library(DoE.base)
## Warning: package 'DoE.base' was built under R version 4.2.2
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
## method from
## factorize.factor conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(rep(-1,2),rep(1,2),rep(-1,2),rep(1,2),rep(-1,2),rep(1,2),rep(-1,2),rep(1,2))
C <- c(rep(-1,4),rep(1,4),rep(-1,4),rep(1,4))
D <- c(rep(-1,8),rep(1,8))
obs <- c(12,18,13,20,17,25,15,25,10,24,13,24,19,21,17,23)
data <- data.frame(A,B,C,D,obs)
data
## A B C D obs
## 1 -1 -1 -1 -1 12
## 2 1 -1 -1 -1 18
## 3 -1 1 -1 -1 13
## 4 1 1 -1 -1 20
## 5 -1 -1 1 -1 17
## 6 1 -1 1 -1 25
## 7 -1 1 1 -1 15
## 8 1 1 1 -1 25
## 9 -1 -1 -1 1 10
## 10 1 -1 -1 1 24
## 11 -1 1 -1 1 13
## 12 1 1 -1 1 24
## 13 -1 -1 1 1 19
## 14 1 -1 1 1 21
## 15 -1 1 1 1 17
## 16 1 1 1 1 23
model1 <- lm(obs~A*B*C*D,data = data)
halfnormal(model1)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A C A:C:D
This halfnormal plot suggests that only factors A, C and the interaction
term ACD may be significant. However since we have the interaction ACD,
factor D and lower level interactions AC, AD, and CD may be considered
too.
Hypothesis:
\(H_{0A}: \alpha_i=0,H_{1A}:\alpha_i\ne0\)
\(H_{0C}: \gamma_k=0,H_{1C}:\gamma_k\ne0\)
\(H_{0ACD}: \alpha\gamma\eta_{ikl}=0,H_{1ACD}:\alpha\gamma\eta_{ikl}\ne0\)
model2 <- aov(obs~A+C+A*C*D,data = data)
summary(model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 256.00 256.00 157.538 1.52e-06 ***
## C 1 49.00 49.00 30.154 0.00058 ***
## D 1 2.25 2.25 1.385 0.27314
## A:C 1 9.00 9.00 5.538 0.04643 *
## A:D 1 0.25 0.25 0.154 0.70513
## C:D 1 6.25 6.25 3.846 0.08550 .
## A:C:D 1 30.25 30.25 18.615 0.00256 **
## Residuals 8 13.00 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
From these results we can see that all three factos shown in the halfnormal plot (A,C, and ACD) are here significant too (p-value<0.05). Additionally the interaction term AC is significant too (p-value=0.04643).