# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(timetk)
# Source function
source("../00_scripts/simulateaccumulation.R")

1 Import stock prices

Revise the code below.

symbols <- c("WM", "TSLA", "BIG", "PLUG", "AMZN")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2022-12-8")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("symbols", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(symbols) %>% pull()
symbols
## [1] "AMZN" "BIG"  "PLUG" "TSLA" "WM"
# weights
weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
weights
## [1] 0.2 0.2 0.2 0.2 0.2
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AMZN        0.2
## 2 BIG         0.2
## 3 PLUG        0.2
## 4 TSLA        0.2
## 5 WM          0.2

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = symbols, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 120 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0501 
##  2 2013-02-28 -0.198  
##  3 2013-03-28  0.0934 
##  4 2013-04-30  0.0126 
##  5 2013-05-31  0.295  
##  6 2013-06-28  0.00354
##  7 2013-07-31  0.126  
##  8 2013-08-30  0.0576 
##  9 2013-09-30  0.130  
## 10 2013-10-31 -0.0494 
## # … with 110 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.01859362
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.09296944

6 Simulation function

No need

7 Running multiple simulations

# Create a vector of 1s as a starting point 
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# for reproducible research 
set.seed(1234)

monte_carlo_sim_51 <- starts %>%
    
    # Simulate 
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N             = 120,
                                        mean_return   = mean_port_return,
                                        sd_return     = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names 
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # … with 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75,1)) %>%
    round(2)
##    0%   25%   50%   75%  100% 
##  0.72  2.43  5.94 12.20 84.38

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return ) {

    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   325.
## 2   326.
## 3   320.
## 4   312.
## 5   315.
## 6   314.
## 8 Visualizing simulations with ggplot

Line Plot of Simulations with Max, Median, and Min

# Step 1 Summarize data into maximum, median, and minimum of last value 
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max    = max(growth),
              median = median(growth),
              min    = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  84.4   5.94 0.724
# Step 2 Plot 
monte_carlo_sim_51 %>%
    
    # Filter for max, median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
               last(growth) ==sim_summary$median |
               last(growth) ==sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months",
         subtitle =  "Maximum, Median, and Minimum Simulation")

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis? Around 7% can be expexted the best case would be roughlt 90% and the worst would be around 1% growth.