#Hypothesis:Null Hypothesis
#αγ)i,k=0
#(αλ)i,l=0
#αi=0
#γk=0
#λl=0
#Alternate Hypothesis
#(αγ)i,k≠0
#(αλ)i,l≠0
#αi≠0
#γk≠0
#λl≠0
f <- c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)
a <- c(-1,1)
b <- c(-1,-1,1,1)
c <- c(-1,-1,-1,-1,1,1,1,1)
d <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
A <- c(rep(a,8))
B <- c(rep(b,4))
C <- c(rep(c,2))
D <- c(rep(d,1))
Data <- data.frame(A,B,C,D,f)
Data
## A B C D f
## 1 -1 -1 -1 -1 12
## 2 1 -1 -1 -1 18
## 3 -1 1 -1 -1 13
## 4 1 1 -1 -1 16
## 5 -1 -1 1 -1 17
## 6 1 -1 1 -1 15
## 7 -1 1 1 -1 20
## 8 1 1 1 -1 15
## 9 -1 -1 -1 1 10
## 10 1 -1 -1 1 25
## 11 -1 1 -1 1 13
## 12 1 1 -1 1 24
## 13 -1 -1 1 1 19
## 14 1 -1 1 1 21
## 15 -1 1 1 1 17
## 16 1 1 1 1 23
Model <- lm(f~A*B*C*D,data = Data)
coef(Model)
## (Intercept) A B C D
## 1.737500e+01 2.250000e+00 2.500000e-01 1.000000e+00 1.625000e+00
## A:B A:C B:C A:D B:D
## -3.750000e-01 -2.125000e+00 1.250000e-01 2.000000e+00 -8.543513e-17
## C:D A:B:C A:B:D A:C:D B:C:D
## 1.110223e-16 5.000000e-01 3.750000e-01 -1.250000e-01 -3.750000e-01
## A:B:C:D
## 5.000000e-01
#Halfnormal Plot
library(DoE.base)
## Warning: package 'DoE.base' was built under R version 4.2.2
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
## method from
## factorize.factor conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
halfnormal(Model)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A A:C A:D D
#Therefore significant effects are A,A:C, A:D,D
Model1 <- aov(f~A+C+D+A*C+A*D,data = Data)
summary(Model1)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 81.00 81.00 49.846 3.46e-05 ***
## C 1 16.00 16.00 9.846 0.010549 *
## D 1 42.25 42.25 26.000 0.000465 ***
## A:C 1 72.25 72.25 44.462 5.58e-05 ***
## A:D 1 64.00 64.00 39.385 9.19e-05 ***
## Residuals 10 16.25 1.62
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(ggfortify)
## Warning: package 'ggfortify' was built under R version 4.2.2
## Loading required package: ggplot2
library(ggplot2)
autoplot(Model1)
interaction.plot(A,D,f)
#By analysis A,C,D appears to be significant