Setting Environment

library(epiDisplay)
## Warning: package 'epiDisplay' was built under R version 4.2.2
library(tidyverse)
## Warning: package 'readr' was built under R version 4.2.2
df <- read_csv("D:/research/thesis/data/bugfix2_attach_caregiver.csv")

Prevelance of delinquency by types

(1) “using indecent language in online chat or forum,”


Original

tab1(df$B24j, cum.percent = TRUE)

## df$B24j : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 1            1691     59.6       59.6     59.8       59.8
## 2             844     29.7       89.3     29.8       89.6
## 3             209      7.4       96.7      7.4       97.0
## 4              85      3.0       99.6      3.0      100.0
## <NA>           10      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0


Dichotomous Recode

tab1(df$b24j, cum.percent = TRUE)

## df$b24j : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            1691     59.6       59.6     59.8       59.8
## 1            1138     40.1       99.6     40.2      100.0
## <NA>           10      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(2) “using or distributing pirated software,”


Original

tab1(df$B24k, cum.percent = TRUE)

## df$B24k : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 1            2509     88.4       88.4     88.7       88.7
## 2             232      8.2       96.5      8.2       96.9
## 3              50      1.8       98.3      1.8       98.7
## 4              37      1.3       99.6      1.3      100.0
## <NA>           11      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b24j, cum.percent = TRUE)

## df$b24j : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            1691     59.6       59.6     59.8       59.8
## 1            1138     40.1       99.6     40.2      100.0
## <NA>           10      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(3) “using a fake identity to communicate with others frequently,”


Original

tab1(df$B24l, cum.percent = TRUE)

## df$B24l : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 1            2441     86.0       86.0     86.5       86.5
## 2             274      9.7       95.6      9.7       96.2
## 3              70      2.5       98.1      2.5       98.7
## 4              38      1.3       99.4      1.3      100.0
## <NA>           16      0.6      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0


Dichotomous Recode

tab1(df$b24l, cum.percent = TRUE)

## df$b24l : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2441     86.0       86.0     86.5       86.5
## 1             382     13.5       99.4     13.5      100.0
## <NA>           16      0.6      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(4) “logging into or using other’s online account without authorization,”


Original

tab1(df$B24m, cum.percent = TRUE)

## df$B24m : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 1            2539     89.4       89.4     89.7       89.7
## 2             189      6.7       96.1      6.7       96.4
## 3              55      1.9       98.0      1.9       98.4
## 4              46      1.6       99.6      1.6      100.0
## <NA>           10      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b24m, cum.percent = TRUE)

## df$b24m : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2539     89.4       89.4     89.7       89.7
## 1             290     10.2       99.6     10.3      100.0
## <NA>           10      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(5) “browsing or downloading pornography online intentionally,”


Original

tab1(df$B24n, cum.percent = TRUE)

## df$B24n : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0               3      0.1        0.1      0.1        0.1
## 1            2668     94.0       94.1     94.3       94.4
## 2              92      3.2       97.3      3.3       97.7
## 3              32      1.1       98.5      1.1       98.8
## 4              34      1.2       99.6      1.2      100.0
## <NA>           10      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b24n, cum.percent = TRUE)

## df$b24n : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2668     94.0       94.0     94.3       94.3
## 1             161      5.7       99.6      5.7      100.0
## <NA>           10      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(6) “cigarette smoking,”


Original

tab1(df$B27a, cum.percent = TRUE)

## df$B27a : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2357     83.0       83.0     83.2       83.2
## 1             314     11.1       94.1     11.1       94.3
## 2             101      3.6       97.6      3.6       97.9
## 3              60      2.1       99.8      2.1      100.0
## <NA>            7      0.2      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27a, cum.percent = TRUE)

## df$b27a : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2357     83.0       83.0     83.2       83.2
## 1             475     16.7       99.8     16.8      100.0
## <NA>            7      0.2      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(7) “drinking alcohol,”


Original

tab1(df$B27b, cum.percent = TRUE)

## df$B27b : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            1704     60.0       60.0     60.3       60.3
## 1             738     26.0       86.0     26.1       86.4
## 2             321     11.3       97.3     11.4       97.7
## 3              64      2.3       99.6      2.3      100.0
## <NA>           12      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27b, cum.percent = TRUE)

## df$b27b : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            1704     60.0       60.0     60.3       60.3
## 1            1123     39.6       99.6     39.7      100.0
## <NA>           12      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(8) “getting drunk,”


Original

tab1(df$B27c, cum.percent = TRUE)

## df$B27c : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2559     90.1       90.1     90.4       90.4
## 1             194      6.8       97.0      6.9       97.2
## 2              50      1.8       98.7      1.8       99.0
## 3              28      1.0       99.7      1.0      100.0
## <NA>            8      0.3      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27c, cum.percent = TRUE)

## df$b27c : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2559     90.1       90.1     90.4       90.4
## 1             272      9.6       99.7      9.6      100.0
## <NA>            8      0.3      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(9) “skipping school,”


Original

tab1(df$B27d, cum.percent = TRUE)

## df$B27d : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2554     90.0       90.0     90.2       90.2
## 1             208      7.3       97.3      7.3       97.5
## 2              50      1.8       99.0      1.8       99.3
## 3              20      0.7       99.8      0.7      100.0
## <NA>            7      0.2      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27d, cum.percent = TRUE)

## df$b27d : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2554     90.0       90.0     90.2       90.2
## 1             278      9.8       99.8      9.8      100.0
## <NA>            7      0.2      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(10) “gambling,”


Original

tab1(df$B27e, cum.percent = TRUE)

## df$B27e : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2606     91.8       91.8     92.0       92.0
## 1             152      5.4       97.1      5.4       97.3
## 2              63      2.2       99.4      2.2       99.5
## 3              13      0.5       99.8      0.5      100.0
## <NA>            5      0.2      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27e, cum.percent = TRUE)

## df$b27e : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2606     91.8       91.8       92         92
## 1             228      8.0       99.8        8        100
## <NA>            5      0.2      100.0        0        100
##   Total      2839    100.0      100.0      100        100



(11) “stealing,”


Original

tab1(df$B27f, cum.percent = TRUE)

## df$B27f : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2759     97.2       97.2     97.4       97.4
## 1              59      2.1       99.3      2.1       99.5
## 2               7      0.2       99.5      0.2       99.7
## 3               8      0.3       99.8      0.3      100.0
## <NA>            6      0.2      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27f, cum.percent = TRUE)

## df$b27f : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2759     97.2       97.2     97.4       97.4
## 1              74      2.6       99.8      2.6      100.0
## <NA>            6      0.2      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(12) “robbery,”


Original

tab1(df$B27g, cum.percent = TRUE)

## df$B27g : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2807     98.9       98.9     99.3       99.3
## 1              13      0.5       99.3      0.5       99.7
## 2               4      0.1       99.5      0.1       99.9
## 3               4      0.1       99.6      0.1      100.0
## <NA>           11      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27g, cum.percent = TRUE)

## df$b27g : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2807     98.9       98.9     99.3       99.3
## 1              21      0.7       99.6      0.7      100.0
## <NA>           11      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(13) “vandalism,” (including graffitiing)


Original

tab1(df$B27h, cum.percent = TRUE)

## df$B27h : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2216     78.1       78.1     78.3       78.3
## 1             530     18.7       96.7     18.7       97.1
## 2              66      2.3       99.0      2.3       99.4
## 3              17      0.6       99.6      0.6      100.0
## <NA>           10      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27h, cum.percent = TRUE)

## df$b27h : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2216     78.1       78.1     78.3       78.3
## 1             613     21.6       99.6     21.7      100.0
## <NA>           10      0.4      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(14) “fighting with others physically,”


Original

tab1(df$B27i, cum.percent = TRUE)

## df$B27i : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2219     78.2       78.2     78.4       78.4
## 1             443     15.6       93.8     15.6       94.0
## 2             134      4.7       98.5      4.7       98.8
## 3              35      1.2       99.7      1.2      100.0
## <NA>            8      0.3      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27i, cum.percent = TRUE)

## df$b27i : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2219     78.2       78.2     78.4       78.4
## 1             612     21.6       99.7     21.6      100.0
## <NA>            8      0.3      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0



(15) “deception for money or things.”


Original

tab1(df$B27j, cum.percent = TRUE)

## df$B27j : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2805     98.8       98.8     99.0       99.0
## 1              16      0.6       99.4      0.6       99.5
## 2               3      0.1       99.5      0.1       99.6
## 3              10      0.4       99.8      0.4      100.0
## <NA>            5      0.2      100.0      0.0      100.0
##   Total      2839    100.0      100.0    100.0      100.0

Dichotomous Recode

tab1(df$b27j, cum.percent = TRUE)

## df$b27j : 
##         Frequency   %(NA+) cum.%(NA+)   %(NA-) cum.%(NA-)
## 0            2805     98.8       98.8       99         99
## 1              29      1.0       99.8        1        100
## <NA>            5      0.2      100.0        0        100
##   Total      2839    100.0      100.0      100        100

Summary

alt text here