© Ricardo Solar/UFMG - compartilhamento e utilizaĂ§Ă£o nĂ£o-comercial livres. NĂ£o reproduzir sem autorizaĂ§Ă£o > DOI: http://doi.org/10.5281/zenodo.7392285
AtĂ© agora, o que trabalhamos foram anĂ¡lises onde uma variĂ¡vel Y era confrontada contra variĂ¡veis (uma ou mais) X. A isso, damos o nome de anĂ¡lises univariadas. Nessa aula, mudaremos o foco, para anĂ¡lises onde temos muitas variĂ¡veis Y e ter ou nĂ£o variĂ¡veis X. A essas, damos o nome de anĂ¡lises multivariadas.
SĂ£o vĂ¡rias possibilidades, AnĂ¡lises de Componentes Principais, AnĂ¡lises de RedundĂ¢ncia, Componentes CanĂ´nicos, e por aĂ vai. Aqui irei passar por algumas dessas, mas certamente sem cobrir todas. A principal referĂªncia para anĂ¡lises multivariadas Ă© o livro Numerical Ecology de Legendre & Legendre. Caso vĂ¡ utilizar algumas dessas anĂ¡lises, nĂ£o deixe de consultar a referĂªncia.
Para essa anĂ¡lise, iremos usar dados de uma sĂ©rie de caracterĂsticas coletadas da expressĂ£o gĂªnica de microorganismos de dois grupos, quero entender como isso se agrupa.
setwd("~/Dropbox/UFMG/Disciplinas/R UFAC/Aulas/Multivar/")
dados <- read.table("dados_EC.txt", h=T, row.names = 1)
Agora vamos carregar os pacotes
library(vegan)
library(ggplot2)
library(factoextra)
library(ade4)
library(FactoMineR)
res.PCA <- FactoMineR::PCA(dados, scale.unit = T, graph = F, ncp=nrow(dados))
summary(res.PCA)
##
## Call:
## FactoMineR::PCA(X = dados, scale.unit = T, ncp = nrow(dados),
## graph = F)
##
##
## Eigenvalues
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7
## Variance 520.916 113.068 71.792 55.646 35.515 30.692 25.686
## % of var. 55.240 11.990 7.613 5.901 3.766 3.255 2.724
## Cumulative % of var. 55.240 67.231 74.844 80.745 84.511 87.766 90.489
## Dim.8 Dim.9 Dim.10 Dim.11 Dim.12 Dim.13
## Variance 22.194 19.125 15.059 12.359 11.684 9.262
## % of var. 2.354 2.028 1.597 1.311 1.239 0.982
## Cumulative % of var. 92.843 94.871 96.468 97.779 99.018 100.000
##
## Individuals (the 10 first)
## Dist Dim.1 ctr cos2 Dim.2 ctr cos2
## For0 | 41.442 | -34.327 16.157 0.686 | -7.958 4.001 0.037 |
## For24 | 25.450 | -16.809 3.874 0.436 | -6.467 2.642 0.065 |
## For48 | 21.533 | -12.391 2.105 0.331 | -8.568 4.638 0.158 |
## For72 | 24.558 | 12.489 2.139 0.259 | -10.217 6.595 0.173 |
## For96 | 27.522 | 8.165 0.914 0.088 | -16.403 16.997 0.355 |
## For120 | 31.481 | 27.109 10.077 0.742 | 4.179 1.103 0.018 |
## For144 | 41.651 | 29.874 12.238 0.514 | 20.534 26.636 0.243 |
## Mix0 | 44.611 | -38.573 20.402 0.748 | 14.513 13.306 0.106 |
## Mix24 | 34.171 | -23.077 7.302 0.456 | 14.787 13.812 0.187 |
## Mix48 | 23.964 | -19.690 5.316 0.675 | 4.037 1.030 0.028 |
## Dim.3 ctr cos2
## For0 -17.053 28.934 0.169 |
## For24 -5.064 2.551 0.040 |
## For48 -6.888 4.720 0.102 |
## For72 7.920 6.241 0.104 |
## For96 8.227 6.734 0.089 |
## For120 -3.918 1.528 0.015 |
## For144 -14.133 19.874 0.115 |
## Mix0 5.414 2.917 0.015 |
## Mix24 15.020 22.446 0.193 |
## Mix48 1.556 0.241 0.004 |
##
## Variables (the 10 first)
## Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr
## X1.1.1.1 | 0.943 0.171 0.889 | 0.209 0.039 0.044 | 0.146 0.029
## X1.1.1.100 | 0.925 0.164 0.856 | 0.086 0.007 0.007 | 0.230 0.074
## X1.1.1.103 | -0.882 0.149 0.778 | 0.377 0.126 0.142 | 0.180 0.045
## X1.1.1.127 | -0.726 0.101 0.527 | 0.137 0.017 0.019 | 0.308 0.132
## X1.1.1.130 | -0.547 0.057 0.299 | 0.506 0.226 0.256 | 0.476 0.315
## X1.1.1.169 | 0.784 0.118 0.614 | 0.568 0.286 0.323 | 0.019 0.001
## X1.1.1.17 | 0.821 0.129 0.674 | 0.367 0.119 0.135 | 0.400 0.223
## X1.1.1.18 | -0.869 0.145 0.755 | 0.448 0.178 0.201 | 0.123 0.021
## X1.1.1.193 | 0.924 0.164 0.854 | 0.241 0.052 0.058 | 0.103 0.015
## X1.1.1.205 | 0.771 0.114 0.594 | 0.261 0.060 0.068 | 0.106 0.016
## cos2
## X1.1.1.1 0.021 |
## X1.1.1.100 0.053 |
## X1.1.1.103 0.033 |
## X1.1.1.127 0.095 |
## X1.1.1.130 0.226 |
## X1.1.1.169 0.000 |
## X1.1.1.17 0.160 |
## X1.1.1.18 0.015 |
## X1.1.1.193 0.011 |
## X1.1.1.205 0.011 |
Uma das utilizações da PCA Ă© resumir muitas variĂ¡veis em seu primeiro eixo, e aĂ usar esse eixo como variĂ¡vel em anĂ¡lises univariadas. Como capturar esse eixo?
res.PCA$ind$coord[,1]
## For0 For24 For48 For72 For96 For120 For144
## -34.326732 -16.809292 -12.391342 12.489109 8.165240 27.108870 29.874279
## Mix0 Mix24 Mix48 Mix72 Mix96 Mix120 Mix144
## -38.573113 -23.076539 -19.689819 11.037095 6.297256 22.295580 27.599408
dimdesc(res.PCA, 1:13, proba = 0.01)
## $Dim.1
##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## X1.4.3.19 0.9863575 9.039070e-11
## X3.5.1.108 0.9850327 1.571746e-10
## X2.5.1.17 0.9837283 2.587644e-10
## X5.4.2.12 0.9830167 3.340097e-10
## X3.5.2.3 0.9809213 6.682965e-10
## X2.3.1.31 0.9765573 2.278362e-09
## X4.1.1.5 0.9747535 3.540667e-09
## X3.5.4.19 0.9735744 4.644346e-09
## X5.4.99.17 0.9725616 5.807264e-09
## X4.2.1.129 0.9725616 5.807264e-09
## X6.6.1.1 0.9720957 6.418057e-09
## X4.2.1.126 0.9705460 8.846871e-09
## X2.3.1.274 0.9686795 1.273900e-08
## X2.7.4.1 0.9662036 2.000104e-08
## X1.1.1.85 0.9659194 2.101863e-08
## X2.4.2.17 0.9657686 2.157583e-08
## X1.2.1.88 0.9639960 2.909724e-08
## X4.1.99.17 0.9635202 3.144961e-08
## X5.1.3.2 0.9632563 3.282062e-08
## X2.7.7.70 0.9629873 3.426907e-08
## X2.7.1.167 0.9629873 3.426907e-08
## X2.3.1.117 0.9629261 3.460551e-08
## X5.4.99.18 0.9628141 3.522885e-08
## X2.1.1.195 0.9625565 3.669828e-08
## X2.7.8.5 0.9624881 3.709666e-08
## X4.2.1.109 0.9620053 4.001338e-08
## X6.3.3.1 0.9619209 4.054213e-08
## X2.1.1.13 0.9612362 4.505021e-08
## X1.2.1.41 0.9593829 5.938012e-08
## X2.8.1.10 0.9591115 6.176473e-08
## X6.2.1.1 0.9585278 6.716150e-08
## X2.7.2.8 0.9582712 6.965540e-08
## X2.1.3.2 0.9580515 7.185026e-08
## X2.7.4.22 0.9572369 8.049581e-08
## X6.3.2.4 0.9570904 8.213856e-08
## X3.1.2.6 0.9562881 9.163436e-08
## X1.3.1.98 0.9558768 9.684358e-08
## X2.1.1.64 0.9551197 1.070748e-07
## X2.1.1.222 0.9551197 1.070748e-07
## X2.10.1.1 0.9539667 1.243634e-07
## X1.13.11.79 0.9538863 1.256500e-07
## X2.7.6.1 0.9533010 1.353559e-07
## X2.8.1.12 0.9528910 1.425160e-07
## X3.6.1.31 0.9527146 1.456918e-07
## X2.4.2.21 0.9516603 1.659185e-07
## X2.4.99.12 0.9510407 1.788533e-07
## X2.4.2.10 0.9503859 1.934172e-07
## X6.1.1.21 0.9503112 1.951403e-07
## X3.1.3.77 0.9501860 1.980538e-07
## X1.13.11.54 0.9498564 2.058986e-07
## X2.4.2.18 0.9495249 2.140480e-07
## X2.3.1.275 0.9489849 2.278919e-07
## X2.2.1.7 0.9483879 2.440488e-07
## X2.7.1.148 0.9478218 2.602352e-07
## X1.4.9.1 0.9473229 2.752250e-07
## X4.2.3.5 0.9469346 2.873802e-07
## X2.6.1.9 0.9468467 2.901925e-07
## X2.5.1.15 0.9465235 3.007275e-07
## X2.4.1.83 0.9465167 3.009540e-07
## X4.1.99.22 0.9464605 3.028187e-07
## X1.17.7.4 0.9459168 3.213599e-07
## X2.7.4.8 0.9456460 3.309406e-07
## X2.7.8.26 0.9450216 3.539327e-07
## X4.1.1.65 0.9441894 3.866120e-07
## X4.3.2.1 0.9441683 3.874723e-07
## X4.2.1.75 0.9441526 3.881149e-07
## X2.7.7.38 0.9439931 3.946731e-07
## X1.1.1.1 0.9429306 4.407574e-07
## X6.1.1.16 0.9428211 4.457482e-07
## X2.7.1.39 0.9425783 4.569833e-07
## X2.3.1.51 0.9415839 5.054649e-07
## X2.8.1.6 0.9410899 5.310856e-07
## X3.4.11.1 0.9410846 5.313645e-07
## X2.7.1.23 0.9409567 5.381750e-07
## X3.5.1.18 0.9409415 5.389857e-07
## X4.2.1.51 0.9408433 5.442724e-07
## X5.1.3.20 0.9407129 5.513488e-07
## X4.1.1.20 0.9406342 5.556623e-07
## X6.3.2.17 0.9396848 6.098814e-07
## X2.5.1.47 0.9391692 6.411156e-07
## X2.7.7.62 0.9386521 6.737495e-07
## X2.7.1.156 0.9386521 6.737495e-07
## X5.3.1.24 0.9373675 7.608108e-07
## X1.3.3.3 0.9372635 7.682411e-07
## X6.1.1.1 0.9371159 7.788991e-07
## X2.4.1.80 0.9357849 8.806184e-07
## X4.2.1.46 0.9355459 8.999974e-07
## X2.7.7.24 0.9345196 9.872467e-07
## X4.1.1.81 0.9344830 9.904836e-07
## X2.7.8.13 0.9341930 1.016438e-06
## X2.5.1.39 0.9336000 1.071241e-06
## X1.5.5.2 0.9332974 1.100136e-06
## X3.6.1.66 0.9319316 1.238676e-06
## X6.1.1.11 0.9318515 1.247226e-06
## X1.3.1.9 0.9310701 1.333239e-06
## X4.99.1.1 0.9307553 1.369239e-06
## X6.3.2.1 0.9298165 1.481394e-06
## X2.7.4.16 0.9290898 1.573320e-06
## X4.1.1.50 0.9285482 1.644858e-06
## X4.3.99.3 0.9281831 1.694566e-06
## X2.3.1.35 0.9279610 1.725402e-06
## X2.4.1.288 0.9276511 1.769219e-06
## X2.7.4.9 0.9273505 1.812577e-06
## X2.4.1.227 0.9270798 1.852374e-06
## X3.1.3.18 0.9269836 1.866696e-06
## X2.4.2.7 0.9267736 1.898258e-06
## X1.1.1.100 0.9250796 2.169328e-06
## X1.3.5.2 0.9250098 2.181148e-06
## X4.1.1.12 0.9248706 2.204874e-06
## X2.5.1.3 0.9248548 2.207580e-06
## X3.5.4.26 0.9238557 2.384388e-06
## X1.1.1.193 0.9238557 2.384388e-06
## X2.7.7.18 0.9236305 2.425798e-06
## X6.1.1.3 0.9230171 2.541638e-06
## X2.8.1.7 0.9227502 2.593425e-06
## X3.5.4.16 0.9223070 2.681372e-06
## X5.1.3.1 0.9221570 2.711688e-06
## X6.1.1.4 0.9220557 2.732303e-06
## X2.5.1.75 0.9218015 2.784657e-06
## X3.1.3.25 0.9213125 2.887651e-06
## X2.7.7.41 0.9211321 2.926445e-06
## X2.6.1.42 0.9211121 2.930760e-06
## X2.7.2.11 0.9209867 2.958004e-06
## X5.3.1.16 0.9209861 2.958140e-06
## X4.3.3.7 0.9202354 3.125632e-06
## X5.1.1.7 0.9196859 3.253102e-06
## X2.7.1.24 0.9196330 3.265611e-06
## X6.1.1.17 0.9190576 3.404094e-06
## X2.7.4.3 0.9187295 3.485186e-06
## X3.6.1.9 0.9181769 3.625382e-06
## X2.7.4.25 0.9180519 3.657721e-06
## X2.3.1.180 0.9169352 3.957353e-06
## X4.3.1.19 0.9160282 4.215340e-06
## X2.4.2.14 0.9159650 4.233806e-06
## X5.4.2.10 0.9156426 4.329118e-06
## X1.18.1.2 0.9154230 4.395043e-06
## X3.5.4.10 0.9147085 4.615257e-06
## X2.1.2.3 0.9145609 4.661864e-06
## X6.1.1.7 0.9140000 4.842515e-06
## X2.7.1.130 0.9138856 4.880031e-06
## X2.4.1.129 0.9127861 5.253217e-06
## X6.3.2.5 0.9123996 5.389815e-06
## X6.1.1.19 0.9122264 5.451970e-06
## X4.3.2.2 0.9120567 5.513434e-06
## X2.5.1.19 0.9118760 5.579539e-06
## X4.1.1.97 0.9117401 5.629671e-06
## X2.3.1.39 0.9115824 5.688279e-06
## X7.1.1.8 0.9108138 5.981287e-06
## X1.1.1.94 0.9106965 6.027085e-06
## X2.1.1.148 0.9106410 6.048821e-06
## X2.4.1.182 0.9105127 6.099401e-06
## X6.1.1.10 0.9102863 6.189465e-06
## X6.3.2.6 0.9096967 6.429147e-06
## X2.5.1.141 0.9092807 6.602780e-06
## X1.1.1.42 0.9088959 6.766824e-06
## X1.5.1.2 0.9064491 7.890137e-06
## X2.1.2.10 0.9064447 7.892303e-06
## X2.7.6.3 0.9057532 8.236162e-06
## X4.3.2.10 0.9052902 8.473193e-06
## X5.4.99.9 0.9047627 8.750033e-06
## X3.1.4.3 0.9039586 9.186293e-06
## X3.5.2.17 0.9034366 9.478958e-06
## X1.1.1.22 0.9032993 9.557197e-06
## X2.7.7.9 0.9031109 9.665363e-06
## X2.7.7.23 0.9019088 1.037974e-05
## X2.3.1.157 0.9019088 1.037974e-05
## X3.4.11.5 0.9011824 1.083200e-05
## X1.17.3.2 0.9007740 1.109330e-05
## X3.2.1.52 0.8998112 1.172981e-05
## X4.1.3.27 0.8988437 1.239924e-05
## X2.6.99.2 0.8982147 1.285107e-05
## X6.3.4.20 0.8978936 1.308687e-05
## X2.1.1.67 0.8972337 1.358257e-05
## X6.1.1.5 0.8967932 1.392197e-05
## X1.11.1.15 0.8948693 1.548680e-05
## X2.7.4.6 0.8942450 1.602446e-05
## X1.17.1.8 0.8942174 1.604863e-05
## X6.3.2.8 0.8940269 1.621591e-05
## X4.2.1.24 0.8939668 1.626897e-05
## X2.7.7.3 0.8931189 1.703298e-05
## X1.8.4.8 0.8927013 1.741996e-05
## X2.7.9.1 0.8905010 1.957956e-05
## X2.5.1.61 0.8892910 2.085748e-05
## X4.1.1.31 0.8877515 2.258143e-05
## X4.1.1.48 0.8873222 2.308229e-05
## X2.3.1.30 0.8868618 2.362961e-05
## X2.6.1.52 0.8863443 2.425741e-05
## X5.3.1.6 0.8862894 2.432483e-05
## X3.5.1.2 0.8860194 2.465850e-05
## X5.1.1.1 0.8852860 2.558377e-05
## X1.1.1.44 0.8838397 2.749176e-05
## X2.2.1.6 0.8825700 2.926124e-05
## X2.4.2.9 0.8804887 3.236241e-05
## X3.6.1.1 0.8800728 3.301322e-05
## X1.1.1.3 0.8797355 3.354877e-05
## X2.7.1.49 0.8791729 3.445786e-05
## X4.2.1.59 0.8784750 3.561349e-05
## X3.6.1.54 0.8783186 3.587688e-05
## X4.2.1.2 0.8756429 4.063270e-05
## X4.1.2.25 0.8755219 4.085953e-05
## X1.17.1.4 0.8721144 4.767932e-05
## X3.5.4.9 0.8719009 4.813566e-05
## X1.5.1.5 0.8719009 4.813566e-05
## X2.1.1.107 0.8703975 5.145141e-05
## X1.3.1.76 0.8701910 5.192103e-05
## X4.99.1.4 0.8701447 5.202673e-05
## X2.7.1.26 0.8690665 5.454012e-05
## X3.1.3.7 0.8686039 5.564851e-05
## X5.4.99.15 0.8676965 5.787579e-05
## X2.7.7.4 0.8670069 5.961640e-05
## X2.8.1.8 0.8669268 5.982137e-05
## X3.6.1.40 0.8666102 6.063695e-05
## X2.3.1.61 0.8661109 6.194163e-05
## X3.6.1.27 0.8659624 6.233420e-05
## X2.5.1.9 0.8657187 6.298250e-05
## X2.1.3.3 0.8642144 6.710761e-05
## X2.7.1.12 0.8640445 6.758684e-05
## X2.5.1.16 0.8639107 6.796639e-05
## X1.14.14.18 0.8631231 7.023551e-05
## X3.2.1.141 0.8617774 7.425538e-05
## X3.1.3.27 0.8615823 7.485341e-05
## X2.5.1.54 0.8609719 7.674950e-05
## X4.1.1.23 0.8607497 7.744942e-05
## X1.8.1.4 0.8592307 8.237484e-05
## X1.1.1.284 0.8589122 8.343908e-05
## X4.1.3.30 0.8579562 8.670124e-05
## X4.4.1.13 0.8567243 9.105695e-05
## X3.4.19.13 0.8559801 9.377321e-05
## X2.3.2.2 0.8559801 9.377321e-05
## X3.5.4.25 0.8550695 9.718627e-05
## X4.6.1.17 0.8546352 9.884927e-05
## X2.6.1.16 0.8537568 1.022832e-04
## X6.3.5.3 0.8535066 1.032789e-04
## X5.3.1.23 0.8518771 1.099584e-04
## X1.4.4.2 0.8498350 1.188201e-04
## X2.7.7.13 0.8490590 1.223359e-04
## X6.6.1.2 0.8466571 1.337569e-04
## X6.3.4.2 0.8466145 1.339670e-04
## X2.1.1.163 0.8465560 1.342560e-04
## X1.8.1.2 0.8462481 1.357852e-04
## X1.4.3.5 0.8450183 1.420345e-04
## X2.7.2.3 0.8421560 1.574868e-04
## X6.3.2.9 0.8400684 1.695938e-04
## X3.5.2.9 0.8394292 1.734483e-04
## X2.4.1.18 0.8393215 1.741044e-04
## X6.3.2.10 0.8390618 1.756955e-04
## X2.4.1.21 0.8377318 1.840287e-04
## X1.2.4.2 0.8374694 1.857099e-04
## X1.1.5.12 0.8370181 1.886307e-04
## X2.3.1.1 0.8367858 1.901479e-04
## X1.1.1.49 0.8361659 1.942471e-04
## X2.7.7.60 0.8359193 1.958974e-04
## X6.3.2.3 0.8303825 2.360462e-04
## X1.1.1.219 0.8301221 2.380869e-04
## X6.1.1.9 0.8300494 2.386586e-04
## X2.5.1.78 0.8292773 2.448044e-04
## X3.1.2.12 0.8288890 2.479428e-04
## X3.5.4.3 0.8288620 2.481630e-04
## X3.2.1.28 0.8283167 2.526282e-04
## X6.3.5.2 0.8269163 2.643957e-04
## X3.5.1.5 0.8257071 2.749086e-04
## X2.5.1.6 0.8238401 2.918019e-04
## X1.1.1.17 0.8208639 3.204570e-04
## X3.3.1.1 0.8192451 3.369703e-04
## X1.7.1.13 0.8191252 3.382199e-04
## X1.2.1.27 0.8184618 3.452026e-04
## X3.5.1.25 0.8175194 3.553221e-04
## X4.2.1.20 0.8164324 3.672900e-04
## X4.2.1.11 0.8164208 3.674199e-04
## X1.3.98.3 0.8157022 3.755105e-04
## X4.2.1.1 0.8149017 3.846924e-04
## X2.6.1.1 0.8147887 3.860036e-04
## X6.3.4.4 0.8128812 4.086739e-04
## X1.17.7.3 0.8106442 4.366137e-04
## X4.2.1.19 0.8105017 4.384452e-04
## X3.5.1.1 0.8099954 4.449996e-04
## X4.2.1.9 0.8098411 4.470122e-04
## X4.1.1.8 0.8093887 4.529563e-04
## X2.7.7.77 0.8093272 4.537695e-04
## X2.7.1.33 0.8089194 4.591896e-04
## X5.4.99.5 0.8086283 4.630913e-04
## X2.3.1.8 0.8066902 4.897505e-04
## X2.3.1.181 0.8064897 4.925761e-04
## X1.1.1.267 0.8036879 5.334709e-04
## X2.7.2.1 0.7999985 5.914362e-04
## X5.3.1.9 0.7988435 6.105868e-04
## X6.3.4.21 0.7984571 6.171035e-04
## X2.5.1.7 0.7984464 6.172854e-04
## X2.7.1.40 0.7962304 6.557531e-04
## X6.1.1.2 0.7957277 6.647405e-04
## X6.1.1.15 0.7936327 7.032702e-04
## X3.5.1.10 0.7922359 7.299405e-04
## X2.5.1.55 0.7889917 7.950148e-04
## X3.6.1.23 0.7873746 8.291417e-04
## X1.1.1.169 0.7836964 9.111448e-04
## X1.5.1.20 0.7827247 9.338540e-04
## X1.1.1.23 0.7816203 9.602148e-04
## X3.1.3.11 0.7812522 9.691306e-04
## X6.3.5.4 0.7793645 1.015904e-03
## X2.3.1.129 0.7782954 1.043182e-03
## X2.7.2.4 0.7762802 1.096190e-03
## X6.3.5.5 0.7747885 1.136795e-03
## X4.1.1.37 0.7732832 1.178979e-03
## X2.3.1.37 0.7729228 1.189260e-03
## X2.6.1.62 0.7725882 1.198871e-03
## X4.4.1.5 0.7715501 1.229081e-03
## X5.2.1.1 0.7709838 1.245815e-03
## X1.1.1.205 0.7708348 1.250247e-03
## X6.3.2.2 0.7675656 1.350720e-03
## X1.1.1.262 0.7619818 1.537117e-03
## X2.3.1.12 0.7593016 1.633566e-03
## X1.13.11.53 0.7575164 1.700428e-03
## X4.3.1.7 0.7563655 1.744676e-03
## X1.1.5.3 0.7547051 1.810118e-03
## X1.2.4.1 0.7543424 1.824666e-03
## X6.1.1.6 0.7333488 2.839085e-03
## X1.3.5.1 0.7327526 2.873289e-03
## X6.3.1.2 0.7279176 3.162846e-03
## X3.4.16.4 0.7244912 3.381602e-03
## X2.7.8.7 0.7218074 3.561126e-03
## X2.1.2.1 0.7205702 3.646358e-03
## X6.3.3.3 0.7169965 3.901603e-03
## X6.3.5.7 0.7165649 3.933356e-03
## X4.2.1.33 0.7131785 4.189583e-03
## X1.2.1.38 0.7050123 4.861429e-03
## X1.11.1.6 0.7023126 5.101132e-03
## X3.1.3.2 0.7016365 5.162587e-03
## X4.1.1.36 0.6943398 5.863294e-03
## X6.1.1.14 0.6874159 6.594705e-03
## X1.1.5.4 0.6832041 7.073121e-03
## X6.3.4.5 0.6807649 7.362261e-03
## X5.4.99.16 0.6776411 7.745844e-03
## X1.2.1.12 0.6743739 8.163436e-03
## X3.1.1.31 0.6701714 8.725952e-03
## X6.1.1.20 0.6695099 8.817155e-03
## X6.3.4.13 0.6683897 8.973276e-03
## X2.7.1.158 -0.6617301 9.946029e-03
## X2.4.2.22 -0.6693914 8.833569e-03
## X2.7.1.58 -0.6711147 8.597154e-03
## X1.1.1.350 -0.6800192 7.452461e-03
## X2.4.1.25 -0.6826380 7.139426e-03
## X3.4.11.23 -0.6854617 6.813445e-03
## X6.4.1.1 -0.6861312 6.737884e-03
## X2.4.1.12 -0.6866282 6.682209e-03
## X5.1.3.3 -0.6891285 6.407528e-03
## X4.1.99.19 -0.6899289 6.321486e-03
## X4.1.2.4 -0.6962187 5.676173e-03
## X1.14.11.8 -0.6971664 5.583579e-03
## X4.1.3.34 -0.6974513 5.555969e-03
## X2.7.1.6 -0.6985504 5.450468e-03
## X1.6.99.3 -0.7009672 5.223989e-03
## X2.7.7.12 -0.7050957 4.854166e-03
## X7.6.2.7 -0.7061177 4.765859e-03
## X1.17.1.9 -0.7080089 4.605777e-03
## X5.1.3.9 -0.7094652 4.485395e-03
## X1.5.99.12 -0.7098228 4.456216e-03
## X4.3.1.3 -0.7126710 4.229083e-03
## X2.1.2.13 -0.7132561 4.183571e-03
## X1.1.1.305 -0.7132561 4.183571e-03
## X3.6.1.29 -0.7139266 4.131885e-03
## X1.1.1.330 -0.7142998 4.103335e-03
## X4.2.1.104 -0.7150217 4.048545e-03
## X5.5.1.19 -0.7168853 3.909764e-03
## X2.4.1.16 -0.7170493 3.897735e-03
## X2.1.1.22 -0.7182100 3.813411e-03
## X1.1.1.127 -0.7261702 3.272968e-03
## X2.7.1.137 -0.7300981 3.029551e-03
## X3.7.1.12 -0.7315975 2.940484e-03
## X2.4.1.255 -0.7392540 2.517340e-03
## X5.3.2.3 -0.7394074 2.509386e-03
## X4.1.1.68 -0.7394721 2.506034e-03
## X3.2.2.5 -0.7434019 2.309119e-03
## X3.1.3.99 -0.7465959 2.158265e-03
## X4.3.3.6 -0.7470914 2.135581e-03
## X3.2.1.23 -0.7497281 2.018016e-03
## X4.4.1.21 -0.7518611 1.926721e-03
## X3.5.4.6 -0.7539130 1.842011e-03
## X1.1.1.336 -0.7565415 1.737850e-03
## X4.2.1.17 -0.7566341 1.734269e-03
## X1.1.1.35 -0.7566341 1.734269e-03
## X2.7.1.48 -0.7599762 1.608848e-03
## X1.1.1.93 -0.7616576 1.548538e-03
## X1.1.1.83 -0.7616576 1.548538e-03
## X1.13.11.1 -0.7619233 1.539174e-03
## X4.2.1.42 -0.7620773 1.533768e-03
## X2.7.1.198 -0.7622985 1.526028e-03
## X2.1.1.14 -0.7637617 1.475609e-03
## X1.3.1.12 -0.7641182 1.463530e-03
## X3.2.2.9 -0.7644533 1.452246e-03
## X4.2.1.48 -0.7658521 1.405890e-03
## X3.5.1.54 -0.7663452 1.389833e-03
## X4.2.1.147 -0.7672295 1.361405e-03
## X4.1.2.43 -0.7672295 1.361405e-03
## X5.5.1.4 -0.7674151 1.355498e-03
## X6.1.1.22 -0.7675854 1.350094e-03
## X5.3.1.8 -0.7681970 1.330833e-03
## X5.3.1.26 -0.7721951 1.210242e-03
## X4.1.2.13 -0.7725220 1.200779e-03
## X2.4.1.256 -0.7742137 1.152759e-03
## X1.3.8.8 -0.7744308 1.146708e-03
## X1.3.8.7 -0.7744308 1.146708e-03
## X1.13.11.15 -0.7755360 1.116299e-03
## X3.7.1.22 -0.7763224 1.095059e-03
## X2.8.1.4 -0.7773662 1.067365e-03
## X4.1.99.1 -0.7793964 1.015100e-03
## X4.2.1.70 -0.7802344 9.941307e-04
## X3.1.4.16 -0.7843889 8.952297e-04
## X3.1.3.6 -0.7843889 8.952297e-04
## X1.13.11.11 -0.7850804 8.795609e-04
## X2.7.1.208 -0.7858557 8.622556e-04
## X1.13.11.20 -0.7863032 8.523911e-04
## X4.1.1.22 -0.7864148 8.499468e-04
## X3.5.2.7 -0.7869195 8.389564e-04
## X2.7.1.21 -0.7879369 8.171445e-04
## X1.1.98.6 -0.7895945 7.825856e-04
## X1.5.1.7 -0.7904803 7.646026e-04
## X2.7.7.53 -0.7906355 7.614855e-04
## X2.7.7.5 -0.7906355 7.614855e-04
## X6.4.1.2 -0.7938017 7.000983e-04
## X4.2.1.68 -0.7940013 6.963645e-04
## X1.2.1.50 -0.7943792 6.893414e-04
## X6.2.1.20 -0.7952892 6.726616e-04
## X2.3.1.40 -0.7952892 6.726616e-04
## X2.7.1.17 -0.7953057 6.723631e-04
## X2.7.1.16 -0.7970763 6.408491e-04
## X4.2.1.44 -0.7977676 6.288707e-04
## X2.6.1.85 -0.7995484 5.988421e-04
## X3.5.99.7 -0.8032069 5.407578e-04
## X1.13.11.3 -0.8042388 5.252217e-04
## X2.3.1.199 -0.8085463 4.641946e-04
## X1.4.1.21 -0.8102480 4.417189e-04
## X1.11.1.9 -0.8108850 4.335353e-04
## X3.1.3.4 -0.8111591 4.300505e-04
## X1.5.1.36 -0.8114309 4.266183e-04
## X2.6.1.19 -0.8118645 4.211882e-04
## X5.3.1.30 -0.8136581 3.993144e-04
## X5.3.1.14 -0.8137632 3.980622e-04
## X5.3.3.4 -0.8141149 3.938928e-04
## X4.2.1.22 -0.8142150 3.927123e-04
## X4.1.3.17 -0.8145779 3.884573e-04
## X2.7.1.107 -0.8146015 3.881818e-04
## X4.4.1.17 -0.8150889 3.825298e-04
## X2.7.9.3 -0.8153774 3.792145e-04
## X4.3.1.17 -0.8182488 3.474702e-04
## X1.7.99.1 -0.8197815 3.314242e-04
## X2.7.1.197 -0.8208583 3.205126e-04
## X2.7.1.100 -0.8210390 3.187105e-04
## X2.7.1.166 -0.8213398 3.157284e-04
## X4.1.1.74 -0.8221591 3.077198e-04
## X3.1.2.14 -0.8233739 2.961485e-04
## X4.1.2.20 -0.8240258 2.900853e-04
## X2.3.1.16 -0.8249856 2.813409e-04
## X4.7.1.1 -0.8253468 2.781057e-04
## X5.3.3.14 -0.8269569 2.640481e-04
## X2.7.9.2 -0.8289650 2.473261e-04
## X1.14.13.9 -0.8292607 2.449376e-04
## X5.3.3.2 -0.8304928 2.351863e-04
## X2.3.1.5 -0.8310005 2.312600e-04
## X1.5.1.3 -0.8313708 2.284303e-04
## X3.2.1.1 -0.8315473 2.270920e-04
## X1.14.14.17 -0.8318461 2.248395e-04
## X3.2.1.39 -0.8319266 2.242355e-04
## X1.1.1.261 -0.8332954 2.141705e-04
## X2.7.1.29 -0.8333523 2.137598e-04
## X2.7.1.28 -0.8333523 2.137598e-04
## X2.6.1.13 -0.8334391 2.131351e-04
## X3.2.1.55 -0.8352060 2.007351e-04
## X5.1.3.14 -0.8361111 1.946127e-04
## X4.1.1.15 -0.8368779 1.895454e-04
## X1.1.1.38 -0.8370789 1.882347e-04
## X4.3.2.3 -0.8379229 1.828118e-04
## X1.13.11.63 -0.8379237 1.828070e-04
## X2.7.1.201 -0.8390383 1.758401e-04
## X2.6.1.82 -0.8394842 1.731139e-04
## X2.7.8.8 -0.8396468 1.721280e-04
## X3.1.3.89 -0.8406019 1.664307e-04
## X7.1.2.1 -0.8407890 1.653326e-04
## X3.5.4.5 -0.8411960 1.629639e-04
## X2.7.1.56 -0.8412299 1.627683e-04
## X2.7.11.24 -0.8421313 1.576255e-04
## X3.11.1.1 -0.8425604 1.552243e-04
## X1.14.99.46 -0.8427193 1.543426e-04
## X2.1.1.45 -0.8431840 1.517875e-04
## X2.6.1.87 -0.8435988 1.495359e-04
## X5.1.3.4 -0.8445103 1.446832e-04
## X3.5.3.26 -0.8456434 1.388296e-04
## X4.3.1.1 -0.8457100 1.384916e-04
## X2.7.4.24 -0.8459458 1.373005e-04
## X2.7.4.21 -0.8459458 1.373005e-04
## X4.3.1.18 -0.8467532 1.332841e-04
## X3.1.3.70 -0.8467672 1.332150e-04
## X4.2.1.84 -0.8499151 1.184619e-04
## X1.8.1.7 -0.8502411 1.170131e-04
## X1.13.11.57 -0.8514878 1.116048e-04
## X3.5.3.1 -0.8529220 1.056362e-04
## X1.4.1.14 -0.8544773 9.945960e-05
## X2.3.1.242 -0.8550199 9.737483e-05
## X4.2.1.49 -0.8558198 9.436686e-05
## X5.1.3.22 -0.8566551 9.130679e-05
## X4.1.1.21 -0.8575964 8.795543e-05
## X2.7.1.20 -0.8601551 7.934805e-05
## X1.5.1.42 -0.8604469 7.841181e-05
## X4.1.1.11 -0.8608277 7.720338e-05
## X1.2.1.72 -0.8613501 7.557025e-05
## X5.4.2.7 -0.8625262 7.199615e-05
## X3.2.1.3 -0.8625839 7.182442e-05
## X5.3.1.15 -0.8641127 6.739418e-05
## X5.4.3.8 -0.8662627 6.154263e-05
## X1.6.5.2 -0.8675909 5.813960e-05
## X4.4.1.15 -0.8676446 5.800524e-05
## X2.7.1.202 -0.8682829 5.642836e-05
## X2.4.1.109 -0.8689385 5.484505e-05
## X1.1.1.18 -0.8691518 5.433791e-05
## X2.4.2.3 -0.8697130 5.302147e-05
## X1.9.6.1 -0.8711758 4.971244e-05
## X3.6.1.63 -0.8715761 4.883686e-05
## X3.5.2.6 -0.8723160 4.725155e-05
## X2.7.1.1 -0.8726526 4.654433e-05
## X2.7.1.92 -0.8735598 4.468129e-05
## X2.3.1.29 -0.8738055 4.418736e-05
## X3.5.1.110 -0.8746675 4.248941e-05
## X4.2.1.8 -0.8750691 4.171674e-05
## X7.3.2.3 -0.8768778 3.837772e-05
## X3.5.4.4 -0.8772238 3.776445e-05
## X1.6.1.1 -0.8774378 3.738921e-05
## X1.2.1.71 -0.8775371 3.721624e-05
## X4.99.1.7 -0.8784222 3.570229e-05
## X3.5.3.11 -0.8784977 3.557552e-05
## X2.7.4.29 -0.8800374 3.306909e-05
## X4.1.1.17 -0.8806349 3.213617e-05
## X2.6.1.76 -0.8817077 3.051521e-05
## X1.1.1.103 -0.8822311 2.974900e-05
## X1.1.1.60 -0.8822750 2.968548e-05
## X4.2.3.3 -0.8827751 2.896934e-05
## X2.4.2.4 -0.8830053 2.864439e-05
## X1.2.1.95 -0.8833329 2.818721e-05
## X1.2.1.31 -0.8833329 2.818721e-05
## X1.1.99.3 -0.8842388 2.695398e-05
## X2.7.1.19 -0.8842525 2.693577e-05
## X2.7.8.11 -0.8844877 2.662306e-05
## X2.4.2.43 -0.8850090 2.594061e-05
## X2.7.4.23 -0.8854416 2.538513e-05
## X2.4.1.198 -0.8861383 2.451110e-05
## X3.1.1.11 -0.8867398 2.377642e-05
## X2.7.7.27 -0.8867790 2.372911e-05
## X2.7.7.1 -0.8881429 2.213240e-05
## X2.7.1.22 -0.8881429 2.213240e-05
## X1.7.2.3 -0.8883355 2.191424e-05
## X2.3.1.54 -0.8896905 2.042824e-05
## X3.5.3.4 -0.8899325 2.017172e-05
## X3.1.4.53 -0.8902392 1.985046e-05
## X5.3.3.1 -0.8906841 1.939188e-05
## X3.1.3.46 -0.8908371 1.923622e-05
## X2.7.1.105 -0.8908371 1.923622e-05
## X3.8.1.2 -0.8923829 1.771982e-05
## X2.9.1.1 -0.8929608 1.717860e-05
## X2.4.2.53 -0.8935473 1.664337e-05
## X2.3.1.251 -0.8946424 1.568050e-05
## X3.2.2.4 -0.8948889 1.547016e-05
## X2.7.1.89 -0.8953526 1.508079e-05
## X3.1.1.85 -0.8954936 1.496396e-05
## X4.6.1.1 -0.8967347 1.396755e-05
## X6.3.4.6 -0.8983249 1.277092e-05
## X2.3.1.243 -0.8993262 1.206163e-05
## X2.4.2.2 -0.9000059 1.159874e-05
## X2.4.2.15 -0.9000059 1.159874e-05
## X3.1.1.32 -0.9005049 1.126826e-05
## X4.2.2.3 -0.9005109 1.126434e-05
## X1.7.5.1 -0.9010476 1.091773e-05
## X2.3.1.15 -0.9019682 1.034344e-05
## X2.7.1.2 -0.9019802 1.033613e-05
## X3.6.1.22 -0.9025548 9.990637e-06
## X2.4.1.34 -0.9028335 9.826550e-06
## X2.5.1.48 -0.9029978 9.730814e-06
## X3.1.1.4 -0.9035061 9.439567e-06
## X3.1.3.1 -0.9045624 8.857068e-06
## X3.7.1.3 -0.9052040 8.517922e-06
## X2.2.1.2 -0.9060046 8.109711e-06
## X2.8.1.1 -0.9065047 7.863024e-06
## X1.1.1.290 -0.9067262 7.755730e-06
## X5.3.1.28 -0.9068371 7.702433e-06
## X3.5.1.16 -0.9068514 7.695599e-06
## X2.7.8.37 -0.9076892 7.303142e-06
## X2.7.1.35 -0.9102183 6.216718e-06
## X5.1.3.15 -0.9111817 5.839521e-06
## X3.1.3.71 -0.9112642 5.808132e-06
## X5.4.4.2 -0.9114366 5.742932e-06
## X4.1.1.19 -0.9123339 5.413316e-06
## X6.1.1.18 -0.9123574 5.404918e-06
## X4.1.3.38 -0.9130573 5.159057e-06
## X3.5.3.23 -0.9132711 5.085817e-06
## X1.5.1.38 -0.9145425 4.667698e-06
## X3.5.1.96 -0.9153562 4.415239e-06
## X3.1.5.1 -0.9160586 4.206475e-06
## X3.6.1.26 -0.9162346 4.155448e-06
## X3.1.3.45 -0.9162954 4.137948e-06
## X3.2.2.10 -0.9174975 3.804056e-06
## X4.1.3.40 -0.9181999 3.619457e-06
## X4.1.1.2 -0.9184328 3.559895e-06
## X4.3.2.7 -0.9204756 3.071209e-06
## X3.6.1.41 -0.9220872 2.725873e-06
## X2.4.2.1 -0.9225231 2.638190e-06
## X2.3.1.47 -0.9238985 2.376576e-06
## X3.1.4.14 -0.9251878 2.151108e-06
## X3.1.4.55 -0.9271104 1.847840e-06
## X3.6.1.67 -0.9272548 1.826571e-06
## X1.2.1.19 -0.9286100 1.636565e-06
## X2.1.1.197 -0.9287655 1.615834e-06
## X3.1.3.3 -0.9289288 1.594313e-06
## X3.2.1.18 -0.9329080 1.138267e-06
## X1.14.14.35 -0.9332053 1.109060e-06
## X2.7.1.11 -0.9346699 9.740528e-07
## X2.3.1.109 -0.9372952 7.659730e-07
## X1.11.1.21 -0.9382670 6.989357e-07
## X5.3.1.17 -0.9403603 5.708796e-07
## X6.2.1.5 -0.9433201 4.233742e-07
## X4.4.1.22 -0.9437024 4.068679e-07
## X4.1.3.1 -0.9450001 3.547460e-07
## X4.1.1.49 -0.9471148 2.816840e-07
## X4.1.1.98 -0.9506061 1.884139e-07
## X3.2.1.14 -0.9507492 1.852211e-07
## X3.1.3.5 -0.9521933 1.554210e-07
## X3.1.3.16 -0.9532668 1.359408e-07
## X1.2.1.70 -0.9537002 1.286710e-07
## X2.7.11.1 -0.9569792 8.340344e-08
## X2.3.3.9 -0.9656985 2.183893e-08
## X2.4.1.1 -0.9721372 6.361569e-09
## X1.1.1.37 -0.9819205 4.849743e-10
##
## $Dim.2
##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## X3.5.3.6 0.8601962 7.921576e-05
## X1.7.1.7 0.8535198 1.032265e-04
## X5.3.1.5 0.7895116 7.842840e-04
## X4.2.1.40 0.7893065 7.885040e-04
## X4.2.1.79 0.7824831 9.395713e-04
## X2.4.2.8 0.7714821 1.231080e-03
## X1.14.14.9 0.7691478 1.301324e-03
## X2.2.1.9 0.7670449 1.367299e-03
## X4.1.2.40 0.7575038 1.700910e-03
## X2.7.1.121 0.7374315 2.613396e-03
## X5.4.2.11 0.7174603 3.867707e-03
## X5.3.1.12 0.7070682 4.684872e-03
## X6.3.1.20 0.7048206 4.878155e-03
## X4.2.99.20 0.7025096 5.083333e-03
## X5.3.1.4 0.6999280 5.320455e-03
## X5.1.2.1 0.6997837 5.333960e-03
## X2.7.1.5 0.6981454 5.489162e-03
## X4.1.2.4 0.6906993 6.239508e-03
## X2.3.3.10 0.6853644 6.824483e-03
## X6.3.1.1 0.6812364 7.305674e-03
## X4.2.1.28 0.6803264 7.415197e-03
## X4.1.3.34 0.6785723 7.629915e-03
## X6.2.1.26 0.6782364 7.671588e-03
## X4.1.3.36 0.6766450 7.871369e-03
## X3.2.1.93 0.6745025 8.146676e-03
## X4.2.1.82 0.6694270 8.828636e-03
## X2.7.1.6 0.6658784 9.331047e-03
##
## $Dim.3
##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## X1.4.3.16 0.8129398 0.0004079614
## X3.5.1.9 0.7319602 0.0029192503
## X1.14.14.5 0.7213816 0.0035902819
## X1.7.3.3 -0.6715300 0.0085409128
## X4.1.1.33 -0.6808482 0.0073522390
## X3.5.2.5 -0.7009573 0.0052248979
## X2.7.1.36 -0.7012513 0.0051978551
## X2.7.4.2 -0.7036652 0.0049799129
## X1.1.1.34 -0.7584431 0.0016654531
## X1.3.3.4 -0.8287927 0.0002487262
##
## $Dim.4
##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## X1.2.1.10 0.8768865 3.836207e-05
## X4.1.3.39 0.8226401 3.030952e-04
## X3.5.1.53 0.7652214 1.426644e-03
## X3.1.3.8 0.7541918 1.830735e-03
## X3.4.24.84 0.7532285 1.869936e-03
## X4.1.1.96 0.7323790 2.894887e-03
## X3.5.3.12 0.7306520 2.996403e-03
## X2.3.1.222 0.6921813 6.084153e-03
## X5.5.1.6 0.6694845 8.820669e-03
## X7.2.4.2 0.6693768 8.835587e-03
## X2.7.1.168 0.6654312 9.395892e-03
## X2.4.1.131 -0.7939307 6.976837e-04
##
## $Dim.5
##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## X1.1.1.304 0.7941401 0.0006937783
## X6.2.1.30 0.7922376 0.0007299072
## X2.7.2.2 0.7623588 0.0015239238
## X5.3.3.18 0.7546109 0.0018138865
## X1.14.13.149 0.7284427 0.0031303363
## X2.3.1.184 0.7233703 0.0034556960
## X3.3.2.12 0.7221321 0.0035390130
## X1.2.1.91 0.7221321 0.0035390130
## X7.1.1.2 0.7066539 0.0047200418
## X2.1.1.152 0.6975600 0.0055454690
## X3.5.4.44 0.6901872 0.0062939083
## X3.5.1.125 0.6901872 0.0062939083
## X1.1.1.271 -0.6711547 0.0085917231
##
## $Dim.6
##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## X2.4.1.11 0.7699630 0.001276440
## X3.1.4.4 0.7554848 0.001779147
## X3.2.1.31 0.6671284 0.009151613
## X1.14.18.1 0.6618508 0.009927715
##
## $Dim.7
##
## $Dim.8
##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## X2.3.1.41 -0.7042035 0.004932296
## X2.7.7.81 -0.7113610 0.004332393
##
## $Dim.9
##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## X1.7.2.4 -0.8117398 4.227441e-04
## X3.5.99.6 -0.8632770 6.978751e-05
##
## $Dim.10
##
## $Dim.11
##
## $Dim.12
##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## X5.4.4.4 0.7680254 0.001336213
## X4.2.1.127 0.7680254 0.001336213
##
## $Dim.13
fviz_eig(res.PCA)
##Biplot - visualizando os padrões gerais
fviz_pca_biplot(res.PCA,
col.var = "#4C9900", # Variables color
alpha.var=.1,
col.ind = "#696969", # Individuals color
label = "ind"
)
fviz_pca_var(res.PCA,
col.var = "contrib", # Color by contributions to the PC
alpha.var = .5,
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
label="none",
repel = TRUE # Avoid text overlapping
)
varieties <- rownames(dados)
varieties[grep(pattern = "For", x = varieties)] <- "Forastero"
varieties[grep(pattern = "Mix", x = varieties)] <- "Hybrid"
varieties <- as.factor(varieties)
fviz_pca_ind(res.PCA,
col.ind = varieties, # color by groups
palette = c("#FF3333", "#4C9900"),
addEllipses = TRUE, # Concentration ellipses
ellipse.type = "confidence",
legend.title = "Groups",
repel = TRUE
)
dados2 <- decostand(dados, method = "hel")
NMDS <- metaMDS(dados2, k=2, trymax = 10000, trace = F)
NMDS
##
## Call:
## metaMDS(comm = dados2, k = 2, trymax = 10000, trace = F)
##
## global Multidimensional Scaling using monoMDS
##
## Data: dados2
## Distance: bray
##
## Dimensions: 2
## Stress: 0.03089656
## Stress type 1, weak ties
## Best solution was repeated 1 time in 20 tries
## The best solution was from try 20 (random start)
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'dados2'
library(data.table)
df <- data.table(mds1=NMDS$points[,1], mds2=NMDS$points[,2], groups=varieties)
hulls <- df[,.SD[chull(mds1, mds2)], by=groups]
ggplot(df, aes(x=mds1, y=mds2))+
geom_polygon(data=hulls, aes(colour=groups), linetype=3, linewidth=2, alpha=0)+
geom_point(shape=21, aes(fill=groups), alpha=.9, size=4)+
scale_fill_manual(values=c("#FF3333", "#4C9900"))+
scale_colour_manual(values=c("#FF3333", "#4C9900"))+
theme_classic()+
theme(legend.position="bottom", legend.title=element_blank())+
scale_x_continuous("NMDS1")+
scale_y_continuous("NMDS2")+
theme(text = element_text(size=20),axis.text.x = element_text(vjust=1, colour="black"), axis.text.y=element_text(colour="black"))
permanova <- adonis2(dados2~varieties, permutations = 999)
permanova
Para essa anĂ¡lise, vamos seguir o exemplo contido no link: https://r.qcbs.ca/workshop10/book-en/redundancy-analysis.html
setwd("~/Dropbox/UFMG/Disciplinas/R UFAC/Aulas/Multivar/")
spe <- read.csv("data_spe.csv", row.names = 1)
(remove <- which(rowSums(spe)==0)) ## a linha 8 possui 0 indivuduos
## 8
## 8
which(colSums(spe)==0)
## named integer(0)
spe <- spe[-remove, ] #cuidado, esse comando sĂ³ pode ser rodado uma vez
env <- read.csv("data_env.csv", row.names = 1)
env <- env[-remove, ] # remover a linha equivlente que tinha 0 indivĂduos. #cuidado, esse comando sĂ³ pode ser rodado uma vez
Os dados de espĂ©cies possuem muitos zeros (e isso Ă© bem comum!), portanto precisamos padronizar isso. É recomendado usar a transformaĂ§Ă£o de Hellinger
spe.hel <- decostand(spe, method = "hellinger")
Os dados ambientais possuem muitas variĂ¡veis, precisamos conferir a correlaĂ§Ă£o entre elas antes de simplemente colocar no modelo.
col<- colorRampPalette(c("blue", "white", "red"))(20)
heatmap(x = cor(env), col = col, symm = TRUE)
Outra opĂ§Ă£o pra visualizar Ă©
psych::pairs.panels(env)
library(corrplot)
## corrplot 0.92 loaded
correlacao <- cor(env)
corrplot(correlacao, type = "upper", method="color", tl.col = "black", tl.srt = 45)
ou ainda
col <- colorRampPalette(c("#BB4444", "#EE9988", "#FFFFFF", "#77AADD", "#4477AA"))
corrplot(correlacao, method="color", col=col(200),
type="upper", order="hclust",
addCoef.col = "black", # Add coefficient of correlation
tl.col="black", tl.srt=45, #Text label color and rotation
# Combine with significance
#p.mat = p.mat, sig.level = 0.01, insig = "blank",
# hide correlation coefficient on the principal diagonal
diag=FALSE
)
HĂ¡ mesmo muitas correlações, principalmente da variĂ¡vel das.
Como as variĂ¡veis foram medidas em escalas diferentes, vamos tambĂ©m usar a funĂ§Ă£o decostand, na opĂ§Ă£o standardize. Isso colocarĂ¡ todos os dados com mĂ©dia 0 e 1 unidade de desvio padrĂ£o.
env.z <- decostand(env, method = "standardize")
Nossos dados estĂ£o prontos agora! Podemos ir para as anĂ¡lises.
A primeira coisa que faremos Ă© remover a variĂ¡vel das do conjunto de ambientais, pois ela era muito correlacionada.
env.z <- subset(env.z, select = -das)
Agora podemos rodar a RDA
spe.rda <- vegan::rda(spe.hel ~ ., data = env.z)
summary(spe.rda)
##
## Call:
## rda(formula = spe.hel ~ alt + pen + deb + pH + dur + pho + nit + amm + oxy + dbo, data = env.z)
##
## Partitioning of variance:
## Inertia Proportion
## Total 0.5025 1.0000
## Constrained 0.3689 0.7341
## Unconstrained 0.1336 0.2659
##
## Eigenvalues, and their contribution to the variance
##
## Importance of components:
## RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 RDA7
## Eigenvalue 0.2280 0.05442 0.03382 0.03008 0.007487 0.005662 0.004429
## Proportion Explained 0.4538 0.10829 0.06730 0.05986 0.014898 0.011268 0.008814
## Cumulative Proportion 0.4538 0.56208 0.62938 0.68924 0.704136 0.715404 0.724218
## RDA8 RDA9 RDA10 PC1 PC2 PC3
## Eigenvalue 0.002811 0.001381 0.0007926 0.04642 0.02072 0.01746
## Proportion Explained 0.005595 0.002747 0.0015773 0.09238 0.04123 0.03474
## Cumulative Proportion 0.729812 0.732560 0.7341370 0.82652 0.86775 0.90249
## PC4 PC5 PC6 PC7 PC8 PC9
## Eigenvalue 0.01325 0.009738 0.005882 0.005122 0.003998 0.003030
## Proportion Explained 0.02637 0.019379 0.011705 0.010192 0.007956 0.006031
## Cumulative Proportion 0.92886 0.948235 0.959940 0.970132 0.978088 0.984118
## PC10 PC11 PC12 PC13 PC14 PC15
## Eigenvalue 0.003004 0.001809 0.001111 0.0007554 0.0005616 0.0003469
## Proportion Explained 0.005979 0.003601 0.002211 0.0015033 0.0011177 0.0006904
## Cumulative Proportion 0.990097 0.993698 0.995909 0.9974126 0.9985302 0.9992206
## PC16 PC17 PC18
## Eigenvalue 0.0002483 0.0001113 3.200e-05
## Proportion Explained 0.0004942 0.0002216 6.367e-05
## Cumulative Proportion 0.9997148 0.9999363 1.000e+00
##
## Accumulated constrained eigenvalues
## Importance of components:
## RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 RDA7
## Eigenvalue 0.2280 0.05442 0.03382 0.03008 0.007487 0.005662 0.004429
## Proportion Explained 0.6181 0.14751 0.09167 0.08154 0.020294 0.015348 0.012006
## Cumulative Proportion 0.6181 0.76563 0.85730 0.93884 0.959135 0.974483 0.986489
## RDA8 RDA9 RDA10
## Eigenvalue 0.002811 0.001381 0.0007926
## Proportion Explained 0.007621 0.003742 0.0021485
## Cumulative Proportion 0.994109 0.997851 1.0000000
##
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores: 1.93676
##
##
## Species scores
##
## RDA1 RDA2 RDA3 RDA4 RDA5 RDA6
## CHA 0.13165 0.103011 -0.0172558 -0.235893 0.0185193 0.0221025
## TRU 0.61829 -0.009587 0.2863218 0.077981 -0.0002929 -0.0131230
## VAI 0.49901 0.142765 -0.1999345 0.007029 -0.0636477 -0.0078160
## LOC 0.38975 0.147620 -0.2235978 0.083310 -0.0225081 -0.0273493
## OMB 0.13328 0.096119 0.0001608 -0.235474 0.0128430 0.0517589
## BLA 0.06656 0.109572 -0.0033336 -0.197116 0.0177164 0.0144250
## HOT -0.17138 0.072625 0.0081007 -0.008591 0.0210074 -0.0642826
## TOX -0.12546 0.160816 0.0106627 -0.036292 -0.0339079 -0.0913475
## VAN -0.08405 0.049425 -0.0640432 0.010129 -0.0167668 0.0175047
## CHE -0.09596 -0.131741 -0.1808882 -0.055352 0.0899699 0.0234751
## BAR -0.17993 0.209024 0.0358096 -0.070651 0.0008568 -0.0277178
## SPI -0.15536 0.157851 0.0244009 -0.011114 -0.0325750 -0.0354818
## GOU -0.20180 0.040027 -0.0448392 -0.008890 -0.0611972 0.0341513
## BRO -0.10105 0.049146 -0.0458356 0.088503 -0.0871574 0.0677310
## PER -0.08819 0.121087 -0.0470900 0.078629 0.0029062 -0.0046711
## BOU -0.20490 0.161262 0.0451044 0.018169 -0.0156914 -0.0015366
## PSO -0.22974 0.109603 0.0186218 0.011661 0.0353251 -0.0343478
## ROT -0.16703 0.004211 0.0067925 0.036803 -0.0579586 0.0680597
## CAR -0.17610 0.143517 0.0343842 0.011121 0.0032877 -0.0023979
## TAN -0.13246 0.127994 -0.0721057 0.109027 0.0556198 0.0135747
## BCO -0.18787 0.117043 0.0487394 0.036248 0.0208310 0.0313117
## PCH -0.15067 0.080058 0.0486948 0.043339 0.0352494 0.0689095
## GRE -0.31191 0.014095 0.0221539 0.022690 -0.0243663 0.0367353
## GAR -0.31230 -0.147197 -0.1318943 0.039348 0.0484994 -0.0380365
## BBO -0.24208 0.087370 0.0391560 0.034379 0.0541665 -0.0004277
## ABL -0.42821 -0.222422 0.0093609 -0.129619 -0.1121364 -0.0448125
## ANG -0.19192 0.140604 0.0437442 0.026061 -0.0061464 0.0152905
##
##
## Site scores (weighted sums of species scores)
##
## RDA1 RDA2 RDA3 RDA4 RDA5 RDA6
## 1 0.37844 -0.442557 1.59911 0.30334 0.46115 -0.25749
## 2 0.53342 -0.049571 0.29691 0.38382 -0.39592 -0.57773
## 3 0.49530 -0.002279 0.11568 0.47364 -0.78826 -0.18505
## 4 0.33905 0.068384 -0.22978 0.57718 -0.42387 0.33957
## 5 0.02915 -0.139350 -0.42917 0.59397 -0.10125 0.90793
## 6 0.24982 -0.039579 -0.48199 0.55767 0.13076 0.20562
## 7 0.46641 -0.103929 -0.03475 0.32290 -0.00367 -0.33237
## 9 0.04700 -0.460097 -0.94060 0.21229 1.66756 -0.35924
## 10 0.31973 -0.093408 -0.54293 0.17722 -0.15664 0.10771
## 11 0.48065 -0.059751 0.07611 -0.43913 0.31005 0.27861
## 12 0.49138 -0.007440 0.08033 -0.42912 0.30341 0.21058
## 13 0.49512 0.130955 0.32688 -0.77176 0.05047 0.35593
## 14 0.38259 0.195124 0.07180 -0.81039 -0.06477 0.78140
## 15 0.28843 0.209962 -0.13684 -0.71171 0.48053 0.59234
## 16 0.09251 0.402933 -0.15653 -0.29350 0.09074 -0.57845
## 17 -0.04899 0.439567 -0.10316 -0.38402 -0.31709 -1.11824
## 18 -0.13742 0.411818 -0.14279 -0.34491 -0.30152 -0.80436
## 19 -0.27608 0.338417 -0.28964 0.04886 -0.48681 -0.82121
## 20 -0.39384 0.241715 -0.10316 0.14589 -0.27614 -0.49014
## 21 -0.42776 0.287579 0.03588 0.21015 -0.21387 -0.02561
## 22 -0.46704 0.238834 0.12674 0.20246 0.19915 0.11553
## 23 -0.28260 -1.149481 -0.12838 -0.48779 0.28642 -0.86898
## 24 -0.41270 -0.776354 0.08746 -0.33354 0.28123 -0.76408
## 25 -0.35666 -0.783183 -0.06170 -0.17147 -1.30623 1.09559
## 26 -0.46994 0.089229 0.09813 0.21223 0.05933 0.43001
## 27 -0.47143 0.201319 0.13869 0.22378 0.15968 0.34418
## 28 -0.47461 0.215861 0.16878 0.23445 0.26274 0.42397
## 29 -0.37633 0.361804 0.23635 0.04817 0.02847 0.38919
## 30 -0.49359 0.273478 0.32258 0.24933 0.06437 0.60480
##
##
## Site constraints (linear combinations of constraining variables)
##
## RDA1 RDA2 RDA3 RDA4 RDA5 RDA6
## 1 0.41231 -0.45736 1.56906 0.34354 0.35943 -0.22075
## 2 0.31314 0.10276 0.01801 0.76326 -0.70324 -0.36076
## 3 0.41049 -0.06321 0.06766 0.45134 -0.25281 -0.02163
## 4 0.48360 0.09233 -0.28711 0.29452 -0.17537 0.19245
## 5 0.21275 -0.42735 -0.45514 0.38930 0.44928 0.09188
## 6 0.44590 -0.08797 -0.20162 0.39627 -0.22763 0.03749
## 7 0.53727 -0.10880 -0.23699 0.04252 0.26659 0.34671
## 9 0.00102 -0.26564 -0.62973 0.49900 0.62755 0.06921
## 10 0.16369 -0.07428 -0.10940 0.13792 0.22241 -0.27954
## 11 0.28729 0.23709 -0.09670 -0.27933 0.06708 0.37308
## 12 0.35181 0.14358 -0.02901 -0.39937 -0.17428 -0.22636
## 13 0.37325 0.09016 -0.02348 -0.62517 0.13077 -0.03310
## 14 0.40151 0.12475 -0.01469 -0.65953 0.13897 0.30526
## 15 0.22403 0.19534 0.18512 -0.55368 0.18183 0.35594
## 16 -0.03859 0.28753 -0.20130 -0.14582 0.07060 -0.27681
## 17 -0.07706 0.19775 -0.07859 -0.14387 -0.13673 -0.41621
## 18 -0.06413 0.28495 -0.08054 -0.17853 -0.19815 -0.16840
## 19 -0.02162 0.33081 0.01905 -0.24040 -0.25759 -0.01630
## 20 -0.21554 0.36432 0.05030 -0.07898 -0.43632 -0.60826
## 21 -0.34579 0.27751 -0.06366 0.05747 0.02923 -0.53057
## 22 -0.30009 0.10181 0.04606 -0.17520 0.34122 -0.46261
## 23 -0.19234 -1.01335 0.04965 -0.64236 -0.14117 -0.20203
## 24 -0.54202 -0.62155 -0.18969 -0.08445 0.56631 -0.36670
## 25 -0.41201 -0.89130 -0.08746 -0.13763 -1.12836 0.50266
## 26 -0.47949 0.03614 -0.17840 0.25266 0.15681 0.52018
## 27 -0.60917 0.15381 0.11602 0.25456 0.15037 -0.22326
## 28 -0.51332 0.39541 0.10506 0.17547 -0.03491 0.27941
## 29 -0.35142 0.33911 0.30796 0.16149 -0.11210 0.52228
## 30 -0.45546 0.25568 0.42956 0.12500 0.22022 0.81674
##
##
## Biplot scores for constraining variables
##
## RDA1 RDA2 RDA3 RDA4 RDA5 RDA6
## alt 0.8238 -0.19241 -0.01107 0.5161 0.06677 -0.06716
## pen 0.3419 -0.24900 0.76492 0.2271 0.20827 -0.12943
## deb -0.7791 0.22211 0.18513 -0.2494 -0.07930 0.38639
## pH 0.1026 0.16266 0.03127 -0.3149 0.14558 0.27883
## dur -0.5694 0.07369 -0.27232 -0.5483 0.18946 0.37711
## pho -0.4954 -0.65447 -0.07321 -0.2187 -0.42190 0.27002
## nit -0.7764 -0.20419 -0.04923 -0.2592 -0.40011 0.06754
## amm -0.4766 -0.68868 -0.08148 -0.1807 -0.47825 0.08957
## oxy 0.7630 0.53393 0.25890 -0.2119 0.04726 -0.12851
## dbo -0.5191 -0.78586 -0.13145 -0.1546 -0.17626 0.08252
# Forward selection of variables:
fwd.sel <- ordiR2step(rda(spe.hel ~ 1, data = env.z), # limite inferior do modelo (modelo nulo)
scope = formula(spe.rda), # limite superior do modelo (o modelo "completo")
direction = "forward",
R2scope = TRUE, # nĂ£o pode superar o R2 do modelo "completo"
pstep = 1000,
trace = TRUE) # se Ă© TRUE, vejo o processo passo a passo
## Step: R2.adj= 0
## Call: spe.hel ~ 1
##
## R2.adjusted
## <All variables> 0.58643531
## + alt 0.30317903
## + oxy 0.27664565
## + deb 0.26284719
## + nit 0.25885656
## + dbo 0.16253018
## + dur 0.14287362
## + pho 0.13366338
## + amm 0.12940835
## + pen 0.07071011
## <none> 0.00000000
## + pH -0.01877893
##
## Df AIC F Pr(>F)
## + alt 1 -28.504 13.182 0.002 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: R2.adj= 0.303179
## Call: spe.hel ~ alt
##
## R2.adjusted
## <All variables> 0.5864353
## + oxy 0.4530243
## + dbo 0.4034321
## + amm 0.3755280
## + pho 0.3708315
## + nit 0.3462991
## + pen 0.3371717
## + deb 0.3121070
## + dur 0.3116743
## <none> 0.3031790
## + pH 0.2990327
##
## Df AIC F Pr(>F)
## + oxy 1 -34.62 8.3967 0.002 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: R2.adj= 0.4530243
## Call: spe.hel ~ alt + oxy
##
## R2.adjusted
## <All variables> 0.5864353
## + dbo 0.5401552
## + pho 0.5117625
## + amm 0.5028443
## + pen 0.5006494
## + dur 0.4712537
## + deb 0.4647864
## <none> 0.4530243
## + nit 0.4476588
## + pH 0.4392323
##
## Df AIC F Pr(>F)
## + dbo 1 -38.789 5.9264 0.002 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: R2.adj= 0.5401552
## Call: spe.hel ~ alt + oxy + dbo
##
## R2.adjusted
## + pen 0.5947636
## <All variables> 0.5864353
## + dur 0.5621437
## + deb 0.5474307
## <none> 0.5401552
## + pho 0.5372307
## + amm 0.5339205
## + nit 0.5338362
## + pH 0.5296165
Quais variĂ¡veis foram retidas no modelo?
fwd.sel$call
## rda(formula = spe.hel ~ alt + oxy + dbo, data = env.z)
Esse Ă© o novo modelo, com as variĂ¡veis que foram retidas na seleĂ§Ă£o, temos que reescrever esse novo modelo para prosseguir
spe.rda.signif <- rda(spe.hel ~ alt + oxy + dbo, data = env.z)
# verifique o R2 ajustado (corrigido para o nĂºmero de variĂ¡veis explicativas)
RsquareAdj(spe.rda.signif)
## $r.squared
## [1] 0.5894243
##
## $adj.r.squared
## [1] 0.5401552
significĂ¢ncia do modelo
anova.cca(spe.rda.signif, step = 1000)
significĂ¢ncia dos termos
anova.cca(spe.rda.signif, step = 1000, by = "term")
library(ggvegan)
autoplot(spe.rda.signif)