# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # … with 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899134
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] 0.0047971715 0.0109596698 0.0295569909 0.0119701241 -0.0238972651
## [6] -0.0177751146 0.0003918942 0.0211387863 0.0151149429 0.0007943032
## [11] -0.0100295661 -0.0222735109 0.0673171782 -0.0073131989 -0.0239019662
## [16] 0.0210663301 0.0214666169 -0.0294118132 0.0296454197 -0.0228185084
## [21] 0.0089243451 -0.0132477955 -0.0082321479 -0.0120306721 0.0150494711
## [26] -0.0110151050 0.0133332383 -0.0160666111 0.0404155356 0.0057249631
## [31] -0.0017170627 -0.0250991182 -0.0004696129 0.0170965798 0.0197886252
## [36] -0.0152822581 -0.0156671148 0.0077228760 0.0126863951 -0.0471283183
## [41] 0.0296164918 0.0481336536 0.0079012665 0.0154117015 0.0070840419
## [46] -0.0283119207 -0.0391099293 0.0004032278 0.0344768637 0.0342003243
## [51] 0.0001150041 0.0302052818 0.0100324959 0.0085446308 -0.0259362168
## [56] 0.0073060030 -0.0235980435 0.0247166756 0.0354578044 -0.0344367804
## [61] 0.0155893138 0.0357179619 -0.0154018157 0.0271472338 -0.0204369638
## [66] -0.0087997723 -0.0273623830 -0.0027157204 -0.0147221618 -0.0062895797
## [71] 0.0257205844 -0.0169691329 0.0301994416 -0.0217028164 0.0485265774
## [76] -0.0415171281 0.0077565888 -0.0338247526 -0.0087619147 0.0306796967
## [81] -0.0153283569 -0.0042885563 -0.0018942633 0.0258371498 0.0243540099
## [86] -0.0103762100 0.0008569464 0.0004585552 0.0179790952 -0.0796394028
## [91] 0.0111112830 -0.0308614053 0.0234918221 0.0109588871 0.0126338027
## [96] -0.0096811310 -0.0435626249 0.0054425970 0.0136281059 -0.0377065951
## [101] 0.0226812801 -0.0343167565 0.0387229048 0.0100338599 0.0224094523
## [106] -0.0153378742 0.0496024704 0.0127671772 -0.0275670009 0.0195991278
## [111] 0.0080966108 -0.0365117583 0.0075434650 0.0154431319 -0.0061224418
## [116] 0.0535357294 0.0100700462 -0.0146361088 0.0173961520 0.0140060711
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 1.00
## 3 1.01
## 4 1.03
## 5 1.01
## 6 0.976
## 7 0.982
## 8 1.00
## 9 1.02
## 10 1.02
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 1.00
## 3 1.02
## 4 1.05
## 5 1.06
## 6 1.03
## 7 1.01
## 8 1.02
## 9 1.04
## 10 1.05
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 2.443517
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 368.
## 2 369.
## 3 371.
## 4 375.
## 5 371.
## 6 374.
dump(list = c("simulate_accumulation"),
file = "../00_scripts/simulate_accumulation.R")
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
monte_carlo_sim_51 <- starts %>%
map_dfc(.x = .,
.f =~ simulate_accumulation(initial_value = .x, N = 120, mean_return = mean_port_return, sd_return = stddev_port_return)) %>%
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
set_names(c("month", names(starts))) %>%
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # … with 6,161 more rows
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.50, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 1.19 1.58 1.96 2.44 2.89
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5))+
labs(title = "Simulating growth of $1 over 120 months")
Line plot with max, median, and min
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth), median = median(growth), min = min(growth))
monte_carlo_sim_51 %>%
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5))+
theme(plot.subtitle = element_text(hjust = 0.5))+
labs(title = "Simulating growth of $1 over 120 months",
subtitle = "Maximum, Median, and Minimum Simulation")