A<-c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B<-c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C<-c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D<-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
obs<-c(12,18,13,20,17,25,15,25,10,24,13,24,19,21,17,23)
dat1<-data.frame(A,B,C,D,obs)
library(DoE.base)
## Warning: package 'DoE.base' was built under R version 4.2.2
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
## method from
## factorize.factor conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
model1<-lm(obs~A*B*C*D,data = dat1)
halfnormal(model1)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A C A:C:D
Factor A, Factor C and Interaction ACD appear to be significant from the halfnormal plot.
Hypothesis:
Null Hypothesis: \((\alpha \beta \gamma \theta )_{ijkl} = 0\)
Alternate Hypothesis: \((\alpha \beta \gamma \theta )_{ijkl} \neq 0\)
model2<-aov(obs~A+C+A*C*D,data = dat1)
summary(model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 256.00 256.00 157.538 1.52e-06 ***
## C 1 49.00 49.00 30.154 0.00058 ***
## D 1 2.25 2.25 1.385 0.27314
## A:C 1 9.00 9.00 5.538 0.04643 *
## A:D 1 0.25 0.25 0.154 0.70513
## C:D 1 6.25 6.25 3.846 0.08550 .
## A:C:D 1 30.25 30.25 18.615 0.00256 **
## Residuals 8 13.00 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
From the analysis we see that D is not significant because its value is greater than alpha hence we reject our null hypothesis.