library(DoE.base)
A<-c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B<-c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C<-c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D<-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
Observations<-c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)
Data<-data.frame(A,B,C,D,Observations)
model<-lm(Observations~A*B*C*D,data = Data)
coef(model)
## (Intercept) A B C D
## 1.737500e+01 2.250000e+00 2.500000e-01 1.000000e+00 1.625000e+00
## A:B A:C B:C A:D B:D
## -3.750000e-01 -2.125000e+00 1.250000e-01 2.000000e+00 -8.543513e-17
## C:D A:B:C A:B:D A:C:D B:C:D
## 1.110223e-16 5.000000e-01 3.750000e-01 -1.250000e-01 -3.750000e-01
## A:B:C:D
## 5.000000e-01
halfnormal(model)
From the halfnormal plot, it appears that factors A and D are
significant and the interaction between AC and AD are also
significant.
Now we want to test the hypotheses that the that the factors A, C, and the interactions are significant or not:
\[ H_0:\alpha_i=0\\ H_a:\alpha_i\neq0\\ H_0:\gamma_k=0\\ H_a:\gamma_k\neq0\\ H_0:\alpha\gamma_{ik}=0\\ H_a:\alpha\gamma_{ik}\neq0\\ H_0:\alpha\zeta_{iL}=0\\ H_a:\alpha\zeta_{iL}\neq0\\\]
model<-aov(Observations~A+C+A*C+A*D,data = Data)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 81.00 81.00 49.846 3.46e-05 ***
## C 1 16.00 16.00 9.846 0.010549 *
## D 1 42.25 42.25 26.000 0.000465 ***
## A:C 1 72.25 72.25 44.462 5.58e-05 ***
## A:D 1 64.00 64.00 39.385 9.19e-05 ***
## Residuals 10 16.25 1.62
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The results of the anova analysis show that the components A, C, D, AC, and AD are important at a significance level of 0.05.