  < 2e-16 ***
## ALZHEIMERSYes                   9.22602    1.02677   8.986  < 2e-16 ***
## DEMENTIAYes                     2.44951    0.62756   3.903 9.56e-05 ***
## PRESCRIPTION_MEMORYPROBLEMYes  -5.91527    1.60636  -3.682 0.000232 ***
## PRESCRIPTION_MEMORYPROBLEM1Yes  0.58456    0.96105   0.608 0.543035    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.02 on 8799 degrees of freedom
##   (35 observations deleted due to missingness)
## Multiple R-squared:  0.01507,    Adjusted R-squared:  0.01462 
## F-statistic: 33.66 on 4 and 8799 DF,  p-value: < 2.2e-16
exp(coef(MODEL_FALL_UNADJ))
##                    (Intercept)                  ALZHEIMERSYes 
##                   2.570726e+00                   1.015808e+04 
##                    DEMENTIAYes  PRESCRIPTION_MEMORYPROBLEMYes 
##                   1.158270e+01                   2.697940e-03 
## PRESCRIPTION_MEMORYPROBLEM1Yes 
##                   1.794202e+00
MODEL_FALL_ADJ<- lm(FALLEN_num~ALZHEIMERS+DEMENTIA+PRESCRIPTION_MEMORYPROBLEM+PRESCRIPTION_MEMORYPROBLEM1+Age+GENDER+DEGREE+RACE, data = df_final)

summary(MODEL_FALL_ADJ)
## 
## Call:
## lm(formula = FALLEN_num ~ ALZHEIMERS + DEMENTIA + PRESCRIPTION_MEMORYPROBLEM + 
##     PRESCRIPTION_MEMORYPROBLEM1 + Age + GENDER + DEGREE + RACE, 
##     data = df_final)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.826  -1.151  -0.478  -0.044  98.246 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    -5.043919   0.550989  -9.154  < 2e-16 ***
## ALZHEIMERSYes                   8.442300   1.022689   8.255  < 2e-16 ***
## DEMENTIAYes                     2.132225   0.623809   3.418 0.000634 ***
## PRESCRIPTION_MEMORYPROBLEMYes  -5.780542   1.595263  -3.624 0.000292 ***
## PRESCRIPTION_MEMORYPROBLEM1Yes  0.093093   0.955180   0.097 0.922363    
## Age                             0.085147   0.007895  10.785  < 2e-16 ***
## GENDERMale                     -0.141479   0.150035  -0.943 0.345723    
## DEGREEHS                       -0.126152   0.165052  -0.764 0.444699    
## DEGREELTHS                     -0.087076   0.228358  -0.381 0.702979    
## RACEOther                       0.072572   0.252804   0.287 0.774067    
## RACEWhite                       0.234162   0.178766   1.310 0.190272    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.969 on 8793 degrees of freedom
##   (35 observations deleted due to missingness)
## Multiple R-squared:  0.03002,    Adjusted R-squared:  0.02891 
## F-statistic: 27.21 on 10 and 8793 DF,  p-value: < 2.2e-16
exp(coef(MODEL_FALL_ADJ))
##                    (Intercept)                  ALZHEIMERSYes 
##                   6.448427e-03                   4.639212e+03 
##                    DEMENTIAYes  PRESCRIPTION_MEMORYPROBLEMYes 
##                   8.433607e+00                   3.087043e-03 
## PRESCRIPTION_MEMORYPROBLEM1Yes                            Age 
##                   1.097564e+00                   1.088877e+00 
##                     GENDERMale                       DEGREEHS 
##                   8.680738e-01                   8.814810e-01 
##                     DEGREELTHS                      RACEOther 
##                   9.166072e-01                   1.075270e+00 
##                      RACEWhite 
##                   1.263849e+00
library(compareGroups)
resu1 <- compareGroups(FALLEN~Age+GENDER+ALZHEIMERS+DEMENTIA+general_heath+FALLEN_num+HIP, data = df_final, 
    method = c(waist = 2))
## Warning in compareGroups.fit(X = X, y = y, include.label = include.label, :
## variables waist specified in 'method' not found
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
createTable(resu1)
## 
## --------Summary descriptives table by 'FALLEN'---------
## 
## _______________________________________________________ 
##                          No          Yes      p.overall 
##                        N=7089       N=1734              
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## BIRTHDATE: YEAR     68.3 (9.32)  79.0 (8.27)    0.000   
## GENDER:                                         0.002   
##     Female          3823 (53.9%) 1006 (58.0%)           
##     Male            3266 (46.1%) 728 (42.0%)            
## ALZHEIMERS:                                    <0.001   
##     No              7024 (99.2%) 1659 (95.8%)           
##     Yes              57 (0.80%)   72 (4.16%)            
## DEMENTIA:                                      <0.001   
##     No              6943 (98.1%) 1639 (94.7%)           
##     Yes             135 (1.91%)   91 (5.26%)            
## general_heath:                                 <0.001   
##     bad             1949 (27.5%) 670 (38.7%)            
##     good            5133 (72.5%) 1063 (61.3%)           
## NUMBER TIMES FALLEN 0.00 (0.00)  5.71 (15.5)   <0.001   
## HIP:                                           <0.001   
##     No              7076 (99.9%) 1679 (97.2%)           
##     Yes              10 (0.14%)   49 (2.84%)            
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
library(compareGroups)
resu1 <- compareGroups(~., data = df_final, 
    method = c(waist = 2))
## Warning in compareGroups.fit(X = X, y = y, include.label = include.label, :
## variables waist specified in 'method' not found
## Warning in compareGroups.fit(X = X, y = y, include.label = include.label, :
## Variables 'hhid' have been removed since some errors occurred
createTable(resu1)
## 
## --------Summary descriptives table ---------
## 
## _________________________________________________ 
##                                    [ALL]      N   
##                                    N=8839         
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## RATE HEALTH                     2.95 (1.03)  8839 
## EVER HAD ALZHEIMERS             4.93 (0.61)  8839 
## EVER HAD DEMENTIA               4.89 (0.72)  8710 
## FALLEN IN PAST TWO YEARS        3.57 (1.96)  4878 
## NUMBER TIMES FALLEN             5.69 (15.5)  1734 
## INJURY DUE TO FALL              3.78 (1.88)  1734 
## BROKEN HIP                      4.95 (0.49)  4878 
## GENDER:                                      8839 
##     Female                      4835 (54.7%)      
##     Male                        4004 (45.3%)      
## BIRTHDATE: YEAR                 1952 (10.1)  8839 
## DEGREE:                                      8839 
##     COLACA                      3520 (39.8%)      
##     HS                          3949 (44.7%)      
##     LTHS                        1370 (15.5%)      
## PRESCRIPTION FOR MEMORY PROBLEM 2.55 (1.98)  132  
## PRESCRIPTION FOR MEMORY PROBLEM 3.14 (2.10)  363  
## RACE:                                        8839 
##     Black                       2292 (25.9%)      
##     Other                       1175 (13.3%)      
##     White                       5372 (60.8%)      
## general_heath:                               8830 
##     bad                         2624 (29.7%)      
##     good                        6206 (70.3%)      
## ALZHEIMERS:                                  8828 
##     No                          8699 (98.5%)      
##     Yes                         129 (1.46%)       
## PRESCRIPTION_MEMORYPROBLEM:                  8838 
##     No                          8757 (99.1%)      
##     Yes                          81 (0.92%)       
## PRESCRIPTION_MEMORYPROBLEM1:                 8831 
##     No                          8658 (98.0%)      
##     Yes                         173 (1.96%)       
## DEMENTIA:                                    8823 
##     No                          8596 (97.4%)      
##     Yes                         227 (2.57%)       
## FALLEN:                                      8823 
##     No                          7089 (80.3%)      
##     Yes                         1734 (19.7%)      
## NUMBER TIMES FALLEN             1.12 (7.21)  8837 
## FALLEN_injury:                               8832 
##     No                          8301 (94.0%)      
##     Yes                         531 (6.01%)       
## HIP:                                         8830 
##     No                          8771 (99.3%)      
##     Yes                          59 (0.67%)       
## BIRTHDATE: YEAR                 70.5 (10.1)  8839 
## FALLENNUM                       0.20 (0.40)  8823 
## FALLEN_injuryNUM                0.06 (0.24)  8832 
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Compute the correlation matrix