Executive Networks

##                Df Sum Sq Mean Sq F value Pr(>F)  
## Stress.Level.2  1  24757   24757   4.277 0.0435 *
## Residuals      53 306815    5789                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Descriptive Statistics

## # A tibble: 2 × 4
##   Stress.Level.2     N  Mean    SD
##   <fct>          <int> <dbl> <dbl>
## 1 LOW               27  148.  79.8
## 2 HIGH              28  190.  72.3

Boxplot

Error Bar Plot

A one way ANOVA indicated that there is a significant difference in Executive Networks between High Stress (M = 190.34, SD = 72.30) and Low Stress (M = 147.90, SD = 79.82), F(1, 53) = 4.28, p < 0.05.

D Prime

##                Df Sum Sq Mean Sq F value Pr(>F)  
## Stress.Level.2  1  1.317  1.3170   5.107  0.028 *
## Residuals      52 13.409  0.2579                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
## 
## 
## Table 2 
## 
## ANOVA results
##  
## 
##       Predictor df_num df_den SS_num SS_den    F    p ges
##  Stress.Level.2      1     52   1.32  13.41 5.11 .028 .09
## 
## Note. df_num indicates degrees of freedom numerator. df_den indicates degrees of freedom denominator. 
## SS_num indicates sum of squares numerator. SS_den indicates sum of squares denominator. 
## ges indicates generalized eta-squared.
## 

Descriptive Statistics

## # A tibble: 2 × 4
##   Stress.Level.2     N  Mean    SD
##   <fct>          <int> <dbl> <dbl>
## 1 LOW               27 0.760 0.381
## 2 HIGH              28 1.07  0.602

Boxplot

Error Bar Plot

A one way ANOVA indicated that there is a significant difference in D Prime between High Stress (M = 1.07, SD = 0.60) and Low Stress (M = 0.76, SD = 0.38), F(1, 52) = 5.11, p < 0.05.

C Score

##                Df Sum Sq Mean Sq F value Pr(>F)   
## Stress.Level.2  1 0.4167  0.4167   9.559 0.0032 **
## Residuals      52 2.2668  0.0436                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
## 
## 
## Table 3 
## 
## ANOVA results
##  
## 
##       Predictor df_num df_den SS_num SS_den    F    p ges
##  Stress.Level.2      1     52   0.42   2.27 9.56 .003 .16
## 
## Note. df_num indicates degrees of freedom numerator. df_den indicates degrees of freedom denominator. 
## SS_num indicates sum of squares numerator. SS_den indicates sum of squares denominator. 
## ges indicates generalized eta-squared.
## 

Descriptive Statistics

## # A tibble: 2 × 4
##   Stress.Level.2     N  Mean    SD
##   <fct>          <int> <dbl> <dbl>
## 1 LOW               27  1.47 0.141
## 2 HIGH              28  1.65 0.256

Boxplot

Error Bar Plot

A one way ANOVA indicated that there is a significant difference in C score between High Stress (M =1.65, SD = 0.26) and Low Stress (M = 1.47, SD = 0.14), F(1, 52) = 9.56, p < 0.01, eta-squared = 0.1746364.

-END-