# Load packages
# Core
library(tidyverse)
library(tidyquant)
# Source function
source("../00_scripts/simulate_accumulation.R")
Revise the code below.
symbols <- c("RTX", "GD", "LMT", "BA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2022-11-30")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Revise the code for weights.
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "BA" "GD" "LMT" "RTX"
# weights
weights <- c(0.35, 0.30, 0.20, 0.15)
weights
## [1] 0.35 0.30 0.20 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 BA 0.35
## 2 GD 0.3
## 3 LMT 0.2
## 4 RTX 0.15
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 119 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0224
## 2 2013-02-28 0.0349
## 3 2013-03-28 0.0727
## 4 2013-04-30 0.0405
## 5 2013-05-31 0.0642
## 6 2013-06-28 0.0184
## 7 2013-07-31 0.0764
## 8 2013-08-30 -0.0114
## 9 2013-09-30 0.0773
## 10 2013-10-31 0.0423
## # … with 109 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.01116809
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.06662271
No need
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(100, sims) %>%
set_names(paste0("sims", 1:sims))
starts
## sims1 sims2 sims3 sims4 sims5 sims6 sims7 sims8 sims9 sims10 sims11
## 100 100 100 100 100 100 100 100 100 100 100
## sims12 sims13 sims14 sims15 sims16 sims17 sims18 sims19 sims20 sims21 sims22
## 100 100 100 100 100 100 100 100 100 100 100
## sims23 sims24 sims25 sims26 sims27 sims28 sims29 sims30 sims31 sims32 sims33
## 100 100 100 100 100 100 100 100 100 100 100
## sims34 sims35 sims36 sims37 sims38 sims39 sims40 sims41 sims42 sims43 sims44
## 100 100 100 100 100 100 100 100 100 100 100
## sims45 sims46 sims47 sims48 sims49 sims50 sims51
## 100 100 100 100 100 100 100
# Simulate
# For reproducible research
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 240,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 12,291 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sims1 100
## 2 1 sims2 100
## 3 1 sims3 100
## 4 1 sims4 100
## 5 1 sims5 100
## 6 1 sims6 100
## 7 1 sims7 100
## 8 1 sims8 100
## 9 1 sims9 100
## 10 1 sims10 100
## # … with 12,281 more rows
# Find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 99.92 566.07 1165.56 2125.22 5339.70
Line Plot of Simulations with Max, Median, and Min
# Step 1: Summarize data into max, median, and min of the last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 5340. 1166. 99.9
# Step 2 Plot
monte_carlo_sim_51 %>%
# Filter for max, median, and min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $100 over 120 months",
subtitle = "Maximum, Median, and Minimum Simulation")