Q1

Create a list using R with the following values g1=1:10, g2=“R Programming”, g3= “HTML”. Then, count the number of objects in the list. After that, get the length of the first two vectors of the given list.

mylist<- list(g1=c(1:10), g2="R Programming", g3="HTML")
print(mylist)
## $g1
##  [1]  1  2  3  4  5  6  7  8  9 10
## 
## $g2
## [1] "R Programming"
## 
## $g3
## [1] "HTML"
length(mylist)
## [1] 3
length(mylist[[1]])
## [1] 10
length(mylist[[2]])
## [1] 1

Q2

Find all elements of a list1 that are not given in list2 using R. Given list1 consists of “x”, “y”, “z” and list2 consists of “x”, “y”, “z”, “X”, “Y”, “Z”. (You can use the setdiff())

list1<-list(c("x", "y", "z"))
list2<-list(c("x", "y", "z", "X", "Y", "Z"))
setdiff(list1[[1]], list2[[1]])
## character(0)

Q3

Create a list using the following values (“G022”, “G003”, “G013”, “G007”, “G012” and then list down the number of items in the list. Then, display the second element in the list. After that, add a new item “G018”to the list and then display the list in ascending order.

mylist<- list("G022", "G003", "G013", "G007", "G012")
mylist
## [[1]]
## [1] "G022"
## 
## [[2]]
## [1] "G003"
## 
## [[3]]
## [1] "G013"
## 
## [[4]]
## [1] "G007"
## 
## [[5]]
## [1] "G012"
mylist1<- append(mylist, "G018")
mylist1
## [[1]]
## [1] "G022"
## 
## [[2]]
## [1] "G003"
## 
## [[3]]
## [1] "G013"
## 
## [[4]]
## [1] "G007"
## 
## [[5]]
## [1] "G012"
## 
## [[6]]
## [1] "G018"
mylist2<-as.list(sort(unlist(mylist1)))
mylist2
## [[1]]
## [1] "G003"
## 
## [[2]]
## [1] "G007"
## 
## [[3]]
## [1] "G012"
## 
## [[4]]
## [1] "G013"
## 
## [[5]]
## [1] "G018"
## 
## [[6]]
## [1] "G022"

Q4

Create four vectors a, b, c, and d with 3 integers. Combine all the vectors to become a 4x3 matrix. Add a vector with sequence of number from 1 to 4 to the matrix by row.

a<- c(1, 2, 3)
b<- c(4, 5, 6)
c<- c(7, 8, 9)
d<- c(10, 11, 12)
matrix1<- matrix(c(a, b, c, d), 4, 3, byrow = TRUE)
e<- sequence(4, 1:4)
matrix1<-rbind(t(matrix1), e)
print(matrix1)
##   [,1] [,2] [,3] [,4]
##      1    4    7   10
##      2    5    8   11
##      3    6    9   12
## e    1    2    3    4

Q5

A and B is a 3x4 matrix. Create an R Script to multiply matrix A and B to get the 3x3 dimension.

A<- matrix(sample(1:10, 12, replace = TRUE), 3, 4)
B<- matrix(sample(1:10, 12, replace = TRUE), 3, 4)
C<- A%*%t(B)
print(C)
##      [,1] [,2] [,3]
## [1,]  187  142  156
## [2,]  219  105  199
## [3,]  190  131  135

Q6

Create a matrix with 10 rows and 2 columns, extract a sub-matrix from original matrix which includes the last 5 rows.

matrix1<- matrix(sample(1:10, 20, replace = TRUE), 10, 2)
matrix1
##       [,1] [,2]
##  [1,]    7    9
##  [2,]    1    4
##  [3,]   10    3
##  [4,]    9   10
##  [5,]    6    5
##  [6,]    7   10
##  [7,]    7    9
##  [8,]    1    3
##  [9,]   10    4
## [10,]    7    2
matrix1[6:10,]
##      [,1] [,2]
## [1,]    7   10
## [2,]    7    9
## [3,]    1    3
## [4,]   10    4
## [5,]    7    2

Q7

A square matrix A is said to be invertible if there exists a matrix B such that AB = BA = I. Generate a 2x2 matrix A as below. Then, compute B.

A<- matrix(c(2, 2, 4, 2), 2, 2, byrow = TRUE)
print(B<-solve(A))
##      [,1] [,2]
## [1,] -0.5  0.5
## [2,]  1.0 -0.5

Q8

With regards to the mtcars dataset:

a.retrieve the number of columns

b.retrieve the number of rows

c.retrieve data value from row 3 and column 5

d.retrieve data value from row 3 and column 5 using the names

e.retrieve data of a row (Volvo 142E)

f.retrieve data of column mpg

g.retrieve data of column hp and qsec

#a
cat("columns=", columns<- ncol(mtcars))
## columns= 11
#b
cat("rows=", rows<- nrow(mtcars))
## rows= 32
#c
print(mtcars[3, 5])
## [1] 3.85
#d
print(mtcars["Datsun 710", "drat"])
## [1] 3.85
#e
print(mtcars["Volvo 142E",])
##             mpg cyl disp  hp drat   wt qsec vs am gear carb
## Volvo 142E 21.4   4  121 109 4.11 2.78 18.6  1  1    4    2
#f
print(mtcars["mpg"])
##                      mpg
## Mazda RX4           21.0
## Mazda RX4 Wag       21.0
## Datsun 710          22.8
## Hornet 4 Drive      21.4
## Hornet Sportabout   18.7
## Valiant             18.1
## Duster 360          14.3
## Merc 240D           24.4
## Merc 230            22.8
## Merc 280            19.2
## Merc 280C           17.8
## Merc 450SE          16.4
## Merc 450SL          17.3
## Merc 450SLC         15.2
## Cadillac Fleetwood  10.4
## Lincoln Continental 10.4
## Chrysler Imperial   14.7
## Fiat 128            32.4
## Honda Civic         30.4
## Toyota Corolla      33.9
## Toyota Corona       21.5
## Dodge Challenger    15.5
## AMC Javelin         15.2
## Camaro Z28          13.3
## Pontiac Firebird    19.2
## Fiat X1-9           27.3
## Porsche 914-2       26.0
## Lotus Europa        30.4
## Ford Pantera L      15.8
## Ferrari Dino        19.7
## Maserati Bora       15.0
## Volvo 142E          21.4
#g
print(mtcars[c("mpg", "qsec")])
##                      mpg  qsec
## Mazda RX4           21.0 16.46
## Mazda RX4 Wag       21.0 17.02
## Datsun 710          22.8 18.61
## Hornet 4 Drive      21.4 19.44
## Hornet Sportabout   18.7 17.02
## Valiant             18.1 20.22
## Duster 360          14.3 15.84
## Merc 240D           24.4 20.00
## Merc 230            22.8 22.90
## Merc 280            19.2 18.30
## Merc 280C           17.8 18.90
## Merc 450SE          16.4 17.40
## Merc 450SL          17.3 17.60
## Merc 450SLC         15.2 18.00
## Cadillac Fleetwood  10.4 17.98
## Lincoln Continental 10.4 17.82
## Chrysler Imperial   14.7 17.42
## Fiat 128            32.4 19.47
## Honda Civic         30.4 18.52
## Toyota Corolla      33.9 19.90
## Toyota Corona       21.5 20.01
## Dodge Challenger    15.5 16.87
## AMC Javelin         15.2 17.30
## Camaro Z28          13.3 15.41
## Pontiac Firebird    19.2 17.05
## Fiat X1-9           27.3 18.90
## Porsche 914-2       26.0 16.70
## Lotus Europa        30.4 16.90
## Ford Pantera L      15.8 14.50
## Ferrari Dino        19.7 15.50
## Maserati Bora       15.0 14.60
## Volvo 142E          21.4 18.60

Q9 Create a DataFrame using the following data. SK020 is the ProductCode, Enfagrow A+ is the ProductName and 36.79 is the Price. Then, solve the following statements

a.Display the information above in a table.

b.Display the information above in a table sort by product name in ascending order.

c.Add a new product SK023, Johnson PH, 5.99 to the data frame and display the information in a table sort by product name in ascending order.

d.Display all rows where product price more than 8.00.

e.Display the product with maximum price and minimum price.

f.Count the number of items where the product name begins with “A”

df<- data.frame(
  ProductCode=c("SK020", "SK042", "SK013", "SK066", "SK079"), 
  ProductName=c("Enfagrow A+", "Ayamas", "100 Plus", "Ali Cafe", "Dettol Natural"),
  Price=c(36.79, 9.99, 6.49, 8.99, 4.99)
  )
#a
df
##   ProductCode    ProductName Price
## 1       SK020    Enfagrow A+ 36.79
## 2       SK042         Ayamas  9.99
## 3       SK013       100 Plus  6.49
## 4       SK066       Ali Cafe  8.99
## 5       SK079 Dettol Natural  4.99
#b
df_b<-df[order(df$ProductName),]
print(df_b)
##   ProductCode    ProductName Price
## 3       SK013       100 Plus  6.49
## 4       SK066       Ali Cafe  8.99
## 2       SK042         Ayamas  9.99
## 5       SK079 Dettol Natural  4.99
## 1       SK020    Enfagrow A+ 36.79
#c
new_row<- list("SK023", "Johnson PH", 5.99)
df<-rbind(df, new_row)
df_c<-df[order(df$ProductName),]
print(df_c)
##   ProductCode    ProductName Price
## 3       SK013       100 Plus  6.49
## 4       SK066       Ali Cafe  8.99
## 2       SK042         Ayamas  9.99
## 5       SK079 Dettol Natural  4.99
## 1       SK020    Enfagrow A+ 36.79
## 6       SK023     Johnson PH  5.99
#d
df_e<- subset(df, Price>8)
print(df_e)
##   ProductCode ProductName Price
## 1       SK020 Enfagrow A+ 36.79
## 2       SK042      Ayamas  9.99
## 4       SK066    Ali Cafe  8.99
#e
df_max<- df[which.max(df$Price),]
print(df_max)
##   ProductCode ProductName Price
## 1       SK020 Enfagrow A+ 36.79
df_min<- df[which.min(df$Price),]
print(df_min)
##   ProductCode    ProductName Price
## 5       SK079 Dettol Natural  4.99
#f
df_f <- subset(df, substr(ProductName,1,1) =="A")
print(df_f)
##   ProductCode ProductName Price
## 2       SK042      Ayamas  9.99
## 4       SK066    Ali Cafe  8.99
print(nrow(df_f))
## [1] 2