Model Equation
\(Y_{ijk} = \mu +\alpha _{i} + (\beta_{j})_{i} + \varepsilon _{ijk}\)
Hypothesis
Null Hypothesis: \((\beta_{j})_{i} = 0\)
Alternate Hypothesis: \((\beta_{j})_{i} \neq 0\)
Process<-c(rep(1,4),rep(2,4),rep(3,4))
Process<-rep(Process,3)
Batch<-seq(1,4)
Batch<-rep(Batch,9)
Obs<-c(rep(1,12),rep(2,12),rep(3,12))
results<-c(25,19,15,15,29,23,28,35,24,35,38,25,
30,28,17,16,27,24,21,27,25,21,34,29,
26,20,14,13,24,21,27,25,20,24,30,33)
dat1<-data.frame(Process,Batch,Obs,results)
library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
dat1$Process<-as.random(dat1$Process)
dat1$Batch<-as.fixed(dat1$Batch)
dat1$Obs<-as.fixed(dat1$Obs)
model1<-lm(results~Obs+Batch%in%Process,data = dat1)
summary(model1)
##
## Call:
## lm(formula = results ~ Obs + Batch %in% Process, data = dat1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9444 -1.4861 -0.1944 1.3889 7.0556
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.028e+01 2.345e+00 12.911 9.63e-12 ***
## Obs2 -1.000e+00 1.535e+00 -0.651 0.521553
## Obs3 -2.833e+00 1.535e+00 -1.846 0.078459 .
## Batch1:Process1 -2.000e+00 3.070e+00 -0.651 0.521553
## Batch2:Process1 -6.667e+00 3.070e+00 -2.171 0.040975 *
## Batch3:Process1 -1.367e+01 3.070e+00 -4.451 0.000200 ***
## Batch4:Process1 -1.433e+01 3.070e+00 -4.668 0.000118 ***
## Batch1:Process2 -2.333e+00 3.070e+00 -0.760 0.455361
## Batch2:Process2 -6.333e+00 3.070e+00 -2.063 0.051144 .
## Batch3:Process2 -3.667e+00 3.070e+00 -1.194 0.245124
## Batch4:Process2 2.867e-16 3.070e+00 0.000 1.000000
## Batch1:Process3 -6.000e+00 3.070e+00 -1.954 0.063516 .
## Batch2:Process3 -2.333e+00 3.070e+00 -0.760 0.455361
## Batch3:Process3 5.000e+00 3.070e+00 1.628 0.117671
## Batch4:Process3 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.761 on 22 degrees of freedom
## Multiple R-squared: 0.7736, Adjusted R-squared: 0.6399
## F-statistic: 5.783 on 13 and 22 DF, p-value: 0.0001669