1 Letter a

The model equation can be described as:

\[ y_{ijk}=\mu+\alpha_i+\beta_j+\epsilon_{ijk} \]

2 Letter b

We want to test the hypotheses that only process is significant:

\[ H_0:\alpha=0\\ H_a:\alpha\neq 0 \]

3 Letter c

library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
process <- c(rep(1:3,each=4,3))
batch <- c(rep(1:4,9))
obs <- c(rep(1:3, each=4*3))
response <- c(25,19,15,15,29,23,28,35,24,35,38,25,30,28,17,16,27,24,21,27,25,21,34,29,26,20,14,13,24,21,27,25,20,24,30,33)

dat <- data.frame(process,batch,obs,response)
dat
##    process batch obs response
## 1        1     1   1       25
## 2        1     2   1       19
## 3        1     3   1       15
## 4        1     4   1       15
## 5        2     1   1       29
## 6        2     2   1       23
## 7        2     3   1       28
## 8        2     4   1       35
## 9        3     1   1       24
## 10       3     2   1       35
## 11       3     3   1       38
## 12       3     4   1       25
## 13       1     1   2       30
## 14       1     2   2       28
## 15       1     3   2       17
## 16       1     4   2       16
## 17       2     1   2       27
## 18       2     2   2       24
## 19       2     3   2       21
## 20       2     4   2       27
## 21       3     1   2       25
## 22       3     2   2       21
## 23       3     3   2       34
## 24       3     4   2       29
## 25       1     1   3       26
## 26       1     2   3       20
## 27       1     3   3       14
## 28       1     4   3       13
## 29       2     1   3       24
## 30       2     2   3       21
## 31       2     3   3       27
## 32       2     4   3       25
## 33       3     1   3       20
## 34       3     2   3       24
## 35       3     3   3       30
## 36       3     4   3       33
process <- as.fixed(process)
batch <- as.random(batch)
obs <- as.random(obs)
model <- lm(response~process+batch%in%process)
model
## 
## Call:
## lm(formula = response ~ process + batch %in% process)
## 
## Coefficients:
##     (Intercept)         process2         process3  process1:batch2  
##         27.0000          -0.3333          -4.0000          -4.6667  
## process2:batch2  process3:batch2  process1:batch3  process2:batch3  
##         -4.0000           3.6667         -11.6667          -1.3333  
## process3:batch3  process1:batch4  process2:batch4  process3:batch4  
##         11.0000         -12.3333           2.3333           6.0000
summary(model)
## 
## Call:
## lm(formula = response ~ process + batch %in% process)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.667 -2.417  0.000  1.750  8.333 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      27.0000     2.2381  12.064 1.12e-11 ***
## process2         -0.3333     3.1652  -0.105 0.917004    
## process3         -4.0000     3.1652  -1.264 0.218461    
## process1:batch2  -4.6667     3.1652  -1.474 0.153381    
## process2:batch2  -4.0000     3.1652  -1.264 0.218461    
## process3:batch2   3.6667     3.1652   1.158 0.258086    
## process1:batch3 -11.6667     3.1652  -3.686 0.001160 ** 
## process2:batch3  -1.3333     3.1652  -0.421 0.677323    
## process3:batch3  11.0000     3.1652   3.475 0.001958 ** 
## process1:batch4 -12.3333     3.1652  -3.897 0.000684 ***
## process2:batch4   2.3333     3.1652   0.737 0.468158    
## process3:batch4   6.0000     3.1652   1.896 0.070117 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.877 on 24 degrees of freedom
## Multiple R-squared:  0.7376, Adjusted R-squared:  0.6173 
## F-statistic: 6.132 on 11 and 24 DF,  p-value: 0.0001051
gad(model)
## Analysis of Variance Table
## 
## Response: response
##               Df Sum Sq Mean Sq F value   Pr(>F)   
## process        2 446.06 223.028  3.5365 0.073563 . 
## process:batch  9 567.58  63.065  4.1965 0.002349 **
## Residual      24 360.67  15.028                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the anova test, we can conclude that the process is not significant (p=0.073) at an \(\alpha=0.05\) level of significance. However, this value is really close to 0.05, which may indicate some effect of process in the burning rate and further analysis might be necessary.