1 Question 9:

Reading the Data:

temp<-c(rep(seq(1,3),6))
pos<-c(rep(1,9),rep(2,9))
obs<-c(570,1063,565,565,1080,510,583,1043,590,528,988,526,547,1026,538,521,1004,532)
dat<-data.frame(temp,pos,obs)
dat
##    temp pos  obs
## 1     1   1  570
## 2     2   1 1063
## 3     3   1  565
## 4     1   1  565
## 5     2   1 1080
## 6     3   1  510
## 7     1   1  583
## 8     2   1 1043
## 9     3   1  590
## 10    1   2  528
## 11    2   2  988
## 12    3   2  526
## 13    1   2  547
## 14    2   2 1026
## 15    3   2  538
## 16    1   2  521
## 17    2   2 1004
## 18    3   2  532

PART A: Temp and Position Fixed

Hypothesis:

Null:

\[\alpha_{i}= 0\space\space\forall\space"i"\]

\[ \beta_{j}=0\space\forall"j" \]

\[ (\alpha\beta)_{ij}=0\space\forall"ij" \]

Alternate:

\[\alpha_{i}\neq 0\space\space\exists\space"i"\]

\[ \beta_{j}\neq0\space\exists"j" \]

\[ (\alpha\beta)_{ij}\neq0\space\exists"ij" \]

library(GAD)
temp<-as.fixed(temp)
pos<-as.fixed(pos)

model<-aov(obs~temp+pos+temp*pos)
GAD::gad(model)
## Analysis of Variance Table
## 
## Response: obs
##          Df Sum Sq Mean Sq  F value   Pr(>F)    
## temp      2 945342  472671 1056.117 3.25e-14 ***
## pos       1   7160    7160   15.998 0.001762 ** 
## temp:pos  2    818     409    0.914 0.427110    
## Residual 12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

P-Val Temp = 3.25e-14

p-val position = 0.001762

p-val interaction = 0.427

PART B: Temp and Position ARE Random

library(GAD)
temp<-as.random(temp)
pos<-as.random(pos)

model<-aov(obs~temp+pos+temp*pos)
GAD::gad(model)
## Analysis of Variance Table
## 
## Response: obs
##          Df Sum Sq Mean Sq  F value    Pr(>F)    
## temp      2 945342  472671 1155.518 0.0008647 ***
## pos       1   7160    7160   17.504 0.0526583 .  
## temp:pos  2    818     409    0.914 0.4271101    
## Residual 12   5371     448                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

P-Val Temp = 0.0008647

p-val position = 0.0526

p-val interaction = 0.427

PART C: Temp is Random and Position is fixed

temp<-as.random(temp)
pos<-as.fixed(pos)

model<-aov(obs~temp+pos+temp*pos)
GAD::gad(model)
## Analysis of Variance Table
## 
## Response: obs
##          Df Sum Sq Mean Sq  F value   Pr(>F)    
## temp      2 945342  472671 1056.117 3.25e-14 ***
## pos       1   7160    7160   17.504  0.05266 .  
## temp:pos  2    818     409    0.914  0.42711    
## Residual 12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

P-Val Temp = 3.25e-14

p-val position = 0.0526

p-val interaction = 0.427

PART D: Comment:

--The P-Value of Temperature and Interaction remains same in Part A and B i.e. when temp & Pos are fixed Vs Temp is Random and Pos is fixed.Whereas P-val of position remains same in part b and c i.e. when temp and position are random VS Temp random and Position fixed