## Df Sum Sq Mean Sq F value Pr(>F)
## Stress.Level.2 1 24757 24757 4.277 0.0435 *
## Residuals 53 306815 5789
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Descriptive Statistics
## # A tibble: 2 × 4
## Stress.Level.2 N Mean SD
## <fct> <int> <dbl> <dbl>
## 1 LOW 27 148. 79.8
## 2 HIGH 28 190. 72.3
Boxplot
Error Bar Plot
A one way ANOVA indicated that there is a significant difference in Executive Networks between High Stress (M = 190.34, SD = 72.30) and Low Stress (M = 147.90, SD = 79.82), F(1, 53) = 4.28, p < 0.05.
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress.Level.2 1 1.317 1.3170 5.107 0.028 *
## Residuals 52 13.409 0.2579
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##
##
## Table 2
##
## ANOVA results
##
##
## Predictor df_num df_den SS_num SS_den F p ges
## Stress.Level.2 1 52 1.32 13.41 5.11 .028 .09
##
## Note. df_num indicates degrees of freedom numerator. df_den indicates degrees of freedom denominator.
## SS_num indicates sum of squares numerator. SS_den indicates sum of squares denominator.
## ges indicates generalized eta-squared.
##
Descriptive Statistics
## # A tibble: 2 × 4
## Stress.Level.2 N Mean SD
## <fct> <int> <dbl> <dbl>
## 1 LOW 27 0.760 0.381
## 2 HIGH 28 1.07 0.602
Boxplot
Error Bar Plot
A one way ANOVA indicated that there is a significant difference in D Prime between High Stress (M = 1.07, SD = 0.60) and Low Stress (M = 0.76, SD = 0.38), F(1, 52) = 5.11, p < 0.05.
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress.Level.2 1 0.4167 0.4167 9.559 0.0032 **
## Residuals 52 2.2668 0.0436
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##
##
## Table 3
##
## ANOVA results
##
##
## Predictor df_num df_den SS_num SS_den F p ges
## Stress.Level.2 1 52 0.42 2.27 9.56 .003 .16
##
## Note. df_num indicates degrees of freedom numerator. df_den indicates degrees of freedom denominator.
## SS_num indicates sum of squares numerator. SS_den indicates sum of squares denominator.
## ges indicates generalized eta-squared.
##
Descriptive Statistics
## # A tibble: 2 × 4
## Stress.Level.2 N Mean SD
## <fct> <int> <dbl> <dbl>
## 1 LOW 27 1.47 0.141
## 2 HIGH 28 1.65 0.256
Boxplot
Error Bar Plot
A one way ANOVA indicated that there is a significant difference in C score between High Stress (M =1.65, SD = 0.26) and Low Stress (M = 1.47, SD = 0.14), F(1, 52) = 9.56, p < 0.01, eta-squared = 0.1746364.
-END-