© Ricardo Solar/UFMG - compartilhamento e utilizaĂ§Ă£o nĂ£o-comercial livres. NĂ£o reproduzir sem autorizaĂ§Ă£o > DOI: http://doi.org/10.5281/zenodo.7392285

AtĂ© agora, o que trabalhamos foram anĂ¡lises onde uma variĂ¡vel Y era confrontada contra variĂ¡veis (uma ou mais) X. A isso, damos o nome de anĂ¡lises univariadas. Nessa aula, mudaremos o foco, para anĂ¡lises onde temos muitas variĂ¡veis Y e ter ou nĂ£o variĂ¡veis X. A essas, damos o nome de anĂ¡lises multivariadas.

SĂ£o vĂ¡rias possibilidades, AnĂ¡lises de Componentes Principais, AnĂ¡lises de RedundĂ¢ncia, Componentes CanĂ´nicos, e por aĂ­ vai. Aqui irei passar por algumas dessas, mas certamente sem cobrir todas. A principal referĂªncia para anĂ¡lises multivariadas Ă© o livro Numerical Ecology de Legendre & Legendre. Caso vĂ¡ utilizar algumas dessas anĂ¡lises, nĂ£o deixe de consultar a referĂªncia.

1 AnĂ¡lise de Componentes Principais (PCA)

Para essa anĂ¡lise, iremos usar dados de uma sĂ©rie de caracterĂ­sticas coletadas da expressĂ£o gĂªnica de microorganismos de dois grupos, quero entender como isso se agrupa.

1.1 Carregamento dos dados

setwd("~/Dropbox/UFMG/Disciplinas/R UFAC/Aulas/Multivar/")
dados <- read.table("dados_EC.txt", h=T, row.names = 1)

Agora vamos carregar os pacotes

library(vegan)
library(ggplot2)
library(factoextra)
library(ade4)
library(FactoMineR)

1.2 Montagem do modelo de PCA

res.PCA <- FactoMineR::PCA(dados, scale.unit = T, graph = F, ncp=nrow(dados))

summary(res.PCA)
## 
## Call:
## FactoMineR::PCA(X = dados, scale.unit = T, ncp = nrow(dados),  
##      graph = F) 
## 
## 
## Eigenvalues
##                        Dim.1   Dim.2   Dim.3   Dim.4   Dim.5   Dim.6   Dim.7
## Variance             520.916 113.068  71.792  55.646  35.515  30.692  25.686
## % of var.             55.240  11.990   7.613   5.901   3.766   3.255   2.724
## Cumulative % of var.  55.240  67.231  74.844  80.745  84.511  87.766  90.489
##                        Dim.8   Dim.9  Dim.10  Dim.11  Dim.12  Dim.13
## Variance              22.194  19.125  15.059  12.359  11.684   9.262
## % of var.              2.354   2.028   1.597   1.311   1.239   0.982
## Cumulative % of var.  92.843  94.871  96.468  97.779  99.018 100.000
## 
## Individuals (the 10 first)
##                   Dist     Dim.1     ctr    cos2     Dim.2     ctr    cos2  
## For0         |  41.442 | -34.327  16.157   0.686 |  -7.958   4.001   0.037 |
## For24        |  25.450 | -16.809   3.874   0.436 |  -6.467   2.642   0.065 |
## For48        |  21.533 | -12.391   2.105   0.331 |  -8.568   4.638   0.158 |
## For72        |  24.558 |  12.489   2.139   0.259 | -10.217   6.595   0.173 |
## For96        |  27.522 |   8.165   0.914   0.088 | -16.403  16.997   0.355 |
## For120       |  31.481 |  27.109  10.077   0.742 |   4.179   1.103   0.018 |
## For144       |  41.651 |  29.874  12.238   0.514 |  20.534  26.636   0.243 |
## Mix0         |  44.611 | -38.573  20.402   0.748 |  14.513  13.306   0.106 |
## Mix24        |  34.171 | -23.077   7.302   0.456 |  14.787  13.812   0.187 |
## Mix48        |  23.964 | -19.690   5.316   0.675 |   4.037   1.030   0.028 |
##                Dim.3     ctr    cos2  
## For0         -17.053  28.934   0.169 |
## For24         -5.064   2.551   0.040 |
## For48         -6.888   4.720   0.102 |
## For72          7.920   6.241   0.104 |
## For96          8.227   6.734   0.089 |
## For120        -3.918   1.528   0.015 |
## For144       -14.133  19.874   0.115 |
## Mix0           5.414   2.917   0.015 |
## Mix24         15.020  22.446   0.193 |
## Mix48          1.556   0.241   0.004 |
## 
## Variables (the 10 first)
##                 Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3    ctr
## X1.1.1.1     |  0.943  0.171  0.889 |  0.209  0.039  0.044 |  0.146  0.029
## X1.1.1.100   |  0.925  0.164  0.856 |  0.086  0.007  0.007 |  0.230  0.074
## X1.1.1.103   | -0.882  0.149  0.778 |  0.377  0.126  0.142 |  0.180  0.045
## X1.1.1.127   | -0.726  0.101  0.527 |  0.137  0.017  0.019 |  0.308  0.132
## X1.1.1.130   | -0.547  0.057  0.299 |  0.506  0.226  0.256 |  0.476  0.315
## X1.1.1.169   |  0.784  0.118  0.614 |  0.568  0.286  0.323 |  0.019  0.001
## X1.1.1.17    |  0.821  0.129  0.674 |  0.367  0.119  0.135 |  0.400  0.223
## X1.1.1.18    | -0.869  0.145  0.755 |  0.448  0.178  0.201 |  0.123  0.021
## X1.1.1.193   |  0.924  0.164  0.854 |  0.241  0.052  0.058 |  0.103  0.015
## X1.1.1.205   |  0.771  0.114  0.594 |  0.261  0.060  0.068 |  0.106  0.016
##                cos2  
## X1.1.1.1      0.021 |
## X1.1.1.100    0.053 |
## X1.1.1.103    0.033 |
## X1.1.1.127    0.095 |
## X1.1.1.130    0.226 |
## X1.1.1.169    0.000 |
## X1.1.1.17     0.160 |
## X1.1.1.18     0.015 |
## X1.1.1.193    0.011 |
## X1.1.1.205    0.011 |

1.3 Eixos da PCA

Uma das utilizações da PCA Ă© resumir muitas variĂ¡veis em seu primeiro eixo, e aĂ­ usar esse eixo como variĂ¡vel em anĂ¡lises univariadas. Como capturar esse eixo?

res.PCA$ind$coord[,1]
##       For0      For24      For48      For72      For96     For120     For144 
## -34.326732 -16.809292 -12.391342  12.489109   8.165240  27.108870  29.874279 
##       Mix0      Mix24      Mix48      Mix72      Mix96     Mix120     Mix144 
## -38.573113 -23.076539 -19.689819  11.037095   6.297256  22.295580  27.599408

1.4 CorrelaĂ§Ă£o entre as variĂ¡veis e todos os eixos do PCA

dimdesc(res.PCA, 1:13, proba = 0.01)
## $Dim.1
## 
## Link between the variable and the continuous variables (R-square)
## =================================================================================
##             correlation      p.value
## X1.4.3.19     0.9863575 9.039070e-11
## X3.5.1.108    0.9850327 1.571746e-10
## X2.5.1.17     0.9837283 2.587644e-10
## X5.4.2.12     0.9830167 3.340097e-10
## X3.5.2.3      0.9809213 6.682965e-10
## X2.3.1.31     0.9765573 2.278362e-09
## X4.1.1.5      0.9747535 3.540667e-09
## X3.5.4.19     0.9735744 4.644346e-09
## X5.4.99.17    0.9725616 5.807264e-09
## X4.2.1.129    0.9725616 5.807264e-09
## X6.6.1.1      0.9720957 6.418057e-09
## X4.2.1.126    0.9705460 8.846871e-09
## X2.3.1.274    0.9686795 1.273900e-08
## X2.7.4.1      0.9662036 2.000104e-08
## X1.1.1.85     0.9659194 2.101863e-08
## X2.4.2.17     0.9657686 2.157583e-08
## X1.2.1.88     0.9639960 2.909724e-08
## X4.1.99.17    0.9635202 3.144961e-08
## X5.1.3.2      0.9632563 3.282062e-08
## X2.7.7.70     0.9629873 3.426907e-08
## X2.7.1.167    0.9629873 3.426907e-08
## X2.3.1.117    0.9629261 3.460551e-08
## X5.4.99.18    0.9628141 3.522885e-08
## X2.1.1.195    0.9625565 3.669828e-08
## X2.7.8.5      0.9624881 3.709666e-08
## X4.2.1.109    0.9620053 4.001338e-08
## X6.3.3.1      0.9619209 4.054213e-08
## X2.1.1.13     0.9612362 4.505021e-08
## X1.2.1.41     0.9593829 5.938012e-08
## X2.8.1.10     0.9591115 6.176473e-08
## X6.2.1.1      0.9585278 6.716150e-08
## X2.7.2.8      0.9582712 6.965540e-08
## X2.1.3.2      0.9580515 7.185026e-08
## X2.7.4.22     0.9572369 8.049581e-08
## X6.3.2.4      0.9570904 8.213856e-08
## X3.1.2.6      0.9562881 9.163436e-08
## X1.3.1.98     0.9558768 9.684358e-08
## X2.1.1.64     0.9551197 1.070748e-07
## X2.1.1.222    0.9551197 1.070748e-07
## X2.10.1.1     0.9539667 1.243634e-07
## X1.13.11.79   0.9538863 1.256500e-07
## X2.7.6.1      0.9533010 1.353559e-07
## X2.8.1.12     0.9528910 1.425160e-07
## X3.6.1.31     0.9527146 1.456918e-07
## X2.4.2.21     0.9516603 1.659185e-07
## X2.4.99.12    0.9510407 1.788533e-07
## X2.4.2.10     0.9503859 1.934172e-07
## X6.1.1.21     0.9503112 1.951403e-07
## X3.1.3.77     0.9501860 1.980538e-07
## X1.13.11.54   0.9498564 2.058986e-07
## X2.4.2.18     0.9495249 2.140480e-07
## X2.3.1.275    0.9489849 2.278919e-07
## X2.2.1.7      0.9483879 2.440488e-07
## X2.7.1.148    0.9478218 2.602352e-07
## X1.4.9.1      0.9473229 2.752250e-07
## X4.2.3.5      0.9469346 2.873802e-07
## X2.6.1.9      0.9468467 2.901925e-07
## X2.5.1.15     0.9465235 3.007275e-07
## X2.4.1.83     0.9465167 3.009540e-07
## X4.1.99.22    0.9464605 3.028187e-07
## X1.17.7.4     0.9459168 3.213599e-07
## X2.7.4.8      0.9456460 3.309406e-07
## X2.7.8.26     0.9450216 3.539327e-07
## X4.1.1.65     0.9441894 3.866120e-07
## X4.3.2.1      0.9441683 3.874723e-07
## X4.2.1.75     0.9441526 3.881149e-07
## X2.7.7.38     0.9439931 3.946731e-07
## X1.1.1.1      0.9429306 4.407574e-07
## X6.1.1.16     0.9428211 4.457482e-07
## X2.7.1.39     0.9425783 4.569833e-07
## X2.3.1.51     0.9415839 5.054649e-07
## X2.8.1.6      0.9410899 5.310856e-07
## X3.4.11.1     0.9410846 5.313645e-07
## X2.7.1.23     0.9409567 5.381750e-07
## X3.5.1.18     0.9409415 5.389857e-07
## X4.2.1.51     0.9408433 5.442724e-07
## X5.1.3.20     0.9407129 5.513488e-07
## X4.1.1.20     0.9406342 5.556623e-07
## X6.3.2.17     0.9396848 6.098814e-07
## X2.5.1.47     0.9391692 6.411156e-07
## X2.7.7.62     0.9386521 6.737495e-07
## X2.7.1.156    0.9386521 6.737495e-07
## X5.3.1.24     0.9373675 7.608108e-07
## X1.3.3.3      0.9372635 7.682411e-07
## X6.1.1.1      0.9371159 7.788991e-07
## X2.4.1.80     0.9357849 8.806184e-07
## X4.2.1.46     0.9355459 8.999974e-07
## X2.7.7.24     0.9345196 9.872467e-07
## X4.1.1.81     0.9344830 9.904836e-07
## X2.7.8.13     0.9341930 1.016438e-06
## X2.5.1.39     0.9336000 1.071241e-06
## X1.5.5.2      0.9332974 1.100136e-06
## X3.6.1.66     0.9319316 1.238676e-06
## X6.1.1.11     0.9318515 1.247226e-06
## X1.3.1.9      0.9310701 1.333239e-06
## X4.99.1.1     0.9307553 1.369239e-06
## X6.3.2.1      0.9298165 1.481394e-06
## X2.7.4.16     0.9290898 1.573320e-06
## X4.1.1.50     0.9285482 1.644858e-06
## X4.3.99.3     0.9281831 1.694566e-06
## X2.3.1.35     0.9279610 1.725402e-06
## X2.4.1.288    0.9276511 1.769219e-06
## X2.7.4.9      0.9273505 1.812577e-06
## X2.4.1.227    0.9270798 1.852374e-06
## X3.1.3.18     0.9269836 1.866696e-06
## X2.4.2.7      0.9267736 1.898258e-06
## X1.1.1.100    0.9250796 2.169328e-06
## X1.3.5.2      0.9250098 2.181148e-06
## X4.1.1.12     0.9248706 2.204874e-06
## X2.5.1.3      0.9248548 2.207580e-06
## X3.5.4.26     0.9238557 2.384388e-06
## X1.1.1.193    0.9238557 2.384388e-06
## X2.7.7.18     0.9236305 2.425798e-06
## X6.1.1.3      0.9230171 2.541638e-06
## X2.8.1.7      0.9227502 2.593425e-06
## X3.5.4.16     0.9223070 2.681372e-06
## X5.1.3.1      0.9221570 2.711688e-06
## X6.1.1.4      0.9220557 2.732303e-06
## X2.5.1.75     0.9218015 2.784657e-06
## X3.1.3.25     0.9213125 2.887651e-06
## X2.7.7.41     0.9211321 2.926445e-06
## X2.6.1.42     0.9211121 2.930760e-06
## X2.7.2.11     0.9209867 2.958004e-06
## X5.3.1.16     0.9209861 2.958140e-06
## X4.3.3.7      0.9202354 3.125632e-06
## X5.1.1.7      0.9196859 3.253102e-06
## X2.7.1.24     0.9196330 3.265611e-06
## X6.1.1.17     0.9190576 3.404094e-06
## X2.7.4.3      0.9187295 3.485186e-06
## X3.6.1.9      0.9181769 3.625382e-06
## X2.7.4.25     0.9180519 3.657721e-06
## X2.3.1.180    0.9169352 3.957353e-06
## X4.3.1.19     0.9160282 4.215340e-06
## X2.4.2.14     0.9159650 4.233806e-06
## X5.4.2.10     0.9156426 4.329118e-06
## X1.18.1.2     0.9154230 4.395043e-06
## X3.5.4.10     0.9147085 4.615257e-06
## X2.1.2.3      0.9145609 4.661864e-06
## X6.1.1.7      0.9140000 4.842515e-06
## X2.7.1.130    0.9138856 4.880031e-06
## X2.4.1.129    0.9127861 5.253217e-06
## X6.3.2.5      0.9123996 5.389815e-06
## X6.1.1.19     0.9122264 5.451970e-06
## X4.3.2.2      0.9120567 5.513434e-06
## X2.5.1.19     0.9118760 5.579539e-06
## X4.1.1.97     0.9117401 5.629671e-06
## X2.3.1.39     0.9115824 5.688279e-06
## X7.1.1.8      0.9108138 5.981287e-06
## X1.1.1.94     0.9106965 6.027085e-06
## X2.1.1.148    0.9106410 6.048821e-06
## X2.4.1.182    0.9105127 6.099401e-06
## X6.1.1.10     0.9102863 6.189465e-06
## X6.3.2.6      0.9096967 6.429147e-06
## X2.5.1.141    0.9092807 6.602780e-06
## X1.1.1.42     0.9088959 6.766824e-06
## X1.5.1.2      0.9064491 7.890137e-06
## X2.1.2.10     0.9064447 7.892303e-06
## X2.7.6.3      0.9057532 8.236162e-06
## X4.3.2.10     0.9052902 8.473193e-06
## X5.4.99.9     0.9047627 8.750033e-06
## X3.1.4.3      0.9039586 9.186293e-06
## X3.5.2.17     0.9034366 9.478958e-06
## X1.1.1.22     0.9032993 9.557197e-06
## X2.7.7.9      0.9031109 9.665363e-06
## X2.7.7.23     0.9019088 1.037974e-05
## X2.3.1.157    0.9019088 1.037974e-05
## X3.4.11.5     0.9011824 1.083200e-05
## X1.17.3.2     0.9007740 1.109330e-05
## X3.2.1.52     0.8998112 1.172981e-05
## X4.1.3.27     0.8988437 1.239924e-05
## X2.6.99.2     0.8982147 1.285107e-05
## X6.3.4.20     0.8978936 1.308687e-05
## X2.1.1.67     0.8972337 1.358257e-05
## X6.1.1.5      0.8967932 1.392197e-05
## X1.11.1.15    0.8948693 1.548680e-05
## X2.7.4.6      0.8942450 1.602446e-05
## X1.17.1.8     0.8942174 1.604863e-05
## X6.3.2.8      0.8940269 1.621591e-05
## X4.2.1.24     0.8939668 1.626897e-05
## X2.7.7.3      0.8931189 1.703298e-05
## X1.8.4.8      0.8927013 1.741996e-05
## X2.7.9.1      0.8905010 1.957956e-05
## X2.5.1.61     0.8892910 2.085748e-05
## X4.1.1.31     0.8877515 2.258143e-05
## X4.1.1.48     0.8873222 2.308229e-05
## X2.3.1.30     0.8868618 2.362961e-05
## X2.6.1.52     0.8863443 2.425741e-05
## X5.3.1.6      0.8862894 2.432483e-05
## X3.5.1.2      0.8860194 2.465850e-05
## X5.1.1.1      0.8852860 2.558377e-05
## X1.1.1.44     0.8838397 2.749176e-05
## X2.2.1.6      0.8825700 2.926124e-05
## X2.4.2.9      0.8804887 3.236241e-05
## X3.6.1.1      0.8800728 3.301322e-05
## X1.1.1.3      0.8797355 3.354877e-05
## X2.7.1.49     0.8791729 3.445786e-05
## X4.2.1.59     0.8784750 3.561349e-05
## X3.6.1.54     0.8783186 3.587688e-05
## X4.2.1.2      0.8756429 4.063270e-05
## X4.1.2.25     0.8755219 4.085953e-05
## X1.17.1.4     0.8721144 4.767932e-05
## X3.5.4.9      0.8719009 4.813566e-05
## X1.5.1.5      0.8719009 4.813566e-05
## X2.1.1.107    0.8703975 5.145141e-05
## X1.3.1.76     0.8701910 5.192103e-05
## X4.99.1.4     0.8701447 5.202673e-05
## X2.7.1.26     0.8690665 5.454012e-05
## X3.1.3.7      0.8686039 5.564851e-05
## X5.4.99.15    0.8676965 5.787579e-05
## X2.7.7.4      0.8670069 5.961640e-05
## X2.8.1.8      0.8669268 5.982137e-05
## X3.6.1.40     0.8666102 6.063695e-05
## X2.3.1.61     0.8661109 6.194163e-05
## X3.6.1.27     0.8659624 6.233420e-05
## X2.5.1.9      0.8657187 6.298250e-05
## X2.1.3.3      0.8642144 6.710761e-05
## X2.7.1.12     0.8640445 6.758684e-05
## X2.5.1.16     0.8639107 6.796639e-05
## X1.14.14.18   0.8631231 7.023551e-05
## X3.2.1.141    0.8617774 7.425538e-05
## X3.1.3.27     0.8615823 7.485341e-05
## X2.5.1.54     0.8609719 7.674950e-05
## X4.1.1.23     0.8607497 7.744942e-05
## X1.8.1.4      0.8592307 8.237484e-05
## X1.1.1.284    0.8589122 8.343908e-05
## X4.1.3.30     0.8579562 8.670124e-05
## X4.4.1.13     0.8567243 9.105695e-05
## X3.4.19.13    0.8559801 9.377321e-05
## X2.3.2.2      0.8559801 9.377321e-05
## X3.5.4.25     0.8550695 9.718627e-05
## X4.6.1.17     0.8546352 9.884927e-05
## X2.6.1.16     0.8537568 1.022832e-04
## X6.3.5.3      0.8535066 1.032789e-04
## X5.3.1.23     0.8518771 1.099584e-04
## X1.4.4.2      0.8498350 1.188201e-04
## X2.7.7.13     0.8490590 1.223359e-04
## X6.6.1.2      0.8466571 1.337569e-04
## X6.3.4.2      0.8466145 1.339670e-04
## X2.1.1.163    0.8465560 1.342560e-04
## X1.8.1.2      0.8462481 1.357852e-04
## X1.4.3.5      0.8450183 1.420345e-04
## X2.7.2.3      0.8421560 1.574868e-04
## X6.3.2.9      0.8400684 1.695938e-04
## X3.5.2.9      0.8394292 1.734483e-04
## X2.4.1.18     0.8393215 1.741044e-04
## X6.3.2.10     0.8390618 1.756955e-04
## X2.4.1.21     0.8377318 1.840287e-04
## X1.2.4.2      0.8374694 1.857099e-04
## X1.1.5.12     0.8370181 1.886307e-04
## X2.3.1.1      0.8367858 1.901479e-04
## X1.1.1.49     0.8361659 1.942471e-04
## X2.7.7.60     0.8359193 1.958974e-04
## X6.3.2.3      0.8303825 2.360462e-04
## X1.1.1.219    0.8301221 2.380869e-04
## X6.1.1.9      0.8300494 2.386586e-04
## X2.5.1.78     0.8292773 2.448044e-04
## X3.1.2.12     0.8288890 2.479428e-04
## X3.5.4.3      0.8288620 2.481630e-04
## X3.2.1.28     0.8283167 2.526282e-04
## X6.3.5.2      0.8269163 2.643957e-04
## X3.5.1.5      0.8257071 2.749086e-04
## X2.5.1.6      0.8238401 2.918019e-04
## X1.1.1.17     0.8208639 3.204570e-04
## X3.3.1.1      0.8192451 3.369703e-04
## X1.7.1.13     0.8191252 3.382199e-04
## X1.2.1.27     0.8184618 3.452026e-04
## X3.5.1.25     0.8175194 3.553221e-04
## X4.2.1.20     0.8164324 3.672900e-04
## X4.2.1.11     0.8164208 3.674199e-04
## X1.3.98.3     0.8157022 3.755105e-04
## X4.2.1.1      0.8149017 3.846924e-04
## X2.6.1.1      0.8147887 3.860036e-04
## X6.3.4.4      0.8128812 4.086739e-04
## X1.17.7.3     0.8106442 4.366137e-04
## X4.2.1.19     0.8105017 4.384452e-04
## X3.5.1.1      0.8099954 4.449996e-04
## X4.2.1.9      0.8098411 4.470122e-04
## X4.1.1.8      0.8093887 4.529563e-04
## X2.7.7.77     0.8093272 4.537695e-04
## X2.7.1.33     0.8089194 4.591896e-04
## X5.4.99.5     0.8086283 4.630913e-04
## X2.3.1.8      0.8066902 4.897505e-04
## X2.3.1.181    0.8064897 4.925761e-04
## X1.1.1.267    0.8036879 5.334709e-04
## X2.7.2.1      0.7999985 5.914362e-04
## X5.3.1.9      0.7988435 6.105868e-04
## X6.3.4.21     0.7984571 6.171035e-04
## X2.5.1.7      0.7984464 6.172854e-04
## X2.7.1.40     0.7962304 6.557531e-04
## X6.1.1.2      0.7957277 6.647405e-04
## X6.1.1.15     0.7936327 7.032702e-04
## X3.5.1.10     0.7922359 7.299405e-04
## X2.5.1.55     0.7889917 7.950148e-04
## X3.6.1.23     0.7873746 8.291417e-04
## X1.1.1.169    0.7836964 9.111448e-04
## X1.5.1.20     0.7827247 9.338540e-04
## X1.1.1.23     0.7816203 9.602148e-04
## X3.1.3.11     0.7812522 9.691306e-04
## X6.3.5.4      0.7793645 1.015904e-03
## X2.3.1.129    0.7782954 1.043182e-03
## X2.7.2.4      0.7762802 1.096190e-03
## X6.3.5.5      0.7747885 1.136795e-03
## X4.1.1.37     0.7732832 1.178979e-03
## X2.3.1.37     0.7729228 1.189260e-03
## X2.6.1.62     0.7725882 1.198871e-03
## X4.4.1.5      0.7715501 1.229081e-03
## X5.2.1.1      0.7709838 1.245815e-03
## X1.1.1.205    0.7708348 1.250247e-03
## X6.3.2.2      0.7675656 1.350720e-03
## X1.1.1.262    0.7619818 1.537117e-03
## X2.3.1.12     0.7593016 1.633566e-03
## X1.13.11.53   0.7575164 1.700428e-03
## X4.3.1.7      0.7563655 1.744676e-03
## X1.1.5.3      0.7547051 1.810118e-03
## X1.2.4.1      0.7543424 1.824666e-03
## X6.1.1.6      0.7333488 2.839085e-03
## X1.3.5.1      0.7327526 2.873289e-03
## X6.3.1.2      0.7279176 3.162846e-03
## X3.4.16.4     0.7244912 3.381602e-03
## X2.7.8.7      0.7218074 3.561126e-03
## X2.1.2.1      0.7205702 3.646358e-03
## X6.3.3.3      0.7169965 3.901603e-03
## X6.3.5.7      0.7165649 3.933356e-03
## X4.2.1.33     0.7131785 4.189583e-03
## X1.2.1.38     0.7050123 4.861429e-03
## X1.11.1.6     0.7023126 5.101132e-03
## X3.1.3.2      0.7016365 5.162587e-03
## X4.1.1.36     0.6943398 5.863294e-03
## X6.1.1.14     0.6874159 6.594705e-03
## X1.1.5.4      0.6832041 7.073121e-03
## X6.3.4.5      0.6807649 7.362261e-03
## X5.4.99.16    0.6776411 7.745844e-03
## X1.2.1.12     0.6743739 8.163436e-03
## X3.1.1.31     0.6701714 8.725952e-03
## X6.1.1.20     0.6695099 8.817155e-03
## X6.3.4.13     0.6683897 8.973276e-03
## X2.7.1.158   -0.6617301 9.946029e-03
## X2.4.2.22    -0.6693914 8.833569e-03
## X2.7.1.58    -0.6711147 8.597154e-03
## X1.1.1.350   -0.6800192 7.452461e-03
## X2.4.1.25    -0.6826380 7.139426e-03
## X3.4.11.23   -0.6854617 6.813445e-03
## X6.4.1.1     -0.6861312 6.737884e-03
## X2.4.1.12    -0.6866282 6.682209e-03
## X5.1.3.3     -0.6891285 6.407528e-03
## X4.1.99.19   -0.6899289 6.321486e-03
## X4.1.2.4     -0.6962187 5.676173e-03
## X1.14.11.8   -0.6971664 5.583579e-03
## X4.1.3.34    -0.6974513 5.555969e-03
## X2.7.1.6     -0.6985504 5.450468e-03
## X1.6.99.3    -0.7009672 5.223989e-03
## X2.7.7.12    -0.7050957 4.854166e-03
## X7.6.2.7     -0.7061177 4.765859e-03
## X1.17.1.9    -0.7080089 4.605777e-03
## X5.1.3.9     -0.7094652 4.485395e-03
## X1.5.99.12   -0.7098228 4.456216e-03
## X4.3.1.3     -0.7126710 4.229083e-03
## X2.1.2.13    -0.7132561 4.183571e-03
## X1.1.1.305   -0.7132561 4.183571e-03
## X3.6.1.29    -0.7139266 4.131885e-03
## X1.1.1.330   -0.7142998 4.103335e-03
## X4.2.1.104   -0.7150217 4.048545e-03
## X5.5.1.19    -0.7168853 3.909764e-03
## X2.4.1.16    -0.7170493 3.897735e-03
## X2.1.1.22    -0.7182100 3.813411e-03
## X1.1.1.127   -0.7261702 3.272968e-03
## X2.7.1.137   -0.7300981 3.029551e-03
## X3.7.1.12    -0.7315975 2.940484e-03
## X2.4.1.255   -0.7392540 2.517340e-03
## X5.3.2.3     -0.7394074 2.509386e-03
## X4.1.1.68    -0.7394721 2.506034e-03
## X3.2.2.5     -0.7434019 2.309119e-03
## X3.1.3.99    -0.7465959 2.158265e-03
## X4.3.3.6     -0.7470914 2.135581e-03
## X3.2.1.23    -0.7497281 2.018016e-03
## X4.4.1.21    -0.7518611 1.926721e-03
## X3.5.4.6     -0.7539130 1.842011e-03
## X1.1.1.336   -0.7565415 1.737850e-03
## X4.2.1.17    -0.7566341 1.734269e-03
## X1.1.1.35    -0.7566341 1.734269e-03
## X2.7.1.48    -0.7599762 1.608848e-03
## X1.1.1.93    -0.7616576 1.548538e-03
## X1.1.1.83    -0.7616576 1.548538e-03
## X1.13.11.1   -0.7619233 1.539174e-03
## X4.2.1.42    -0.7620773 1.533768e-03
## X2.7.1.198   -0.7622985 1.526028e-03
## X2.1.1.14    -0.7637617 1.475609e-03
## X1.3.1.12    -0.7641182 1.463530e-03
## X3.2.2.9     -0.7644533 1.452246e-03
## X4.2.1.48    -0.7658521 1.405890e-03
## X3.5.1.54    -0.7663452 1.389833e-03
## X4.2.1.147   -0.7672295 1.361405e-03
## X4.1.2.43    -0.7672295 1.361405e-03
## X5.5.1.4     -0.7674151 1.355498e-03
## X6.1.1.22    -0.7675854 1.350094e-03
## X5.3.1.8     -0.7681970 1.330833e-03
## X5.3.1.26    -0.7721951 1.210242e-03
## X4.1.2.13    -0.7725220 1.200779e-03
## X2.4.1.256   -0.7742137 1.152759e-03
## X1.3.8.8     -0.7744308 1.146708e-03
## X1.3.8.7     -0.7744308 1.146708e-03
## X1.13.11.15  -0.7755360 1.116299e-03
## X3.7.1.22    -0.7763224 1.095059e-03
## X2.8.1.4     -0.7773662 1.067365e-03
## X4.1.99.1    -0.7793964 1.015100e-03
## X4.2.1.70    -0.7802344 9.941307e-04
## X3.1.4.16    -0.7843889 8.952297e-04
## X3.1.3.6     -0.7843889 8.952297e-04
## X1.13.11.11  -0.7850804 8.795609e-04
## X2.7.1.208   -0.7858557 8.622556e-04
## X1.13.11.20  -0.7863032 8.523911e-04
## X4.1.1.22    -0.7864148 8.499468e-04
## X3.5.2.7     -0.7869195 8.389564e-04
## X2.7.1.21    -0.7879369 8.171445e-04
## X1.1.98.6    -0.7895945 7.825856e-04
## X1.5.1.7     -0.7904803 7.646026e-04
## X2.7.7.53    -0.7906355 7.614855e-04
## X2.7.7.5     -0.7906355 7.614855e-04
## X6.4.1.2     -0.7938017 7.000983e-04
## X4.2.1.68    -0.7940013 6.963645e-04
## X1.2.1.50    -0.7943792 6.893414e-04
## X6.2.1.20    -0.7952892 6.726616e-04
## X2.3.1.40    -0.7952892 6.726616e-04
## X2.7.1.17    -0.7953057 6.723631e-04
## X2.7.1.16    -0.7970763 6.408491e-04
## X4.2.1.44    -0.7977676 6.288707e-04
## X2.6.1.85    -0.7995484 5.988421e-04
## X3.5.99.7    -0.8032069 5.407578e-04
## X1.13.11.3   -0.8042388 5.252217e-04
## X2.3.1.199   -0.8085463 4.641946e-04
## X1.4.1.21    -0.8102480 4.417189e-04
## X1.11.1.9    -0.8108850 4.335353e-04
## X3.1.3.4     -0.8111591 4.300505e-04
## X1.5.1.36    -0.8114309 4.266183e-04
## X2.6.1.19    -0.8118645 4.211882e-04
## X5.3.1.30    -0.8136581 3.993144e-04
## X5.3.1.14    -0.8137632 3.980622e-04
## X5.3.3.4     -0.8141149 3.938928e-04
## X4.2.1.22    -0.8142150 3.927123e-04
## X4.1.3.17    -0.8145779 3.884573e-04
## X2.7.1.107   -0.8146015 3.881818e-04
## X4.4.1.17    -0.8150889 3.825298e-04
## X2.7.9.3     -0.8153774 3.792145e-04
## X4.3.1.17    -0.8182488 3.474702e-04
## X1.7.99.1    -0.8197815 3.314242e-04
## X2.7.1.197   -0.8208583 3.205126e-04
## X2.7.1.100   -0.8210390 3.187105e-04
## X2.7.1.166   -0.8213398 3.157284e-04
## X4.1.1.74    -0.8221591 3.077198e-04
## X3.1.2.14    -0.8233739 2.961485e-04
## X4.1.2.20    -0.8240258 2.900853e-04
## X2.3.1.16    -0.8249856 2.813409e-04
## X4.7.1.1     -0.8253468 2.781057e-04
## X5.3.3.14    -0.8269569 2.640481e-04
## X2.7.9.2     -0.8289650 2.473261e-04
## X1.14.13.9   -0.8292607 2.449376e-04
## X5.3.3.2     -0.8304928 2.351863e-04
## X2.3.1.5     -0.8310005 2.312600e-04
## X1.5.1.3     -0.8313708 2.284303e-04
## X3.2.1.1     -0.8315473 2.270920e-04
## X1.14.14.17  -0.8318461 2.248395e-04
## X3.2.1.39    -0.8319266 2.242355e-04
## X1.1.1.261   -0.8332954 2.141705e-04
## X2.7.1.29    -0.8333523 2.137598e-04
## X2.7.1.28    -0.8333523 2.137598e-04
## X2.6.1.13    -0.8334391 2.131351e-04
## X3.2.1.55    -0.8352060 2.007351e-04
## X5.1.3.14    -0.8361111 1.946127e-04
## X4.1.1.15    -0.8368779 1.895454e-04
## X1.1.1.38    -0.8370789 1.882347e-04
## X4.3.2.3     -0.8379229 1.828118e-04
## X1.13.11.63  -0.8379237 1.828070e-04
## X2.7.1.201   -0.8390383 1.758401e-04
## X2.6.1.82    -0.8394842 1.731139e-04
## X2.7.8.8     -0.8396468 1.721280e-04
## X3.1.3.89    -0.8406019 1.664307e-04
## X7.1.2.1     -0.8407890 1.653326e-04
## X3.5.4.5     -0.8411960 1.629639e-04
## X2.7.1.56    -0.8412299 1.627683e-04
## X2.7.11.24   -0.8421313 1.576255e-04
## X3.11.1.1    -0.8425604 1.552243e-04
## X1.14.99.46  -0.8427193 1.543426e-04
## X2.1.1.45    -0.8431840 1.517875e-04
## X2.6.1.87    -0.8435988 1.495359e-04
## X5.1.3.4     -0.8445103 1.446832e-04
## X3.5.3.26    -0.8456434 1.388296e-04
## X4.3.1.1     -0.8457100 1.384916e-04
## X2.7.4.24    -0.8459458 1.373005e-04
## X2.7.4.21    -0.8459458 1.373005e-04
## X4.3.1.18    -0.8467532 1.332841e-04
## X3.1.3.70    -0.8467672 1.332150e-04
## X4.2.1.84    -0.8499151 1.184619e-04
## X1.8.1.7     -0.8502411 1.170131e-04
## X1.13.11.57  -0.8514878 1.116048e-04
## X3.5.3.1     -0.8529220 1.056362e-04
## X1.4.1.14    -0.8544773 9.945960e-05
## X2.3.1.242   -0.8550199 9.737483e-05
## X4.2.1.49    -0.8558198 9.436686e-05
## X5.1.3.22    -0.8566551 9.130679e-05
## X4.1.1.21    -0.8575964 8.795543e-05
## X2.7.1.20    -0.8601551 7.934805e-05
## X1.5.1.42    -0.8604469 7.841181e-05
## X4.1.1.11    -0.8608277 7.720338e-05
## X1.2.1.72    -0.8613501 7.557025e-05
## X5.4.2.7     -0.8625262 7.199615e-05
## X3.2.1.3     -0.8625839 7.182442e-05
## X5.3.1.15    -0.8641127 6.739418e-05
## X5.4.3.8     -0.8662627 6.154263e-05
## X1.6.5.2     -0.8675909 5.813960e-05
## X4.4.1.15    -0.8676446 5.800524e-05
## X2.7.1.202   -0.8682829 5.642836e-05
## X2.4.1.109   -0.8689385 5.484505e-05
## X1.1.1.18    -0.8691518 5.433791e-05
## X2.4.2.3     -0.8697130 5.302147e-05
## X1.9.6.1     -0.8711758 4.971244e-05
## X3.6.1.63    -0.8715761 4.883686e-05
## X3.5.2.6     -0.8723160 4.725155e-05
## X2.7.1.1     -0.8726526 4.654433e-05
## X2.7.1.92    -0.8735598 4.468129e-05
## X2.3.1.29    -0.8738055 4.418736e-05
## X3.5.1.110   -0.8746675 4.248941e-05
## X4.2.1.8     -0.8750691 4.171674e-05
## X7.3.2.3     -0.8768778 3.837772e-05
## X3.5.4.4     -0.8772238 3.776445e-05
## X1.6.1.1     -0.8774378 3.738921e-05
## X1.2.1.71    -0.8775371 3.721624e-05
## X4.99.1.7    -0.8784222 3.570229e-05
## X3.5.3.11    -0.8784977 3.557552e-05
## X2.7.4.29    -0.8800374 3.306909e-05
## X4.1.1.17    -0.8806349 3.213617e-05
## X2.6.1.76    -0.8817077 3.051521e-05
## X1.1.1.103   -0.8822311 2.974900e-05
## X1.1.1.60    -0.8822750 2.968548e-05
## X4.2.3.3     -0.8827751 2.896934e-05
## X2.4.2.4     -0.8830053 2.864439e-05
## X1.2.1.95    -0.8833329 2.818721e-05
## X1.2.1.31    -0.8833329 2.818721e-05
## X1.1.99.3    -0.8842388 2.695398e-05
## X2.7.1.19    -0.8842525 2.693577e-05
## X2.7.8.11    -0.8844877 2.662306e-05
## X2.4.2.43    -0.8850090 2.594061e-05
## X2.7.4.23    -0.8854416 2.538513e-05
## X2.4.1.198   -0.8861383 2.451110e-05
## X3.1.1.11    -0.8867398 2.377642e-05
## X2.7.7.27    -0.8867790 2.372911e-05
## X2.7.7.1     -0.8881429 2.213240e-05
## X2.7.1.22    -0.8881429 2.213240e-05
## X1.7.2.3     -0.8883355 2.191424e-05
## X2.3.1.54    -0.8896905 2.042824e-05
## X3.5.3.4     -0.8899325 2.017172e-05
## X3.1.4.53    -0.8902392 1.985046e-05
## X5.3.3.1     -0.8906841 1.939188e-05
## X3.1.3.46    -0.8908371 1.923622e-05
## X2.7.1.105   -0.8908371 1.923622e-05
## X3.8.1.2     -0.8923829 1.771982e-05
## X2.9.1.1     -0.8929608 1.717860e-05
## X2.4.2.53    -0.8935473 1.664337e-05
## X2.3.1.251   -0.8946424 1.568050e-05
## X3.2.2.4     -0.8948889 1.547016e-05
## X2.7.1.89    -0.8953526 1.508079e-05
## X3.1.1.85    -0.8954936 1.496396e-05
## X4.6.1.1     -0.8967347 1.396755e-05
## X6.3.4.6     -0.8983249 1.277092e-05
## X2.3.1.243   -0.8993262 1.206163e-05
## X2.4.2.2     -0.9000059 1.159874e-05
## X2.4.2.15    -0.9000059 1.159874e-05
## X3.1.1.32    -0.9005049 1.126826e-05
## X4.2.2.3     -0.9005109 1.126434e-05
## X1.7.5.1     -0.9010476 1.091773e-05
## X2.3.1.15    -0.9019682 1.034344e-05
## X2.7.1.2     -0.9019802 1.033613e-05
## X3.6.1.22    -0.9025548 9.990637e-06
## X2.4.1.34    -0.9028335 9.826550e-06
## X2.5.1.48    -0.9029978 9.730814e-06
## X3.1.1.4     -0.9035061 9.439567e-06
## X3.1.3.1     -0.9045624 8.857068e-06
## X3.7.1.3     -0.9052040 8.517922e-06
## X2.2.1.2     -0.9060046 8.109711e-06
## X2.8.1.1     -0.9065047 7.863024e-06
## X1.1.1.290   -0.9067262 7.755730e-06
## X5.3.1.28    -0.9068371 7.702433e-06
## X3.5.1.16    -0.9068514 7.695599e-06
## X2.7.8.37    -0.9076892 7.303142e-06
## X2.7.1.35    -0.9102183 6.216718e-06
## X5.1.3.15    -0.9111817 5.839521e-06
## X3.1.3.71    -0.9112642 5.808132e-06
## X5.4.4.2     -0.9114366 5.742932e-06
## X4.1.1.19    -0.9123339 5.413316e-06
## X6.1.1.18    -0.9123574 5.404918e-06
## X4.1.3.38    -0.9130573 5.159057e-06
## X3.5.3.23    -0.9132711 5.085817e-06
## X1.5.1.38    -0.9145425 4.667698e-06
## X3.5.1.96    -0.9153562 4.415239e-06
## X3.1.5.1     -0.9160586 4.206475e-06
## X3.6.1.26    -0.9162346 4.155448e-06
## X3.1.3.45    -0.9162954 4.137948e-06
## X3.2.2.10    -0.9174975 3.804056e-06
## X4.1.3.40    -0.9181999 3.619457e-06
## X4.1.1.2     -0.9184328 3.559895e-06
## X4.3.2.7     -0.9204756 3.071209e-06
## X3.6.1.41    -0.9220872 2.725873e-06
## X2.4.2.1     -0.9225231 2.638190e-06
## X2.3.1.47    -0.9238985 2.376576e-06
## X3.1.4.14    -0.9251878 2.151108e-06
## X3.1.4.55    -0.9271104 1.847840e-06
## X3.6.1.67    -0.9272548 1.826571e-06
## X1.2.1.19    -0.9286100 1.636565e-06
## X2.1.1.197   -0.9287655 1.615834e-06
## X3.1.3.3     -0.9289288 1.594313e-06
## X3.2.1.18    -0.9329080 1.138267e-06
## X1.14.14.35  -0.9332053 1.109060e-06
## X2.7.1.11    -0.9346699 9.740528e-07
## X2.3.1.109   -0.9372952 7.659730e-07
## X1.11.1.21   -0.9382670 6.989357e-07
## X5.3.1.17    -0.9403603 5.708796e-07
## X6.2.1.5     -0.9433201 4.233742e-07
## X4.4.1.22    -0.9437024 4.068679e-07
## X4.1.3.1     -0.9450001 3.547460e-07
## X4.1.1.49    -0.9471148 2.816840e-07
## X4.1.1.98    -0.9506061 1.884139e-07
## X3.2.1.14    -0.9507492 1.852211e-07
## X3.1.3.5     -0.9521933 1.554210e-07
## X3.1.3.16    -0.9532668 1.359408e-07
## X1.2.1.70    -0.9537002 1.286710e-07
## X2.7.11.1    -0.9569792 8.340344e-08
## X2.3.3.9     -0.9656985 2.183893e-08
## X2.4.1.1     -0.9721372 6.361569e-09
## X1.1.1.37    -0.9819205 4.849743e-10
## 
## $Dim.2
## 
## Link between the variable and the continuous variables (R-square)
## =================================================================================
##            correlation      p.value
## X3.5.3.6     0.8601962 7.921576e-05
## X1.7.1.7     0.8535198 1.032265e-04
## X5.3.1.5     0.7895116 7.842840e-04
## X4.2.1.40    0.7893065 7.885040e-04
## X4.2.1.79    0.7824831 9.395713e-04
## X2.4.2.8     0.7714821 1.231080e-03
## X1.14.14.9   0.7691478 1.301324e-03
## X2.2.1.9     0.7670449 1.367299e-03
## X4.1.2.40    0.7575038 1.700910e-03
## X2.7.1.121   0.7374315 2.613396e-03
## X5.4.2.11    0.7174603 3.867707e-03
## X5.3.1.12    0.7070682 4.684872e-03
## X6.3.1.20    0.7048206 4.878155e-03
## X4.2.99.20   0.7025096 5.083333e-03
## X5.3.1.4     0.6999280 5.320455e-03
## X5.1.2.1     0.6997837 5.333960e-03
## X2.7.1.5     0.6981454 5.489162e-03
## X4.1.2.4     0.6906993 6.239508e-03
## X2.3.3.10    0.6853644 6.824483e-03
## X6.3.1.1     0.6812364 7.305674e-03
## X4.2.1.28    0.6803264 7.415197e-03
## X4.1.3.34    0.6785723 7.629915e-03
## X6.2.1.26    0.6782364 7.671588e-03
## X4.1.3.36    0.6766450 7.871369e-03
## X3.2.1.93    0.6745025 8.146676e-03
## X4.2.1.82    0.6694270 8.828636e-03
## X2.7.1.6     0.6658784 9.331047e-03
## 
## $Dim.3
## 
## Link between the variable and the continuous variables (R-square)
## =================================================================================
##            correlation      p.value
## X1.4.3.16    0.8129398 0.0004079614
## X3.5.1.9     0.7319602 0.0029192503
## X1.14.14.5   0.7213816 0.0035902819
## X1.7.3.3    -0.6715300 0.0085409128
## X4.1.1.33   -0.6808482 0.0073522390
## X3.5.2.5    -0.7009573 0.0052248979
## X2.7.1.36   -0.7012513 0.0051978551
## X2.7.4.2    -0.7036652 0.0049799129
## X1.1.1.34   -0.7584431 0.0016654531
## X1.3.3.4    -0.8287927 0.0002487262
## 
## $Dim.4
## 
## Link between the variable and the continuous variables (R-square)
## =================================================================================
##            correlation      p.value
## X1.2.1.10    0.8768865 3.836207e-05
## X4.1.3.39    0.8226401 3.030952e-04
## X3.5.1.53    0.7652214 1.426644e-03
## X3.1.3.8     0.7541918 1.830735e-03
## X3.4.24.84   0.7532285 1.869936e-03
## X4.1.1.96    0.7323790 2.894887e-03
## X3.5.3.12    0.7306520 2.996403e-03
## X2.3.1.222   0.6921813 6.084153e-03
## X5.5.1.6     0.6694845 8.820669e-03
## X7.2.4.2     0.6693768 8.835587e-03
## X2.7.1.168   0.6654312 9.395892e-03
## X2.4.1.131  -0.7939307 6.976837e-04
## 
## $Dim.5
## 
## Link between the variable and the continuous variables (R-square)
## =================================================================================
##              correlation      p.value
## X1.1.1.304     0.7941401 0.0006937783
## X6.2.1.30      0.7922376 0.0007299072
## X2.7.2.2       0.7623588 0.0015239238
## X5.3.3.18      0.7546109 0.0018138865
## X1.14.13.149   0.7284427 0.0031303363
## X2.3.1.184     0.7233703 0.0034556960
## X3.3.2.12      0.7221321 0.0035390130
## X1.2.1.91      0.7221321 0.0035390130
## X7.1.1.2       0.7066539 0.0047200418
## X2.1.1.152     0.6975600 0.0055454690
## X3.5.4.44      0.6901872 0.0062939083
## X3.5.1.125     0.6901872 0.0062939083
## X1.1.1.271    -0.6711547 0.0085917231
## 
## $Dim.6
## 
## Link between the variable and the continuous variables (R-square)
## =================================================================================
##            correlation     p.value
## X2.4.1.11    0.7699630 0.001276440
## X3.1.4.4     0.7554848 0.001779147
## X3.2.1.31    0.6671284 0.009151613
## X1.14.18.1   0.6618508 0.009927715
## 
## $Dim.7
## 
## $Dim.8
## 
## Link between the variable and the continuous variables (R-square)
## =================================================================================
##           correlation     p.value
## X2.3.1.41  -0.7042035 0.004932296
## X2.7.7.81  -0.7113610 0.004332393
## 
## $Dim.9
## 
## Link between the variable and the continuous variables (R-square)
## =================================================================================
##           correlation      p.value
## X1.7.2.4   -0.8117398 4.227441e-04
## X3.5.99.6  -0.8632770 6.978751e-05
## 
## $Dim.10
## 
## $Dim.11
## 
## $Dim.12
## 
## Link between the variable and the continuous variables (R-square)
## =================================================================================
##            correlation     p.value
## X5.4.4.4     0.7680254 0.001336213
## X4.2.1.127   0.7680254 0.001336213
## 
## $Dim.13
fviz_eig(res.PCA)

##Biplot - visualizando os padrões gerais

1.4.1 GrĂ¡fico de variĂ¡veis. VariĂ¡veis correlacionadas positivas apontam para o mesmo lado do grĂ¡fico. VariĂ¡veis correlacionadas negativas apontam para lados opostos do grĂ¡fico

fviz_pca_biplot(res.PCA,
                col.var = "#4C9900", # Variables color
                alpha.var=.1,
                col.ind = "#696969",  # Individuals color
                label = "ind"
                )

1.4.2 GrĂ¡fico de indivĂ­duos. IndivĂ­duos com perfil semelhante sĂ£o agrupados

fviz_pca_var(res.PCA,
             col.var = "contrib", # Color by contributions to the PC
             alpha.var = .5,
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             label="none",
             repel = TRUE     # Avoid text overlapping
)

varieties <- rownames(dados)
varieties[grep(pattern = "For", x = varieties)] <- "Forastero"
varieties[grep(pattern = "Mix", x = varieties)] <- "Hybrid"
varieties <- as.factor(varieties)

fviz_pca_ind(res.PCA,
             col.ind = varieties, # color by groups
             palette = c("#FF3333",  "#4C9900"),
             addEllipses = TRUE, # Concentration ellipses
             ellipse.type = "confidence",
             legend.title = "Groups",
             repel = TRUE
)

2 NMDS e PERMANOVA - tentando identificar os grupos existentes

2.1 PadronizaĂ§Ă£o dos dados - transformaĂ§Ă£o de Hellinger

dados2 <- decostand(dados, method = "hel")

2.2 ConstruĂ§Ă£o do modelo

NMDS <- metaMDS(dados2, k=2, trymax = 10000, trace = F)

NMDS
## 
## Call:
## metaMDS(comm = dados2, k = 2, trymax = 10000, trace = F) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     dados2 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.03089656 
## Stress type 1, weak ties
## Best solution was repeated 1 time in 20 tries
## The best solution was from try 20 (random start)
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'dados2'

2.3 Plot

library(data.table)
df <- data.table(mds1=NMDS$points[,1], mds2=NMDS$points[,2], groups=varieties)
hulls <- df[,.SD[chull(mds1, mds2)], by=groups]

ggplot(df, aes(x=mds1, y=mds2))+
  geom_polygon(data=hulls, aes(colour=groups), linetype=3, linewidth=2, alpha=0)+
  geom_point(shape=21, aes(fill=groups), alpha=.9, size=4)+
  scale_fill_manual(values=c("#FF3333",  "#4C9900"))+
  scale_colour_manual(values=c("#FF3333",  "#4C9900"))+
  theme_classic()+
  theme(legend.position="bottom", legend.title=element_blank())+
  scale_x_continuous("NMDS1")+
  scale_y_continuous("NMDS2")+
  theme(text = element_text(size=20),axis.text.x = element_text(vjust=1, colour="black"), axis.text.y=element_text(colour="black"))

2.4 PERMANOVA - tentando avaliar a significĂ¢ncia entre os grupos

permanova <- adonis2(dados2~varieties, permutations = 999)

permanova

3 AnĂ¡lise de RedundĂ¢ncia (RDA)

Para essa anĂ¡lise, vamos seguir o exemplo contido no link: https://r.qcbs.ca/workshop10/book-en/redundancy-analysis.html

3.1 Preparar os dados

3.1.1 Carregar os dados de espécies

setwd("~/Dropbox/UFMG/Disciplinas/R UFAC/Aulas/Multivar/")
spe <- read.csv("data_spe.csv", row.names = 1)
(remove <- which(rowSums(spe)==0)) ## a linha 8 possui 0 indivuduos
## 8 
## 8
which(colSums(spe)==0)
## named integer(0)
spe <- spe[-remove, ] #cuidado, esse comando sĂ³ pode ser rodado uma vez

3.1.2 Carregar os dados de variĂ¡veis ambientais

env <- read.csv("data_env.csv", row.names = 1)
env <- env[-remove, ]  # remover a linha equivlente que tinha 0 indivĂ­duos. #cuidado, esse comando sĂ³ pode ser rodado uma vez

3.1.3 Avaliar e padronizar os dados

Os dados de espĂ©cies possuem muitos zeros (e isso Ă© bem comum!), portanto precisamos padronizar isso. É recomendado usar a transformaĂ§Ă£o de Hellinger

spe.hel <- decostand(spe, method = "hellinger")

Os dados ambientais possuem muitas variĂ¡veis, precisamos conferir a correlaĂ§Ă£o entre elas antes de simplemente colocar no modelo.

col<- colorRampPalette(c("blue", "white", "red"))(20)
heatmap(x = cor(env), col = col, symm = TRUE)

Outra opĂ§Ă£o pra visualizar Ă©

psych::pairs.panels(env)

library(corrplot)
## corrplot 0.92 loaded
correlacao <- cor(env)
corrplot(correlacao, type = "upper", method="color", tl.col = "black", tl.srt = 45)

ou ainda

col <- colorRampPalette(c("#BB4444", "#EE9988", "#FFFFFF", "#77AADD", "#4477AA"))
corrplot(correlacao, method="color", col=col(200),  
         type="upper", order="hclust", 
         addCoef.col = "black", # Add coefficient of correlation
         tl.col="black", tl.srt=45, #Text label color and rotation
         # Combine with significance
         #p.mat = p.mat, sig.level = 0.01, insig = "blank", 
         # hide correlation coefficient on the principal diagonal
         diag=FALSE 
         )

HĂ¡ mesmo muitas correlações, principalmente da variĂ¡vel das.

Como as variĂ¡veis foram medidas em escalas diferentes, vamos tambĂ©m usar a funĂ§Ă£o decostand, na opĂ§Ă£o standardize. Isso colocarĂ¡ todos os dados com mĂ©dia 0 e 1 unidade de desvio padrĂ£o.

env.z <- decostand(env, method = "standardize")

Nossos dados estĂ£o prontos agora! Podemos ir para as anĂ¡lises.

A primeira coisa que faremos Ă© remover a variĂ¡vel das do conjunto de ambientais, pois ela era muito correlacionada.

env.z <- subset(env.z, select = -das)

3.1.4 Rodando a RDA

Agora podemos rodar a RDA

spe.rda <- vegan::rda(spe.hel ~ ., data = env.z)

summary(spe.rda)
## 
## Call:
## rda(formula = spe.hel ~ alt + pen + deb + pH + dur + pho + nit +      amm + oxy + dbo, data = env.z) 
## 
## Partitioning of variance:
##               Inertia Proportion
## Total          0.5025     1.0000
## Constrained    0.3689     0.7341
## Unconstrained  0.1336     0.2659
## 
## Eigenvalues, and their contribution to the variance 
## 
## Importance of components:
##                         RDA1    RDA2    RDA3    RDA4     RDA5     RDA6     RDA7
## Eigenvalue            0.2280 0.05442 0.03382 0.03008 0.007487 0.005662 0.004429
## Proportion Explained  0.4538 0.10829 0.06730 0.05986 0.014898 0.011268 0.008814
## Cumulative Proportion 0.4538 0.56208 0.62938 0.68924 0.704136 0.715404 0.724218
##                           RDA8     RDA9     RDA10     PC1     PC2     PC3
## Eigenvalue            0.002811 0.001381 0.0007926 0.04642 0.02072 0.01746
## Proportion Explained  0.005595 0.002747 0.0015773 0.09238 0.04123 0.03474
## Cumulative Proportion 0.729812 0.732560 0.7341370 0.82652 0.86775 0.90249
##                           PC4      PC5      PC6      PC7      PC8      PC9
## Eigenvalue            0.01325 0.009738 0.005882 0.005122 0.003998 0.003030
## Proportion Explained  0.02637 0.019379 0.011705 0.010192 0.007956 0.006031
## Cumulative Proportion 0.92886 0.948235 0.959940 0.970132 0.978088 0.984118
##                           PC10     PC11     PC12      PC13      PC14      PC15
## Eigenvalue            0.003004 0.001809 0.001111 0.0007554 0.0005616 0.0003469
## Proportion Explained  0.005979 0.003601 0.002211 0.0015033 0.0011177 0.0006904
## Cumulative Proportion 0.990097 0.993698 0.995909 0.9974126 0.9985302 0.9992206
##                            PC16      PC17      PC18
## Eigenvalue            0.0002483 0.0001113 3.200e-05
## Proportion Explained  0.0004942 0.0002216 6.367e-05
## Cumulative Proportion 0.9997148 0.9999363 1.000e+00
## 
## Accumulated constrained eigenvalues
## Importance of components:
##                         RDA1    RDA2    RDA3    RDA4     RDA5     RDA6     RDA7
## Eigenvalue            0.2280 0.05442 0.03382 0.03008 0.007487 0.005662 0.004429
## Proportion Explained  0.6181 0.14751 0.09167 0.08154 0.020294 0.015348 0.012006
## Cumulative Proportion 0.6181 0.76563 0.85730 0.93884 0.959135 0.974483 0.986489
##                           RDA8     RDA9     RDA10
## Eigenvalue            0.002811 0.001381 0.0007926
## Proportion Explained  0.007621 0.003742 0.0021485
## Cumulative Proportion 0.994109 0.997851 1.0000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  1.93676 
## 
## 
## Species scores
## 
##         RDA1      RDA2       RDA3      RDA4       RDA5       RDA6
## CHA  0.13165  0.103011 -0.0172558 -0.235893  0.0185193  0.0221025
## TRU  0.61829 -0.009587  0.2863218  0.077981 -0.0002929 -0.0131230
## VAI  0.49901  0.142765 -0.1999345  0.007029 -0.0636477 -0.0078160
## LOC  0.38975  0.147620 -0.2235978  0.083310 -0.0225081 -0.0273493
## OMB  0.13328  0.096119  0.0001608 -0.235474  0.0128430  0.0517589
## BLA  0.06656  0.109572 -0.0033336 -0.197116  0.0177164  0.0144250
## HOT -0.17138  0.072625  0.0081007 -0.008591  0.0210074 -0.0642826
## TOX -0.12546  0.160816  0.0106627 -0.036292 -0.0339079 -0.0913475
## VAN -0.08405  0.049425 -0.0640432  0.010129 -0.0167668  0.0175047
## CHE -0.09596 -0.131741 -0.1808882 -0.055352  0.0899699  0.0234751
## BAR -0.17993  0.209024  0.0358096 -0.070651  0.0008568 -0.0277178
## SPI -0.15536  0.157851  0.0244009 -0.011114 -0.0325750 -0.0354818
## GOU -0.20180  0.040027 -0.0448392 -0.008890 -0.0611972  0.0341513
## BRO -0.10105  0.049146 -0.0458356  0.088503 -0.0871574  0.0677310
## PER -0.08819  0.121087 -0.0470900  0.078629  0.0029062 -0.0046711
## BOU -0.20490  0.161262  0.0451044  0.018169 -0.0156914 -0.0015366
## PSO -0.22974  0.109603  0.0186218  0.011661  0.0353251 -0.0343478
## ROT -0.16703  0.004211  0.0067925  0.036803 -0.0579586  0.0680597
## CAR -0.17610  0.143517  0.0343842  0.011121  0.0032877 -0.0023979
## TAN -0.13246  0.127994 -0.0721057  0.109027  0.0556198  0.0135747
## BCO -0.18787  0.117043  0.0487394  0.036248  0.0208310  0.0313117
## PCH -0.15067  0.080058  0.0486948  0.043339  0.0352494  0.0689095
## GRE -0.31191  0.014095  0.0221539  0.022690 -0.0243663  0.0367353
## GAR -0.31230 -0.147197 -0.1318943  0.039348  0.0484994 -0.0380365
## BBO -0.24208  0.087370  0.0391560  0.034379  0.0541665 -0.0004277
## ABL -0.42821 -0.222422  0.0093609 -0.129619 -0.1121364 -0.0448125
## ANG -0.19192  0.140604  0.0437442  0.026061 -0.0061464  0.0152905
## 
## 
## Site scores (weighted sums of species scores)
## 
##        RDA1      RDA2     RDA3     RDA4     RDA5     RDA6
## 1   0.37844 -0.442557  1.59911  0.30334  0.46115 -0.25749
## 2   0.53342 -0.049571  0.29691  0.38382 -0.39592 -0.57773
## 3   0.49530 -0.002279  0.11568  0.47364 -0.78826 -0.18505
## 4   0.33905  0.068384 -0.22978  0.57718 -0.42387  0.33957
## 5   0.02915 -0.139350 -0.42917  0.59397 -0.10125  0.90793
## 6   0.24982 -0.039579 -0.48199  0.55767  0.13076  0.20562
## 7   0.46641 -0.103929 -0.03475  0.32290 -0.00367 -0.33237
## 9   0.04700 -0.460097 -0.94060  0.21229  1.66756 -0.35924
## 10  0.31973 -0.093408 -0.54293  0.17722 -0.15664  0.10771
## 11  0.48065 -0.059751  0.07611 -0.43913  0.31005  0.27861
## 12  0.49138 -0.007440  0.08033 -0.42912  0.30341  0.21058
## 13  0.49512  0.130955  0.32688 -0.77176  0.05047  0.35593
## 14  0.38259  0.195124  0.07180 -0.81039 -0.06477  0.78140
## 15  0.28843  0.209962 -0.13684 -0.71171  0.48053  0.59234
## 16  0.09251  0.402933 -0.15653 -0.29350  0.09074 -0.57845
## 17 -0.04899  0.439567 -0.10316 -0.38402 -0.31709 -1.11824
## 18 -0.13742  0.411818 -0.14279 -0.34491 -0.30152 -0.80436
## 19 -0.27608  0.338417 -0.28964  0.04886 -0.48681 -0.82121
## 20 -0.39384  0.241715 -0.10316  0.14589 -0.27614 -0.49014
## 21 -0.42776  0.287579  0.03588  0.21015 -0.21387 -0.02561
## 22 -0.46704  0.238834  0.12674  0.20246  0.19915  0.11553
## 23 -0.28260 -1.149481 -0.12838 -0.48779  0.28642 -0.86898
## 24 -0.41270 -0.776354  0.08746 -0.33354  0.28123 -0.76408
## 25 -0.35666 -0.783183 -0.06170 -0.17147 -1.30623  1.09559
## 26 -0.46994  0.089229  0.09813  0.21223  0.05933  0.43001
## 27 -0.47143  0.201319  0.13869  0.22378  0.15968  0.34418
## 28 -0.47461  0.215861  0.16878  0.23445  0.26274  0.42397
## 29 -0.37633  0.361804  0.23635  0.04817  0.02847  0.38919
## 30 -0.49359  0.273478  0.32258  0.24933  0.06437  0.60480
## 
## 
## Site constraints (linear combinations of constraining variables)
## 
##        RDA1     RDA2     RDA3     RDA4     RDA5     RDA6
## 1   0.41231 -0.45736  1.56906  0.34354  0.35943 -0.22075
## 2   0.31314  0.10276  0.01801  0.76326 -0.70324 -0.36076
## 3   0.41049 -0.06321  0.06766  0.45134 -0.25281 -0.02163
## 4   0.48360  0.09233 -0.28711  0.29452 -0.17537  0.19245
## 5   0.21275 -0.42735 -0.45514  0.38930  0.44928  0.09188
## 6   0.44590 -0.08797 -0.20162  0.39627 -0.22763  0.03749
## 7   0.53727 -0.10880 -0.23699  0.04252  0.26659  0.34671
## 9   0.00102 -0.26564 -0.62973  0.49900  0.62755  0.06921
## 10  0.16369 -0.07428 -0.10940  0.13792  0.22241 -0.27954
## 11  0.28729  0.23709 -0.09670 -0.27933  0.06708  0.37308
## 12  0.35181  0.14358 -0.02901 -0.39937 -0.17428 -0.22636
## 13  0.37325  0.09016 -0.02348 -0.62517  0.13077 -0.03310
## 14  0.40151  0.12475 -0.01469 -0.65953  0.13897  0.30526
## 15  0.22403  0.19534  0.18512 -0.55368  0.18183  0.35594
## 16 -0.03859  0.28753 -0.20130 -0.14582  0.07060 -0.27681
## 17 -0.07706  0.19775 -0.07859 -0.14387 -0.13673 -0.41621
## 18 -0.06413  0.28495 -0.08054 -0.17853 -0.19815 -0.16840
## 19 -0.02162  0.33081  0.01905 -0.24040 -0.25759 -0.01630
## 20 -0.21554  0.36432  0.05030 -0.07898 -0.43632 -0.60826
## 21 -0.34579  0.27751 -0.06366  0.05747  0.02923 -0.53057
## 22 -0.30009  0.10181  0.04606 -0.17520  0.34122 -0.46261
## 23 -0.19234 -1.01335  0.04965 -0.64236 -0.14117 -0.20203
## 24 -0.54202 -0.62155 -0.18969 -0.08445  0.56631 -0.36670
## 25 -0.41201 -0.89130 -0.08746 -0.13763 -1.12836  0.50266
## 26 -0.47949  0.03614 -0.17840  0.25266  0.15681  0.52018
## 27 -0.60917  0.15381  0.11602  0.25456  0.15037 -0.22326
## 28 -0.51332  0.39541  0.10506  0.17547 -0.03491  0.27941
## 29 -0.35142  0.33911  0.30796  0.16149 -0.11210  0.52228
## 30 -0.45546  0.25568  0.42956  0.12500  0.22022  0.81674
## 
## 
## Biplot scores for constraining variables
## 
##        RDA1     RDA2     RDA3    RDA4     RDA5     RDA6
## alt  0.8238 -0.19241 -0.01107  0.5161  0.06677 -0.06716
## pen  0.3419 -0.24900  0.76492  0.2271  0.20827 -0.12943
## deb -0.7791  0.22211  0.18513 -0.2494 -0.07930  0.38639
## pH   0.1026  0.16266  0.03127 -0.3149  0.14558  0.27883
## dur -0.5694  0.07369 -0.27232 -0.5483  0.18946  0.37711
## pho -0.4954 -0.65447 -0.07321 -0.2187 -0.42190  0.27002
## nit -0.7764 -0.20419 -0.04923 -0.2592 -0.40011  0.06754
## amm -0.4766 -0.68868 -0.08148 -0.1807 -0.47825  0.08957
## oxy  0.7630  0.53393  0.25890 -0.2119  0.04726 -0.12851
## dbo -0.5191 -0.78586 -0.13145 -0.1546 -0.17626  0.08252

3.1.5 Selecionando as variĂ¡veis

# Forward selection of variables:
fwd.sel <- ordiR2step(rda(spe.hel ~ 1, data = env.z), # limite inferior do modelo (modelo nulo)
               scope = formula(spe.rda), # limite superior do modelo (o modelo "completo")
               direction = "forward",
               R2scope = TRUE, # nĂ£o pode superar o R2 do modelo "completo"
               pstep = 1000,
               trace = TRUE) # se Ă© TRUE, vejo o processo passo a passo
## Step: R2.adj= 0 
## Call: spe.hel ~ 1 
##  
##                 R2.adjusted
## <All variables>  0.58643531
## + alt            0.30317903
## + oxy            0.27664565
## + deb            0.26284719
## + nit            0.25885656
## + dbo            0.16253018
## + dur            0.14287362
## + pho            0.13366338
## + amm            0.12940835
## + pen            0.07071011
## <none>           0.00000000
## + pH            -0.01877893
## 
##       Df     AIC      F Pr(>F)   
## + alt  1 -28.504 13.182  0.002 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Step: R2.adj= 0.303179 
## Call: spe.hel ~ alt 
##  
##                 R2.adjusted
## <All variables>   0.5864353
## + oxy             0.4530243
## + dbo             0.4034321
## + amm             0.3755280
## + pho             0.3708315
## + nit             0.3462991
## + pen             0.3371717
## + deb             0.3121070
## + dur             0.3116743
## <none>            0.3031790
## + pH              0.2990327
## 
##       Df    AIC      F Pr(>F)   
## + oxy  1 -34.62 8.3967  0.002 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Step: R2.adj= 0.4530243 
## Call: spe.hel ~ alt + oxy 
##  
##                 R2.adjusted
## <All variables>   0.5864353
## + dbo             0.5401552
## + pho             0.5117625
## + amm             0.5028443
## + pen             0.5006494
## + dur             0.4712537
## + deb             0.4647864
## <none>            0.4530243
## + nit             0.4476588
## + pH              0.4392323
## 
##       Df     AIC      F Pr(>F)   
## + dbo  1 -38.789 5.9264  0.002 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Step: R2.adj= 0.5401552 
## Call: spe.hel ~ alt + oxy + dbo 
##  
##                 R2.adjusted
## + pen             0.5947636
## <All variables>   0.5864353
## + dur             0.5621437
## + deb             0.5474307
## <none>            0.5401552
## + pho             0.5372307
## + amm             0.5339205
## + nit             0.5338362
## + pH              0.5296165

Quais variĂ¡veis foram retidas no modelo?

fwd.sel$call
## rda(formula = spe.hel ~ alt + oxy + dbo, data = env.z)

Esse Ă© o novo modelo, com as variĂ¡veis que foram retidas na seleĂ§Ă£o, temos que reescrever esse novo modelo para prosseguir

spe.rda.signif <- rda(spe.hel ~ alt + oxy + dbo, data = env.z)
# verifique o R2 ajustado (corrigido para o nĂºmero de variĂ¡veis explicativas)
RsquareAdj(spe.rda.signif)
## $r.squared
## [1] 0.5894243
## 
## $adj.r.squared
## [1] 0.5401552

3.1.6 Avalianda a significĂ¢ncia da RDA

significĂ¢ncia do modelo

anova.cca(spe.rda.signif, step = 1000)

significĂ¢ncia dos termos

anova.cca(spe.rda.signif, step = 1000, by = "term")

3.1.7 Plot dos dados

library(ggvegan)
autoplot(spe.rda.signif)