\[ y_{ijk} = \mu +\tau_i + \beta_{j(i)} + \gamma_{k(ij)} + \epsilon_{(ijk)l}\\ \tau_i = Effect \; of \;process\\ \beta_{j(i)} = Effect \; of \; batches\\ \gamma_{k(ij)} = Effect \; of \; k^{th} \; batch \; with \; the \; i^{th} \; process\\ \epsilon_{(ijk)l} = Error \; term \; NID(0,\sigma^2) \] # B) Stating the hypothesis
\[ H_0: \mu_{\gamma_{k(ij)}}=0 \\ H_0: \mu_{\gamma_{k(ij)}} \not= 0 \] # C)
library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
values<-c(25,19,15,15,29,23,28,35,24,35,38,25,30,28,17,16,27,24,21,27,25,21,34,29,26,20,14,13,24,21,27,25,20,24,30,33)
batch<-as.random(rep(seq(1,4),9))
Obs<-as.fixed(c(rep(1,12),rep(2,12),rep(3,12)))
process<-as.fixed(rep(c(rep(1,4),rep(2,4),rep(3,4)),3))
dat<-data.frame(process,batch,Obs,values)
dat
## process batch Obs values
## 1 1 1 1 25
## 2 1 2 1 19
## 3 1 3 1 15
## 4 1 4 1 15
## 5 2 1 1 29
## 6 2 2 1 23
## 7 2 3 1 28
## 8 2 4 1 35
## 9 3 1 1 24
## 10 3 2 1 35
## 11 3 3 1 38
## 12 3 4 1 25
## 13 1 1 2 30
## 14 1 2 2 28
## 15 1 3 2 17
## 16 1 4 2 16
## 17 2 1 2 27
## 18 2 2 2 24
## 19 2 3 2 21
## 20 2 4 2 27
## 21 3 1 2 25
## 22 3 2 2 21
## 23 3 3 2 34
## 24 3 4 2 29
## 25 1 1 3 26
## 26 1 2 3 20
## 27 1 3 3 14
## 28 1 4 3 13
## 29 2 1 3 24
## 30 2 2 3 21
## 31 2 3 3 27
## 32 2 4 3 25
## 33 3 1 3 20
## 34 3 2 3 24
## 35 3 3 3 30
## 36 3 4 3 33
model<-lm(values~process+batch%in%process)
gad(model)
## Analysis of Variance Table
##
## Response: values
## Df Sum Sq Mean Sq F value Pr(>F)
## process 2 446.06 223.028 3.5365 0.073563 .
## process:batch 9 567.58 63.065 4.1965 0.002349 **
## Residual 24 360.67 15.028
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model)
From the statistical analysis result, we can see that the interaction effect of process and batches are statistically significant, with a P-value of 0.002349.
The residual plots shows that the variance is not constant. However, the residual data looks fairly normal distributed.