Getting in data
process<-c(rep(1,12),rep(2,12),rep(3,12))
batch<-rep(c(rep(1,3),rep(2,3),rep(3,3),rep(4,3)),3)
obs<-c(25,30,26,19,28,20,15,17,14,15,16,13,29,27,24,23,24,21,28,21,27,35,27,25,24,25,20,35,21,24,38,34,30,25,29,33)
dat<-data.frame(process,batch,obs)
#question 1
yikj=mu+alpha i +beta(i) +eilj
Question 2
#alpha:beta(i) =0
#alpha:beta(i) not equals to zero
library(GAD)
## Warning: package 'GAD' was built under R version 4.1.3
## Loading required package: matrixStats
## Warning: package 'matrixStats' was built under R version 4.1.3
## Loading required package: R.methodsS3
## Warning: package 'R.methodsS3' was built under R version 4.1.3
## R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
dat$process<-as.fixed(dat$process)
dat$batch<-as.random(dat$batch)
model<-lm(obs~process+batch%in%process,data=dat)
gad(model)
## Analysis of Variance Table
##
## Response: obs
## Df Sum Sq Mean Sq F value Pr(>F)
## process 2 446.06 223.028 3.5365 0.073563 .
## process:batch 9 567.58 63.065 4.1965 0.002349 **
## Residual 24 360.67 15.028
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
the batch in process is significant(0.002349) at alpha 0.05 and because of this we would stop here
plot(model)
Model is normally distributed ( Data falls on a straight line)
But the variance is not constant ( Varying spread in residual)