Temperature P-value = 3.25e-14
Position P-value = 0.00176
Interaction P-value = 0.427110
library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
obs<-c(570,565,583,1063,1080,1043,565,510,590,528,547,521,988,1026,1004,526,538,532)
Pos<-c(rep(1,9),rep(2,9))
Temp<-c(rep(800,3),rep(825,3),rep(850,3),rep(800,3),rep(825,3),rep(850,3))
Temp<-as.factor(Temp)
Pos<-as.factor(Pos)
dat<-data.frame(Pos,Temp,obs)
dat$Temp<-as.fixed(dat$Temp)
dat$Pos<-as.fixed(dat$Pos)
dat
## Pos Temp obs
## 1 1 800 570
## 2 1 800 565
## 3 1 800 583
## 4 1 825 1063
## 5 1 825 1080
## 6 1 825 1043
## 7 1 850 565
## 8 1 850 510
## 9 1 850 590
## 10 2 800 528
## 11 2 800 547
## 12 2 800 521
## 13 2 825 988
## 14 2 825 1026
## 15 2 825 1004
## 16 2 850 526
## 17 2 850 538
## 18 2 850 532
model<-lm(obs~Pos+Temp+Pos*Temp,data=dat)
gad(model)
## Analysis of Variance Table
##
## Response: obs
## Df Sum Sq Mean Sq F value Pr(>F)
## Pos 1 7160 7160 15.998 0.001762 **
## Temp 2 945342 472671 1056.117 3.25e-14 ***
## Pos:Temp 2 818 409 0.914 0.427110
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Temperature P-value = 0.0008647
Position P-value = 0.0526583
Interaction P-value = 0.42711
library(GAD)
obs<-c(570,565,583,1063,1080,1043,565,510,590,528,547,521,988,1026,1004,526,538,532)
Pos<-c(rep(1,9),rep(2,9))
Temp<-c(rep(800,3),rep(825,3),rep(850,3),rep(800,3),rep(825,3),rep(850,3))
Temp<-as.factor(Temp)
Pos<-as.factor(Pos)
dat<-data.frame(Pos,Temp,obs)
dat$Temp<-as.random(dat$Temp)
dat$Pos<-as.random(dat$Pos)
dat
## Pos Temp obs
## 1 1 800 570
## 2 1 800 565
## 3 1 800 583
## 4 1 825 1063
## 5 1 825 1080
## 6 1 825 1043
## 7 1 850 565
## 8 1 850 510
## 9 1 850 590
## 10 2 800 528
## 11 2 800 547
## 12 2 800 521
## 13 2 825 988
## 14 2 825 1026
## 15 2 825 1004
## 16 2 850 526
## 17 2 850 538
## 18 2 850 532
model<-lm(obs~Pos+Temp+Pos*Temp,data=dat)
gad(model)
## Analysis of Variance Table
##
## Response: obs
## Df Sum Sq Mean Sq F value Pr(>F)
## Pos 1 7160 7160 17.504 0.0526583 .
## Temp 2 945342 472671 1155.518 0.0008647 ***
## Pos:Temp 2 818 409 0.914 0.4271101
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Temperature P-value = 3.25e-14
Position P-value = 0.05266
Interaction P-value = 0.42711
library(GAD)
obs<-c(570,565,583,1063,1080,1043,565,510,590,528,547,521,988,1026,1004,526,538,532)
Pos<-c(rep(1,9),rep(2,9))
Temp<-c(rep(800,3),rep(825,3),rep(850,3),rep(800,3),rep(825,3),rep(850,3))
Temp<-as.factor(Temp)
Pos<-as.factor(Pos)
dat<-data.frame(Pos,Temp,obs)
dat$Temp<-as.random(dat$Temp)
dat$Pos<-as.fixed(dat$Pos)
dat
## Pos Temp obs
## 1 1 800 570
## 2 1 800 565
## 3 1 800 583
## 4 1 825 1063
## 5 1 825 1080
## 6 1 825 1043
## 7 1 850 565
## 8 1 850 510
## 9 1 850 590
## 10 2 800 528
## 11 2 800 547
## 12 2 800 521
## 13 2 825 988
## 14 2 825 1026
## 15 2 825 1004
## 16 2 850 526
## 17 2 850 538
## 18 2 850 532
model<-lm(obs~Pos+Temp+Pos*Temp,data=dat)
gad(model)
## Analysis of Variance Table
##
## Response: obs
## Df Sum Sq Mean Sq F value Pr(>F)
## Pos 1 7160 7160 17.504 0.05266 .
## Temp 2 945342 472671 1056.117 3.25e-14 ***
## Pos:Temp 2 818 409 0.914 0.42711
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Temperature P- value when changed from fixed to random increases a lot, however it still remains significant at an alpha of 0.05.
In the other hand, Position P-value when changed from fixed to random its also increases, however it becomes non significant when its random at an alpha of 0.05.
The interaction P-value remains the same independently of fixed or random.