© Ricardo Solar/UFMG - compartilhamento e utilização não-comercial livres. Não reproduzir sem autorização > DOI: http://doi.org/10.5281/zenodo.7392285
Até agora, vimos situações em que a premissa de independência das amostras se manteve íntegra, ou seja, sempre trabalhamos com réplicas verdadeiras. Mas e se essa premissa não for verdadeira? Vamos analisar conjuntos de dados onde a unidade de amostragem é diferente da unidade de réplicas. Essa avaliação sempre vai depender da escala da nossa perugunta, não havendo um limite predeterminado para determinar a partir de onde é uma réplica ou não.
Uma forma interessante de avaliar isso é se perguntar algumas coisas:
Se sua resposta foi sim para alguma dessas perguntas, é fato, você possui o que chamamos de *pseudoréplicas nos seus dados. O maior problema disso é que seus dados estão enganosamente** super-replicados, o que pode aumentar muito a chance de erro do tipo 1 (rejeitar uma H0 verdadeira). Uma das formas de solucionar esse problema é lançar mão da utlização de modelos mistos.
O nome modelo misto vem do fato de que além de \(y \sim x\), sendo x o que conhecemos por fator fixo (aquele que medimos e temos interesse direto), temos também o fator aleatório (que é um fator agrupador). Nosso novo modelo fica mais ou menos assim: \(y \sim x_{fixo} + x_{aleatório}\). O fator aleatório é necessariamente uma variável categórica, que, entre outras coisas, identifica a unidade de réplica verdadeira. Costumamos referir no texto que o fator aleatório é a identidade de alguma coisa. É importante todavia ter cuidado com o número de níveis dessa variável, sendo geralmente recomendado ter pelo menos 5 níveis da variável aleatória 1.
Ficará mais fácil entender essas questões com os exemplos abaixo, mas vale a pena mais uma observação aqui. Da mesma forma que tínhamos antes, podemos ter modelos mistos com distribuição Normal, chamados LMM (linear mixed models) e com todas distribuições possívels nos GLM, chamados GLMM (generalised linear mixed models). Então, as mesmas premissas que discutimos antes valem aqui!
Para esse primeiro exemplo, vamos usar um conjunto de dados que tem interesse de ver o efeito de um determinado fertilizante no crescimento da raiz de plantas. Já se sabe que o fertiilzante tem efeito em folhas, mas suspeita-se que ele pode também afetar o crescimento de raízes ao longo do tempo de vida da planta.
O experimento foi feito medindo-se o tamanho das raízes das plantas com e sem fertilizante a cada duas semanas, ao longo de 10 semanas. Veja que aqui temos o caso bem típico, a mesma planta foi medida várias vezes. Isso exemplifica exatamente o que vimos antes, as medidas na mesma planta são mais dependentes entre si. Para isso, iremos colocar a identidade da planta como fator aleatório no nosso modelo.
##Carregamento e exploração dos dados
dados <- read.table("fertilizacao.txt", h=T, stringsAsFactors = T)
summary(dados)
## raiz semana planta fertilizante
## Min. : 0.800 Min. : 2 ID1 : 5 contole:30
## 1st Qu.: 2.550 1st Qu.: 4 ID10 : 5 sim :30
## Median : 4.900 Median : 6 ID11 : 5
## Mean : 5.024 Mean : 6 ID12 : 5
## 3rd Qu.: 7.350 3rd Qu.: 8 ID2 : 5
## Max. :11.100 Max. :10 ID3 : 5
## (Other):30
library(lme4)
## Loading required package: Matrix
mod1 <- lmer(raiz~semana*fertilizante+(1|planta), data=dados)
DHARMa::simulateResiduals(mod1, plot=T)
## Object of Class DHARMa with simulated residuals based on 250 simulations with refit = FALSE . See ?DHARMa::simulateResiduals for help.
##
## Scaled residual values: 0.216 0.316 0.984 0.84 0.8 0.7 0.308 0.372 0.164 0.2 0.5 0.156 0.596 0.376 0.388 0.944 0.896 0.852 0.424 1 ...
anova(mod1, test="F") ##veja que não resolve
## Warning in anova.merMod(mod1, test = "F"): additional arguments ignored: 'test'
car::Anova(mod1)
Como todos os fatores foram significativos (incluindo a interação), eu posso fazer o plot direto usando a função geom_smooth.
library(ggplot2)
ggplot(dados, aes(x=semana, y=raiz, colour=fertilizante))+
geom_point()+
geom_smooth(method = "lm", se=F)+
scale_y_continuous("Tamanho da raiz (cm)")+
scale_x_continuous("Semanas de medição")
## `geom_smooth()` using formula = 'y ~ x'
Nossa pergunta agora é se o número de frutos de uma planta varia em função de estar sendo polinizada em locais só com espécies nativas, só invasoras e um mix de ambas. Agora temos dados de contagem como variável resposta (número de frutos). Isso nos pede para usar distribuição de Poisson. Vamos ver como fazer isso abaixo:
Para esse exemplo, vamos utilizar um conjunto de dados de plantas que foram amostradas em um experimento. Vários indivíduos foram amostrados no mesmo stand, o que pode gerar maior dependência entre as amostras. Vamos ver os dados:
dadosbees <- read.table("~/Dropbox/UFMG/Disciplinas/R UFAC/Aulas/Modelos Mistos/frutos_abelhas.txt", h=T, stringsAsFactors = T)
summary(dadosbees)
## tratamento stand nfrutos tamanhofruto
## invasora :18 Min. :1.000 Min. : 1.00 Min. : 1.80
## natural :80 1st Qu.:2.000 1st Qu.: 7.00 1st Qu.:11.00
## natural_invasora:15 Median :4.000 Median :12.00 Median :24.50
## Mean :4.106 Mean :11.06 Mean :23.61
## 3rd Qu.:6.000 3rd Qu.:15.00 3rd Qu.:34.00
## Max. :7.000 Max. :21.00 Max. :50.00
## n_semente
## Min. : 1.00
## 1st Qu.: 9.10
## Median : 18.00
## Mean : 23.24
## 3rd Qu.: 28.10
## Max. :298.00
head(dadosbees)
Parece haver algo um pouco estranho, pois os dados dos vasos estão mostrados de forma contínua. Conversando com quem tabulou os dados, a pessoa me contou que numerou os stands de cada tratamento, transferindo assim para a tabela. Assim, os stands de natural, invasora e natural_invasora estão com número iguais, mesmo sendo stands diferentes. Eu vou ter que criar então uma variável que avisa que 1 de controle é diferente de 1 de isolada. Vou usar a função paste para isso, ela é similar à função concatenate do Excel, bem simples de usar.
dadosbees$random <- paste(dadosbees$tratamento, dadosbees$stand, sep="_")
summary(dadosbees)
## tratamento stand nfrutos tamanhofruto
## invasora :18 Min. :1.000 Min. : 1.00 Min. : 1.80
## natural :80 1st Qu.:2.000 1st Qu.: 7.00 1st Qu.:11.00
## natural_invasora:15 Median :4.000 Median :12.00 Median :24.50
## Mean :4.106 Mean :11.06 Mean :23.61
## 3rd Qu.:6.000 3rd Qu.:15.00 3rd Qu.:34.00
## Max. :7.000 Max. :21.00 Max. :50.00
## n_semente random
## Min. : 1.00 Length:113
## 1st Qu.: 9.10 Class :character
## Median : 18.00 Mode :character
## Mean : 23.24
## 3rd Qu.: 28.10
## Max. :298.00
O programa fez o que eu mandei, mas não o que eu queria, preciso agora forçar random para um factor.
dadosbees$random <- as.factor(dadosbees$random)
summary(dadosbees)
## tratamento stand nfrutos tamanhofruto
## invasora :18 Min. :1.000 Min. : 1.00 Min. : 1.80
## natural :80 1st Qu.:2.000 1st Qu.: 7.00 1st Qu.:11.00
## natural_invasora:15 Median :4.000 Median :12.00 Median :24.50
## Mean :4.106 Mean :11.06 Mean :23.61
## 3rd Qu.:6.000 3rd Qu.:15.00 3rd Qu.:34.00
## Max. :7.000 Max. :21.00 Max. :50.00
##
## n_semente random
## Min. : 1.00 natural_5:14
## 1st Qu.: 9.10 natural_6:13
## Median : 18.00 natural_7:13
## Mean : 23.24 natural_3:11
## 3rd Qu.: 28.10 natural_4:11
## Max. :298.00 natural_2:10
## (Other) :41
Funcionou! Posso fazer meu modelo.
Antes usamos a função lmer, mas agora é um glm(er), então faremos a função glmer.
modelobee <- glmer(nfrutos~tratamento+(1|random), data=dadosbees, poisson)
DHARMa::simulateResiduals(modelobee, plot = T)
## Object of Class DHARMa with simulated residuals based on 250 simulations with refit = FALSE . See ?DHARMa::simulateResiduals for help.
##
## Scaled residual values: 0.2342983 0.7515485 0.008623837 0.6840711 0.8231408 0.420344 0.4269619 0.3734597 0.105038 0.09447618 0.007371104 0.2707554 0.2023603 0.2141922 0.2600575 0.315343 0.4281296 0.4595107 0.8639486 0.8387564 ...
Como o modelo está ok, posso partir para testá-lo. Isso é feito da mesma forma que fiz anteriormente. Para modelos mistos, via de regra usaremos o car::Anova.
car::Anova(modelobee)
O modelo é singificativo, o que quer dizer que pelo menos um dos três níveis é diferente dos demais. Então não posso parar por aqui, preciso seguir verificando o modelo, e farei isso juntando níveis mais próximos e testando contrastes de modelos.
with(dadosbees, tapply(nfrutos, tratamento, mean))
## invasora natural natural_invasora
## 5.555556 13.325000 5.600000
tratamento2 <- dadosbees$tratamento
levels(tratamento2)
## [1] "invasora" "natural" "natural_invasora"
levels(tratamento2)[c(1,3)] <- "tem_invasora"
modelobee2 <- glmer(nfrutos~tratamento2+(1|random), data=dadosbees, poisson)
anova(modelobee, modelobee2)
car::Anova(modelobee2)
Temos então que os níveis que possuem espécies invasoras são diferentes do controle. Vamos aprender a fazer um gráfico com barras.
medias <- Rmisc::summarySE(dadosbees, measurevar = "nfrutos", groupvars = "tratamento")
ggplot(dadosbees, aes(x=tratamento, y=nfrutos, fill=tratamento))+
geom_bar(data = medias, aes(x=tratamento, y=nfrutos), stat="identity", alpha=.5)+
geom_errorbar(data = medias, aes(ymin=nfrutos-se, ymax=nfrutos+se), width=.5)+
geom_jitter(width=.3)+
scale_y_continuous("Número de frutos")+
scale_x_discrete("Tratamento")+
scale_fill_manual(values = c("red", "green", "red"))+
theme(legend.position = "null")
A seleção de modelos consiste em uma lógica diferente de avaliar os nossos dados.
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(MuMIn)
dados <- read.table("~/Dropbox/UFMG/Disciplinas/R UFAC/Aulas/Modelos Mistos/dados_formigas.txt", h=T, stringsAsFactors = T)
summary(dados)
## LU_FT_Code Trees PrimFor_500 MF_FCCP
## PA :41 Min. : 0.00 Min. : 0.00 Min. :-0.66954
## PFlogbur:39 1st Qu.: 1.25 1st Qu.: 6.13 1st Qu.:-0.06740
## PFlog :38 Median : 66.00 Median : 39.45 Median : 0.00000
## MA :12 Mean : 60.78 Mean : 45.22 Mean :-0.02028
## REF :11 3rd Qu.:112.00 3rd Qu.: 82.72 3rd Qu.: 0.03078
## SFinter :11 Max. :141.00 Max. :100.00 Max. : 0.45648
## (Other) :18
## Canopy Duff CWD_AGB FWD_AGB
## Min. :0.0000 Min. :0.0000 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0.0000 1st Qu.:0.4445 1st Qu.: 0.1958 1st Qu.: 0.5322
## Median :0.7621 Median :1.1590 Median : 15.6528 Median : 2.7266
## Mean :0.5224 Mean :1.4363 Mean : 25.6912 Mean : 3.4921
## 3rd Qu.:0.8651 3rd Qu.:2.1750 3rd Qu.: 43.3250 3rd Qu.: 5.7088
## Max. :0.9520 Max. :5.8960 Max. :132.2479 Max. :14.4978
##
## Litter_AGB SoilDens ant_sp_rich
## Min. :0.000 Min. : 83.35 Min. :21.00
## 1st Qu.:1.050 1st Qu.:108.10 1st Qu.:34.00
## Median :2.586 Median :126.89 Median :39.50
## Mean :2.427 Mean :125.34 Mean :39.32
## 3rd Qu.:3.549 3rd Qu.:140.40 3rd Qu.:45.00
## Max. :6.307 Max. :189.19 Max. :63.00
##
m1 <- glm(ant_sp_rich~LU_FT_Code+Trees+PrimFor_500+MF_FCCP+Canopy+Duff+CWD_AGB+FWD_AGB+Litter_AGB+SoilDens, data=dados, poisson)
DHARMa::simulateResiduals(m1, plot=T)
## Object of Class DHARMa with simulated residuals based on 250 simulations with refit = FALSE . See ?DHARMa::simulateResiduals for help.
##
## Scaled residual values: 0.8409394 0.1531522 0.3261575 0.3848361 0.5123564 0.257287 0.4092167 0.1069182 0.1568893 0.3697526 0.1482651 0.4993616 0.2531791 0.8882501 0.5391196 0.09694753 0.7332633 0.2827136 0.4978872 0.04214996 ...
options(na.action = "na.fail")
selec <- dredge(m1, extra = "R^2")
## Fixed term is "(Intercept)"
beepr::beep(9)
head(selec)
averagemod <- model.avg(selec)
summary(averagemod)
##
## Call:
## model.avg(object = selec)
##
## Component model call:
## glm(formula = ant_sp_rich ~ <1024 unique rhs>, family = poisson, data =
## dados)
##
## Component models:
## df logLik AICc delta weight
## 3+4+5+8 5 -552.89 1116.15 0.00 0.03
## 3+5+8 4 -554.14 1116.51 0.37 0.02
## 2+3+5+8 5 -553.42 1117.20 1.05 0.02
## 3+5+6 13 -544.44 1117.22 1.07 0.02
## 2+3+5+6 14 -543.38 1117.47 1.32 0.01
## 3+5+6+8 14 -543.47 1117.65 1.50 0.01
## 2+3+4+5+8 6 -552.58 1117.67 1.53 0.01
## 5+6 12 -545.90 1117.79 1.65 0.01
## 3+6 12 -545.98 1117.95 1.81 0.01
## 6 11 -547.22 1118.12 1.97 0.01
## 2+5+6 13 -544.90 1118.13 1.99 0.01
## 3+5+8+10 5 -553.90 1118.17 2.02 0.01
## 3+4+5+8+10 6 -552.86 1118.24 2.10 0.01
## 3+4+5+7+8 6 -552.88 1118.27 2.12 0.01
## 3+4+5+8+9 6 -552.88 1118.27 2.13 0.01
## 1+3+4+5+8 6 -552.89 1118.29 2.15 0.01
## 1+3+5+8 5 -554.00 1118.36 2.21 0.01
## 2+3+6 13 -545.05 1118.43 2.29 0.01
## 3+5+7+8 5 -554.12 1118.61 2.46 0.01
## 3+5+8+9 5 -554.13 1118.63 2.49 0.01
## 2+6 12 -546.33 1118.66 2.51 0.01
## 5+6+8 13 -545.19 1118.70 2.56 0.01
## 2+3+5+6+8 15 -542.80 1118.71 2.56 0.01
## 3+6+8 13 -545.26 1118.86 2.72 0.01
## 3+4+5+6 14 -544.12 1118.95 2.81 0.01
## 4+5+8 4 -555.44 1119.12 2.97 0.01
## 2+3+5+8+10 6 -553.32 1119.15 3.00 0.01
## 3+5+6+9 14 -544.24 1119.19 3.04 0.01
## 2+3+5+6+9 15 -543.05 1119.21 3.06 0.01
## 1+2+3+5+8 6 -553.35 1119.21 3.07 0.01
## 3+5+6+10 14 -544.28 1119.26 3.11 0.01
## 2+3+5+7+8 6 -553.40 1119.32 3.17 0.01
## 2+3+5+8+9 6 -553.42 1119.35 3.20 0.01
## 6+8 12 -546.69 1119.36 3.22 0.01
## 3+4+5+6+8 15 -543.19 1119.50 3.35 0.00
## 5+6+10 13 -545.62 1119.57 3.42 0.00
## 1+3+5+6 14 -544.44 1119.59 3.44 0.00
## 3+5+6+7 14 -544.44 1119.59 3.44 0.00
## 4+5+6 13 -545.64 1119.62 3.48 0.00
## 2+3+4+5+6 15 -543.26 1119.64 3.50 0.00
## 3+5+6+8+9 15 -543.27 1119.65 3.50 0.00
## 2+5+6+8 14 -544.51 1119.72 3.58 0.00
## 2+3+5+6+10 15 -543.30 1119.73 3.58 0.00
## 6+10 12 -546.88 1119.74 3.59 0.00
## 2+3+4+5+7+8 7 -552.57 1119.82 3.68 0.00
## 5+8 3 -556.84 1119.82 3.68 0.00
## 2+3+4+5+8+9 7 -552.57 1119.83 3.68 0.00
## 2+3+4+5+8+10 7 -552.57 1119.84 3.69 0.00
## 3+6+10 13 -545.75 1119.84 3.70 0.00
## 1+2+3+4+5+8 7 -552.58 1119.85 3.70 0.00
## 1+2+3+5+6 15 -543.38 1119.88 3.73 0.00
## 2+3+5+6+7 15 -543.38 1119.88 3.73 0.00
## 3+5+6+8+10 15 -543.39 1119.89 3.74 0.00
## 1+5+6 13 -545.83 1120.00 3.85 0.00
## 3+4+6 13 -545.84 1120.00 3.86 0.00
## 2+3+6+8 14 -544.65 1120.01 3.86 0.00
## 1+6 12 -547.01 1120.01 3.87 0.00
## 3+5+6+7+8 15 -543.46 1120.03 3.89 0.00
## 5+6+9 13 -545.85 1120.04 3.89 0.00
## 1+3+5+6+8 15 -543.46 1120.04 3.90 0.00
## 2+3+5+10 5 -554.85 1120.06 3.91 0.00
## 1+3+6 13 -545.90 1120.13 3.99 0.00
## 3+6+9 13 -545.90 1120.14 3.99 0.00
## 5+6+7 13 -545.90 1120.14 3.99 0.00
## 2+5+6+10 14 -544.73 1120.18 4.03 0.00
## 4+6 12 -547.11 1120.20 4.06 0.00
## 5+8+10 4 -556.00 1120.25 4.10 0.00
## 2+5+6+9 14 -544.78 1120.28 4.13 0.00
## 3+5+8+9+10 6 -553.88 1120.28 4.13 0.00
## 3+6+7 13 -545.98 1120.29 4.15 0.00
## 1+3+5+8+10 6 -553.90 1120.31 4.16 0.00
## 3+5+7+8+10 6 -553.90 1120.32 4.17 0.00
## 2+4+5+6 14 -544.82 1120.34 4.19 0.00
## 3+4+5+8+9+10 7 -552.84 1120.36 4.22 0.00
## 3+4+5+10 5 -555.00 1120.37 4.22 0.00
## 1+3+4+5+8+10 7 -552.86 1120.40 4.26 0.00
## 3+4+5+7+8+10 7 -552.86 1120.41 4.26 0.00
## 3+4+5+7+8+9 7 -552.86 1120.41 4.27 0.00
## 6+9 12 -547.22 1120.42 4.27 0.00
## 1+5+8 4 -556.09 1120.43 4.28 0.00
## 6+7 12 -547.22 1120.43 4.29 0.00
## 1+2+5+6 14 -544.86 1120.44 4.29 0.00
## 1+3+4+5+7+8 7 -552.88 1120.44 4.30 0.00
## 1+3+4+5+8+9 7 -552.88 1120.44 4.30 0.00
## 2+6+8 13 -546.06 1120.46 4.32 0.00
## 2+5+8 4 -556.11 1120.47 4.33 0.00
## 2+3+6+9 14 -544.90 1120.50 4.35 0.00
## 2+5+6+7 14 -544.90 1120.50 4.36 0.00
## 1+3+5+8+9 6 -554.00 1120.51 4.36 0.00
## 1+3+5+7+8 6 -554.00 1120.51 4.36 0.00
## 2+3+5+6+8+9 16 -542.49 1120.53 4.38 0.00
## 4+5+8+10 5 -555.09 1120.55 4.40 0.00
## 2+6+10 13 -546.11 1120.56 4.41 0.00
## 2+3+6+10 14 -544.93 1120.56 4.41 0.00
## 2+3+4+5 5 -555.11 1120.58 4.44 0.00
## 2+3+4+5+10 6 -554.06 1120.63 4.48 0.00
## 4+5+6+8 14 -544.96 1120.64 4.49 0.00
## 2+4+5+8 5 -555.15 1120.66 4.51 0.00
## 5+6+8+10 14 -544.99 1120.69 4.55 0.00
## 1+4+5+8 5 -555.16 1120.69 4.55 0.00
## 1+2+6 13 -546.18 1120.69 4.55 0.00
## 1+2+3+6 14 -545.00 1120.72 4.57 0.00
## 2+3+4+6 14 -545.02 1120.76 4.61 0.00
## 3+5+7+8+9 6 -554.12 1120.76 4.61 0.00
## 2+3+6+7 14 -545.05 1120.81 4.67 0.00
## 4+5+8+9 5 -555.24 1120.85 4.71 0.00
## 2+3+4+5+6+8 16 -542.67 1120.90 4.75 0.00
## 2+6+9 13 -546.30 1120.93 4.78 0.00
## 3+6+8+10 14 -545.12 1120.95 4.80 0.00
## 3+4+5+6+9 15 -543.92 1120.96 4.81 0.00
## 2+4+6 13 -546.32 1120.97 4.82 0.00
## 5+6+8+9 14 -545.14 1120.99 4.84 0.00
## 3+5+10 4 -556.38 1121.00 4.85 0.00
## 2+6+7 13 -546.33 1121.00 4.86 0.00
## 3+4+6+8 14 -545.15 1121.01 4.86 0.00
## 1+5+6+8 14 -545.15 1121.02 4.87 0.00
## 5+6+7+8 14 -545.17 1121.06 4.91 0.00
## 3+4+5+6+10 15 -543.97 1121.06 4.92 0.00
## 2+3+5+6+8+10 16 -542.76 1121.07 4.92 0.00
## 3+6+8+9 14 -545.19 1121.09 4.94 0.00
## 2+3+5+6+7+8 16 -542.78 1121.12 4.98 0.00
## 1+2+3+5+6+8 16 -542.78 1121.12 4.98 0.00
## 4+5+7+8 5 -555.39 1121.14 4.99 0.00
## 1+3+6+8 14 -545.22 1121.15 5.01 0.00
## 6+8+10 13 -546.42 1121.18 5.04 0.00
## 3+6+7+8 14 -545.26 1121.23 5.08 0.00
## 2+3+5+8+9+10 7 -553.31 1121.30 5.16 0.00
## 1+2+3+5+8+10 7 -553.31 1121.32 5.17 0.00
## 2+3+5+7+8+10 7 -553.31 1121.32 5.17 0.00
## 1+3+4+5+6 15 -544.12 1121.36 5.21 0.00
## 3+4+5+6+7 15 -544.12 1121.36 5.21 0.00
## 1+2+3+5+7+8 7 -553.35 1121.38 5.24 0.00
## 1+2+3+5+8+9 7 -553.35 1121.38 5.24 0.00
## 3+5+6+9+10 15 -544.14 1121.39 5.25 0.00
## 1+6+8 13 -546.53 1121.39 5.25 0.00
## 2+3+4+5+6+9 16 -542.94 1121.44 5.29 0.00
## 1+2+5+8 5 -555.54 1121.44 5.30 0.00
## 2+5+8+10 5 -555.54 1121.44 5.30 0.00
## 4+5+6+10 14 -545.38 1121.47 5.32 0.00
## 2+3+5+7+8+9 7 -553.40 1121.49 5.35 0.00
## 4+6+8 13 -546.60 1121.53 5.39 0.00
## 3+4+5+6+8+9 16 -542.99 1121.54 5.39 0.00
## 3+5+6+7+9 15 -544.23 1121.58 5.44 0.00
## 1+2+3+5 5 -555.61 1121.58 5.44 0.00
## 1+3+5+6+10 15 -544.23 1121.58 5.44 0.00
## 1+3+5+6+9 15 -544.24 1121.59 5.45 0.00
## 2+3+5+6+9+10 16 -543.03 1121.61 5.46 0.00
## 1+2+3+5+6+9 16 -543.04 1121.63 5.48 0.00
## 2+3+5+6+7+9 16 -543.04 1121.64 5.50 0.00
## 3+5+6+7+10 15 -544.27 1121.65 5.51 0.00
## 6+7+8 13 -546.68 1121.70 5.55 0.00
## 6+8+9 13 -546.68 1121.70 5.55 0.00
## 5+8+9+10 5 -555.67 1121.70 5.56 0.00
## 5+8+9 4 -556.76 1121.75 5.61 0.00
## 3+4+5+6+8+10 16 -543.12 1121.79 5.65 0.00
## 1+2+3+4+5 6 -554.64 1121.79 5.65 0.00
## 5+7+8 4 -556.79 1121.81 5.67 0.00
## 4+6+10 13 -546.77 1121.87 5.72 0.00
## 2+5+6+8+10 15 -544.38 1121.88 5.73 0.00
## 2+3+5 4 -556.83 1121.90 5.75 0.00
## 1+4+5+6 14 -545.59 1121.90 5.75 0.00
## 4+5+6+9 14 -545.60 1121.90 5.76 0.00
## 3+4+5+6+7+8 16 -543.17 1121.91 5.76 0.00
## 1+3+4+5+6+8 16 -543.18 1121.91 5.77 0.00
## 5+6+9+10 14 -545.60 1121.91 5.77 0.00
## 4+5+8+9+10 6 -554.71 1121.93 5.79 0.00
## 2+3+4+5+6+10 16 -543.19 1121.93 5.79 0.00
## 5+6+7+10 14 -545.61 1121.93 5.79 0.00
## 2+5+6+8+9 15 -544.41 1121.94 5.79 0.00
## 1+5+6+10 14 -545.62 1121.94 5.80 0.00
## 3+4+6+10 14 -545.62 1121.95 5.80 0.00
## 2+4+5+6+8 15 -544.42 1121.96 5.81 0.00
## 1+3+5+6+7 15 -544.44 1121.99 5.84 0.00
## 4+5+6+7 14 -545.64 1122.00 5.85 0.00
## 2+3+4+5+7+8+9 8 -552.55 1122.00 5.85 0.00
## 2+3+4+5+8+9+10 8 -552.55 1122.00 5.85 0.00
## 3+5+6+8+9+10 16 -543.23 1122.01 5.87 0.00
## 2+3+4+5+7+8+10 8 -552.56 1122.02 5.87 0.00
## 1+2+3+4+5+7+8 8 -552.57 1122.02 5.88 0.00
## 1+2+3+4+5+8+10 8 -552.57 1122.03 5.88 0.00
## 1+2+3+4+5+8+9 8 -552.57 1122.03 5.89 0.00
## 1+6+10 13 -546.85 1122.04 5.89 0.00
## 1+3+5+6+8+9 16 -543.25 1122.06 5.92 0.00
## 6+7+10 13 -546.86 1122.06 5.92 0.00
## 1+2+3+5+6+10 16 -543.26 1122.07 5.93 0.00
## 1+2+3+4+5+6 16 -543.26 1122.07 5.93 0.00
## 2+3+4+5+6+7 16 -543.26 1122.08 5.93 0.00
## 3+5+6+7+8+9 16 -543.26 1122.08 5.94 0.00
## 6+9+10 13 -546.88 1122.08 5.94 0.00
## 1+2+5+6+8 15 -544.49 1122.10 5.95 0.00
## 2+5+6+7+8 15 -544.49 1122.10 5.95 0.00
## 2+3+5+9+10 6 -554.81 1122.13 5.99 0.00
## 2+3+6+8+9 15 -544.51 1122.14 6.00 0.00
## 3+6+9+10 14 -545.72 1122.15 6.00 0.00
## 2+3+5+7+10 6 -554.82 1122.15 6.01 0.00
## 1+4+6 13 -546.91 1122.16 6.01 0.00
## 2+3+5+6+7+10 16 -543.30 1122.16 6.02 0.00
## 1+5+8+10 5 -555.91 1122.18 6.03 0.00
## 1+3+5+6+8+10 16 -543.31 1122.19 6.04 0.00
## 1+5+8+9 5 -555.91 1122.19 6.05 0.00
## 3+6+7+10 14 -545.74 1122.19 6.05 0.00
## 1+2+3+5+10 6 -554.84 1122.20 6.06 0.00
## 1+3+6+10 14 -545.75 1122.22 6.07 0.00
## 3+4+6+9 14 -545.76 1122.23 6.08 0.00
## 2+3+6+8+10 15 -544.56 1122.24 6.09 0.00
## 1+3+4+6 14 -545.76 1122.24 6.09 0.00
## 2+4+5+8+10 6 -554.87 1122.26 6.11 0.00
## 1+5+6+9 14 -545.79 1122.29 6.14 0.00
## 1+2+3+5+6+7 16 -543.38 1122.31 6.17 0.00
## 1+2+4+5+8 6 -554.90 1122.31 6.17 0.00
## 3+5+6+7+8+10 16 -543.38 1122.32 6.17 0.00
## 3+4+5+9+10 6 -554.91 1122.33 6.18 0.00
## 1+4+5+8+9 6 -554.91 1122.33 6.19 0.00
## 1+6+7 13 -547.00 1122.34 6.19 0.00
## 1+6+9 13 -547.01 1122.35 6.20 0.00
## 2+3+4+6+8 15 -544.62 1122.36 6.21 0.00
## 1+2+3+6+8 15 -544.62 1122.36 6.21 0.00
## 1+3+6+9 14 -545.83 1122.37 6.22 0.00
## 1+5+6+7 14 -545.83 1122.37 6.22 0.00
## 5+7+8+10 5 -556.00 1122.37 6.23 0.00
## 3+4+6+7 14 -545.83 1122.38 6.23 0.00
## 2+5+8+9 5 -556.01 1122.39 6.25 0.00
## 2+3+6+7+8 15 -544.64 1122.40 6.26 0.00
## 5+6+7+9 14 -545.85 1122.41 6.26 0.00
## 2+4+5+6+10 15 -544.65 1122.42 6.27 0.00
## 2+4+5+8+9 6 -554.95 1122.42 6.28 0.00
## 3+4+5+7+10 6 -554.97 1122.45 6.30 0.00
## 1+3+5+8+9+10 7 -553.88 1122.45 6.30 0.00
## 2+5+6+9+10 15 -544.67 1122.45 6.30 0.00
## 3+5+7+8+9+10 7 -553.88 1122.45 6.31 0.00
## 1+3+5+6+7+8 16 -543.45 1122.46 6.31 0.00
## 2+6+8+10 14 -545.88 1122.46 6.32 0.00
## 1+3+5+7+8+10 7 -553.90 1122.49 6.34 0.00
## 1+3+6+7 14 -545.89 1122.49 6.34 0.00
## 2+5+7+8 5 -556.06 1122.49 6.34 0.00
## 1+3+4+5+10 6 -554.99 1122.49 6.34 0.00
## 2+5+10 4 -557.13 1122.50 6.35 0.00
## 3+6+7+9 14 -545.89 1122.50 6.35 0.00
## 2+4+5+6+9 15 -544.71 1122.53 6.38 0.00
## 4+6+9 13 -547.10 1122.53 6.39 0.00
## 1+3+4+5+8+9+10 8 -552.83 1122.54 6.40 0.00
## 4+6+7 13 -547.11 1122.55 6.40 0.00
## 3+4+5+7+8+9+10 8 -552.83 1122.55 6.40 0.00
## 1+5+7+8 5 -556.09 1122.55 6.40 0.00
## 1+2+5+6+10 15 -544.73 1122.58 6.43 0.00
## 1+3+4+5+7+8+10 8 -552.84 1122.58 6.44 0.00
## 2+5+6+7+10 15 -544.73 1122.58 6.44 0.00
## 1+2+6+8 14 -545.94 1122.59 6.44 0.00
## 1+3+4+5+7+8+9 8 -552.86 1122.62 6.47 0.00
## 1+2+5+6+9 15 -544.76 1122.63 6.49 0.00
## 1+4+5+8+10 6 -555.06 1122.64 6.49 0.00
## 2+3+4+5+9 6 -555.08 1122.67 6.52 0.00
## 1+3+5+7+8+9 7 -553.99 1122.68 6.53 0.00
## 4+5+7+8+10 6 -555.08 1122.68 6.53 0.00
## 4+5+6+8+10 15 -544.78 1122.68 6.54 0.00
## 2+5+6+7+9 15 -544.78 1122.68 6.54 0.00
## 1+2+4+5+6 15 -544.79 1122.69 6.55 0.00
## 2+3+4+5+9+10 7 -554.00 1122.70 6.55 0.00
## 2+4+5+7+8 6 -555.10 1122.71 6.56 0.00
## 2+3+4+5+7 6 -555.11 1122.73 6.58 0.00
## 4+5+10 4 -557.25 1122.74 6.59 0.00
## 2+4+5+6+7 15 -544.81 1122.74 6.59 0.00
## 2+3+6+9+10 15 -544.82 1122.76 6.61 0.00
## 6+7+9 13 -547.21 1122.76 6.62 0.00
## 2+3+4+5+6+8+9 17 -542.38 1122.78 6.63 0.00
## 2+3+4+5+7+10 7 -554.04 1122.78 6.63 0.00
## 2+6+8+9 14 -546.04 1122.79 6.64 0.00
## 1+2+3+4+5+10 7 -554.05 1122.79 6.65 0.00
## 2+4+6+8 14 -546.05 1122.81 6.66 0.00
## 2+6+7+8 14 -546.06 1122.82 6.68 0.00
## 1+4+5+7+8 6 -555.16 1122.83 6.68 0.00
## 1+2+3+6+9 15 -544.86 1122.84 6.69 0.00
## 1+2+5+6+7 15 -544.86 1122.85 6.70 0.00
## 4+5+7+8+9 6 -555.17 1122.85 6.71 0.00
## 2+3+4+6+9 15 -544.87 1122.86 6.72 0.00
## 1+2+6+10 14 -546.09 1122.88 6.74 0.00
## 2+4+6+10 14 -546.09 1122.90 6.75 0.00
## 2+3+6+7+9 15 -544.89 1122.90 6.76 0.00
## 2+3+4+6+10 15 -544.90 1122.91 6.77 0.00
## 2+6+9+10 14 -546.10 1122.91 6.77 0.00
## 2+6+7+10 14 -546.11 1122.93 6.78 0.00
## 1+2+3+5+6+8+9 17 -542.46 1122.94 6.79 0.00
## 3+5+7+10 5 -556.30 1122.96 6.81 0.00
## 3+5+9+10 5 -556.30 1122.96 6.81 0.00
## 4+5+6+8+9 15 -544.92 1122.96 6.81 0.00
## 2+5+8+9+10 6 -555.22 1122.96 6.81 0.00
## 2+3+6+7+10 15 -544.92 1122.96 6.82 0.00
## 1+2+3+6+10 15 -544.92 1122.97 6.82 0.00
## 2+3+5+6+8+9+10 17 -542.48 1122.99 6.84 0.00
## 2+3+5+6+7+8+9 17 -542.48 1122.99 6.85 0.00
## 1+4+5+6+8 15 -544.94 1123.01 6.86 0.00
## 4+5+6+7+8 15 -544.95 1123.01 6.86 0.00
## 1+2+6+9 14 -546.15 1123.02 6.87 0.00
## 1+3+4+5 5 -556.32 1123.02 6.87 0.00
## 1+2+4+6 14 -546.17 1123.05 6.90 0.00
## 1+2+6+7 14 -546.18 1123.07 6.92 0.00
## 5+6+8+9+10 15 -544.98 1123.07 6.92 0.00
## 1+2+3+4+6 15 -544.98 1123.07 6.93 0.00
## 1+5+6+8+10 15 -544.98 1123.09 6.94 0.00
## 5+6+7+8+10 15 -544.99 1123.10 6.95 0.00
## 5+10 3 -558.48 1123.10 6.95 0.00
## 1+3+5+10 5 -556.38 1123.12 6.97 0.00
## 1+2+3+6+7 15 -545.00 1123.12 6.97 0.00
## 3+4+6+8+10 15 -545.01 1123.14 6.99 0.00
## 2+3+4+6+7 15 -545.02 1123.16 7.02 0.00
## 2+4+5+10 5 -556.42 1123.21 7.06 0.00
## 1+2+5+8+9 6 -555.35 1123.21 7.06 0.00
## 3+4+5+6+9+10 16 -543.83 1123.22 7.08 0.00
## 3+4+6+8+9 15 -545.08 1123.28 7.13 0.00
## 3+6+8+9+10 15 -545.08 1123.28 7.13 0.00
## 2+4+6+9 14 -546.28 1123.28 7.13 0.00
## 2+3+4+5+6+8+10 17 -542.63 1123.29 7.15 0.00
## 2+6+7+9 14 -546.30 1123.31 7.16 0.00
## 1+2+3+4+5+6+8 17 -542.65 1123.33 7.19 0.00
## 2+3+4+5+6+7+8 17 -542.65 1123.33 7.19 0.00
## 2+4+6+7 14 -546.32 1123.34 7.20 0.00
## 1+5+6+8+9 15 -545.11 1123.35 7.20 0.00
## 1+3+4+6+8 15 -545.11 1123.35 7.20 0.00
## 1+3+6+8+10 15 -545.12 1123.36 7.21 0.00
## 3+6+7+8+10 15 -545.12 1123.36 7.21 0.00
## 3+4+5 4 -557.56 1123.37 7.23 0.00
## 1+3+4+5+6+10 16 -543.91 1123.38 7.23 0.00
## 5+6+7+8+9 15 -545.13 1123.38 7.24 0.00
## 1+2+5+8+10 6 -555.43 1123.38 7.24 0.00
## 4+6+8+10 14 -546.34 1123.39 7.24 0.00
## 3+4+5+6+7+9 16 -543.92 1123.39 7.25 0.00
## 1+3+4+5+6+9 16 -543.92 1123.40 7.25 0.00
## 1+2+3+5+6+8+10 17 -542.69 1123.40 7.25 0.00
## 3+4+6+7+8 15 -545.14 1123.40 7.26 0.00
## 1+5+6+7+8 15 -545.15 1123.41 7.27 0.00
## 1+3+6+8+9 15 -545.16 1123.43 7.28 0.00
## 3+6+7+8+9 15 -545.19 1123.49 7.35 0.00
## 3+4+5+6+7+10 16 -543.97 1123.50 7.35 0.00
## 1+2+3+5+8+9+10 8 -553.30 1123.50 7.35 0.00
## 2+3+5+7+8+9+10 8 -553.30 1123.50 7.35 0.00
## 1+2+3+5+7+8+10 8 -553.31 1123.52 7.37 0.00
## 2+3+5+6+7+8+10 17 -542.75 1123.52 7.38 0.00
## 1+6+8+10 14 -546.41 1123.52 7.38 0.00
## 1+2+3+5+6+7+8 17 -542.76 1123.56 7.41 0.00
## 6+8+9+10 14 -546.42 1123.56 7.41 0.00
## 6+7+8+10 14 -546.42 1123.56 7.41 0.00
## 1+3+6+7+8 15 -545.22 1123.56 7.41 0.00
## 1+2+3+5+7+8+9 8 -553.34 1123.58 7.44 0.00
## 2+5+7+8+10 6 -555.54 1123.59 7.44 0.00
## 1+2+5+7+8 6 -555.54 1123.59 7.44 0.00
## 1+4+6+8 14 -546.45 1123.61 7.47 0.00
## 1+2+3+5+7 6 -555.56 1123.64 7.50 0.00
## 2+3+5+9 5 -556.66 1123.69 7.55 0.00
## 1+5+8+9+10 6 -555.60 1123.71 7.56 0.00
## 2+4+5+8+9+10 7 -554.51 1123.71 7.56 0.00
## 1+2+3+5+9 6 -555.60 1123.72 7.57 0.00
## 4+5+9+10 5 -556.68 1123.73 7.58 0.00
## 5+7+8+9 5 -556.69 1123.74 7.59 0.00
## 1+3+5+6+9+10 16 -544.10 1123.75 7.61 0.00
## 2+5+9+10 5 -556.70 1123.76 7.62 0.00
## 1+6+8+9 14 -546.53 1123.77 7.62 0.00
## 1+6+7+8 14 -546.53 1123.77 7.62 0.00
## 1+3+4+5+6+7 16 -544.12 1123.80 7.65 0.00
## 3+5+6+7+9+10 16 -544.12 1123.80 7.66 0.00
## 4+5+6+9+10 15 -545.36 1123.84 7.70 0.00
## 5+7+8+9+10 6 -555.67 1123.85 7.70 0.00
## 1+4+5+6+10 15 -545.37 1123.86 7.72 0.00
## 1+3+8 4 -557.81 1123.86 7.72 0.00
## 2+3+4+5+6+9+10 17 -542.92 1123.87 7.72 0.00
## 4+5+6+7+10 15 -545.38 1123.87 7.72 0.00
## 1+2+3+4+5+6+9 17 -542.93 1123.88 7.73 0.00
## 4+6+7+8 14 -546.59 1123.89 7.74 0.00
## 4+6+8+9 14 -546.60 1123.90 7.75 0.00
## 2+3+4+5+6+7+9 17 -542.94 1123.91 7.76 0.00
## 1+2+3+4+5+7 7 -554.62 1123.94 7.79 0.00
## 3+4+5+6+8+9+10 17 -542.96 1123.95 7.80 0.00
## 1+3+4+5+6+8+9 17 -542.97 1123.96 7.81 0.00
## 1+2+3+4+5+9 7 -554.64 1123.97 7.82 0.00
## 1+2+4+5+8+9 7 -554.65 1123.98 7.84 0.00
## 1+2+3+5+6+9+10 17 -542.98 1123.99 7.84 0.00
## 3+4+5+6+7+8+9 17 -542.98 1123.99 7.85 0.00
## 1+3+5+6+7+10 16 -544.23 1124.01 7.87 0.00
## 2+3+5+7 5 -556.83 1124.02 7.87 0.00
## 1+3+5+6+7+9 16 -544.23 1124.02 7.87 0.00
## 1+8 3 -558.96 1124.06 7.91 0.00
## 6+7+8+9 14 -546.68 1124.07 7.92 0.00
## 2+3+5+6+7+9+10 17 -543.02 1124.07 7.93 0.00
## 1+3+4+5+6+8+10 17 -543.02 1124.07 7.93 0.00
## 1+4+5+8+9+10 7 -554.69 1124.08 7.93 0.00
## 4+5+7+8+9+10 7 -554.69 1124.08 7.93 0.00
## 1+2+3+5+6+7+9 17 -543.04 1124.10 7.95 0.00
## 1+3+4+8 5 -556.89 1124.14 7.99 0.00
## 2+4+5+6+8+10 16 -544.29 1124.14 8.00 0.00
## 5+9+10 4 -557.96 1124.17 8.02 0.00
## 2+5+6+8+9+10 16 -544.32 1124.20 8.05 0.00
## 2+3+4+5+7+8+9+10 9 -552.54 1124.21 8.06 0.00
## 1+4+6+10 14 -546.75 1124.21 8.06 0.00
## 2+4+5+6+8+9 16 -544.33 1124.21 8.07 0.00
## 1+2+3+4+5+8+9+10 9 -552.55 1124.22 8.07 0.00
## 1+4+5+6+9 15 -545.55 1124.22 8.08 0.00
## 1+2+3+4+5+7+8+9 9 -552.55 1124.23 8.08 0.00
## 1+2+3+4+5+7+8+10 9 -552.55 1124.23 8.09 0.00
## 4+6+7+10 14 -546.76 1124.23 8.09 0.00
## 4+6+9+10 14 -546.77 1124.25 8.10 0.00
## 3+4+5+6+7+8+10 17 -543.11 1124.25 8.10 0.00
## 2+3+5+7+9+10 7 -554.79 1124.26 8.12 0.00
## 3+4+6+9+10 15 -545.58 1124.28 8.14 0.00
## 1+2+3+4+5+6+10 17 -543.13 1124.29 8.14 0.00
## 1+2+3+5+9+10 7 -554.81 1124.30 8.16 0.00
## 1+2+5+6+8+10 16 -544.37 1124.30 8.16 0.00
## 1+4+5+6+7 15 -545.59 1124.31 8.16 0.00
## 2+5+6+7+8+10 16 -544.38 1124.31 8.16 0.00
## 5+6+7+9+10 15 -545.59 1124.31 8.16 0.00
## 4+5+6+7+9 15 -545.60 1124.31 8.16 0.00
## 1+2+3+5+7+10 7 -554.81 1124.31 8.17 0.00
## 1+5+6+9+10 15 -545.60 1124.32 8.17 0.00
## 1+5+7+8+10 6 -555.90 1124.32 8.18 0.00
## 3+4+6+7+10 15 -545.61 1124.34 8.19 0.00
## 1+3+4+5+6+7+8 17 -543.16 1124.34 8.19 0.00
## 1+5+6+7+10 15 -545.61 1124.34 8.19 0.00
## 1+5+7+8+9 6 -555.91 1124.34 8.19 0.00
## 1+3+5+6+8+9+10 17 -543.16 1124.35 8.20 0.00
## 1+2+5+6+8+9 16 -544.40 1124.35 8.21 0.00
## 1+3+4+6+10 15 -545.62 1124.35 8.21 0.00
## 2+4+5+6+7+8 16 -544.40 1124.35 8.21 0.00
## 2+5+6+7+8+9 16 -544.40 1124.35 8.21 0.00
## 1+2+4+5+8+10 7 -554.83 1124.36 8.21 0.00
## 1+2+4+5+6+8 16 -544.41 1124.37 8.22 0.00
## 1+6+7+10 14 -546.84 1124.38 8.24 0.00
## 2+4+5+9+10 6 -555.94 1124.39 8.24 0.00
## 2+5+7+8+9 6 -555.94 1124.40 8.26 0.00
## 2+3+4+5+6+7+10 17 -543.19 1124.40 8.26 0.00
## 1+2+5+10 5 -557.02 1124.41 8.27 0.00
## 1+6+9+10 14 -546.85 1124.41 8.27 0.00
## 2+4+5+7+8+10 7 -554.86 1124.41 8.27 0.00
## 6+7+9+10 14 -546.86 1124.44 8.29 0.00
## 3+4+5+7+9+10 7 -554.88 1124.45 8.30 0.00
## 2+4+5+7+8+9 7 -554.88 1124.45 8.30 0.00
## 1+3+4+5+9+10 7 -554.89 1124.47 8.32 0.00
## 1+2+4+5+7+8 7 -554.89 1124.47 8.33 0.00
## 1+2+5 4 -558.12 1124.48 8.33 0.00
## 1+4+5+7+8+9 7 -554.89 1124.48 8.33 0.00
## 3+5+6+7+8+9+10 17 -543.23 1124.48 8.34 0.00
## 2+3+6+8+9+10 16 -544.46 1124.48 8.34 0.00
## 1+2+5+6+7+8 16 -544.48 1124.51 8.37 0.00
## 1+3+4+6+9 15 -545.70 1124.51 8.37 0.00
## 3+6+7+9+10 15 -545.70 1124.52 8.37 0.00
## 1+3+5+6+7+8+9 17 -543.25 1124.52 8.37 0.00
## 1+4+6+7 14 -546.91 1124.52 8.37 0.00
## 1+4+6+9 14 -546.91 1124.53 8.38 0.00
## 1+4+8 4 -558.14 1124.53 8.38 0.00
## 2+3+4+6+8+9 16 -544.49 1124.54 8.39 0.00
## 1+2+3+4+5+6+7 17 -543.26 1124.54 8.40 0.00
## 1+2+3+5+6+7+10 17 -543.26 1124.54 8.40 0.00
## 1+2+3+8 5 -557.09 1124.54 8.40 0.00
## 1+2+3+6+8+9 16 -544.50 1124.55 8.40 0.00
## 1+3+6+9+10 15 -545.72 1124.55 8.40 0.00
## 2+5+7+10 5 -557.10 1124.57 8.42 0.00
## 2+3+6+7+8+9 16 -544.51 1124.58 8.43 0.00
## 1+3+6+7+10 15 -545.74 1124.60 8.45 0.00
## 1+3+4+5+7+10 7 -554.96 1124.61 8.46 0.00
## 2+3+4+6+8+10 16 -544.53 1124.62 8.47 0.00
## 3+4+6+7+9 15 -545.76 1124.63 8.48 0.00
## 1+3+4+6+7 15 -545.76 1124.63 8.49 0.00
## 1+3+5+6+7+8+10 17 -543.31 1124.64 8.49 0.00
## 1+3+5+7+8+9+10 8 -553.88 1124.65 8.50 0.00
## 2+3+6+7+8+10 16 -544.56 1124.67 8.53 0.00
## 1+2+3+6+8+10 16 -544.56 1124.67 8.53 0.00
## 1+2+3 4 -558.22 1124.68 8.54 0.00
## 1+5+6+7+9 15 -545.78 1124.69 8.54 0.00
## 1+6+7+9 14 -547.00 1124.70 8.56 0.00
## 2+4+5+6+9+10 16 -544.59 1124.73 8.59 0.00
## 1+3+6+7+9 15 -545.81 1124.74 8.60 0.00
## 1+2+3+4+6+8 16 -544.60 1124.75 8.60 0.00
## 1+3+4+5+7+8+9+10 9 -552.81 1124.75 8.60 0.00
## 2+3+4+6+7+8 16 -544.61 1124.78 8.64 0.00
## 4+5+7+10 5 -557.21 1124.79 8.64 0.00
## 1+2+3+6+7+8 16 -544.62 1124.79 8.65 0.00
## 1+4+5+7+8+10 7 -555.06 1124.81 8.66 0.00
## 1+4+5+10 5 -557.22 1124.81 8.67 0.00
## 1+2+6+8+10 15 -545.86 1124.83 8.69 0.00
## 2+4+6+8+10 15 -545.86 1124.84 8.69 0.00
## 2+3+4+5+7+9 7 -555.08 1124.84 8.70 0.00
## 1+2+4+5+6+10 16 -544.65 1124.85 8.70 0.00
## 2+4+5+6+7+10 16 -544.65 1124.86 8.71 0.00
## 2+6+8+9+10 15 -545.87 1124.86 8.71 0.00
## 2+6+7+8+10 15 -545.88 1124.87 8.72 0.00
## 2+3+4+5+7+9+10 8 -553.99 1124.88 8.74 0.00
## 1+2+5+6+9+10 16 -544.66 1124.88 8.74 0.00
## 2+5+6+7+9+10 16 -544.66 1124.89 8.74 0.00
## 1+2+3+4+5+9+10 8 -554.00 1124.89 8.74 0.00
## 1+2+8 4 -558.32 1124.89 8.74 0.00
## 4+6+7+9 14 -547.10 1124.91 8.76 0.00
## 1+2+4+5+6+9 16 -544.69 1124.93 8.78 0.00
## 1+2+6+8+9 15 -545.92 1124.95 8.81 0.00
## 1+2+4+5 5 -557.30 1124.96 8.81 0.00
## 3+5+7+9+10 6 -556.22 1124.96 8.82 0.00
## 2+4+5+6+7+9 16 -544.71 1124.97 8.82 0.00
## 1+2+4+6+8 15 -545.93 1124.97 8.82 0.00
## 1+2+3+4+5+7+10 8 -554.04 1124.98 8.83 0.00
## 1+2+5+8+9+10 7 -555.14 1124.98 8.83 0.00
## 1+2+6+7+8 15 -545.94 1124.99 8.85 0.00
## 1+5+10 4 -558.38 1125.01 8.86 0.00
## 1+2+5+6+7+10 16 -544.73 1125.02 8.87 0.00
## 5+7+10 4 -558.40 1125.04 8.90 0.00
## 1+3+4+5+7 6 -556.27 1125.06 8.91 0.00
## 1+2+5+6+7+9 16 -544.76 1125.07 8.93 0.00
## 1+3+5+7+10 6 -556.28 1125.08 8.94 0.00
## 4+5+6+8+9+10 16 -544.77 1125.09 8.94 0.00
## 1+4+5+6+8+10 16 -544.77 1125.09 8.95 0.00
## 1+3+5+9+10 6 -556.29 1125.10 8.96 0.00
## 4+5+6+7+8+10 16 -544.78 1125.11 8.96 0.00
## 2+5+7+8+9+10 7 -555.22 1125.12 8.98 0.00
## 1+2+4+5+6+7 16 -544.79 1125.13 8.98 0.00
## 2+3+4+6+9+10 16 -544.80 1125.15 9.01 0.00
## 1+3+4+5+9 6 -556.32 1125.16 9.02 0.00
## 2+4+6+8+9 15 -546.03 1125.17 9.02 0.00
## 2+6+7+8+9 15 -546.03 1125.18 9.04 0.00
## 2+3+6+7+9+10 16 -544.81 1125.18 9.04 0.00
## 1+2+3+6+9+10 16 -544.82 1125.19 9.05 0.00
## 2+4+6+7+8 15 -546.04 1125.20 9.05 0.00
## 1+2+3+4+5+6+8+9 18 -542.33 1125.20 9.05 0.00
## 1+3+5 4 -558.50 1125.24 9.09 0.00
## 1+2+3+4+6+9 16 -544.84 1125.24 9.09 0.00
## 1+2+4+6+10 15 -546.07 1125.26 9.12 0.00
## 2+3+4+5+6+7+8+9 18 -542.37 1125.27 9.12 0.00
## 1+2+3+6+7+9 16 -544.86 1125.27 9.12 0.00
## 1+2+6+9+10 15 -546.08 1125.27 9.12 0.00
## 2+3+4+5+6+8+9+10 18 -542.37 1125.27 9.12 0.00
## 1+2+4+5+10 6 -556.38 1125.28 9.13 0.00
## 1+2+6+7+10 15 -546.08 1125.28 9.14 0.00
## 2+4+6+9+10 15 -546.09 1125.29 9.14 0.00
## 3+4+5+9 5 -557.46 1125.29 9.14 0.00
## 2+3+4+6+7+9 16 -544.87 1125.30 9.15 0.00
## 2+4+6+7+10 15 -546.09 1125.30 9.16 0.00
## 1+2+3+4 5 -557.47 1125.31 9.16 0.00
## 2+6+7+9+10 15 -546.10 1125.31 9.17 0.00
## 2+4+5+7+10 6 -556.41 1125.33 9.19 0.00
## 2+3+4+6+7+10 16 -544.90 1125.35 9.20 0.00
## 1+2+3+4+6+10 16 -544.90 1125.35 9.20 0.00
## 1+2+3+5+6+8+9+10 18 -542.42 1125.36 9.21 0.00
## 1+4+5+6+8+9 16 -544.91 1125.37 9.22 0.00
## 4+5+6+7+8+9 16 -544.91 1125.37 9.23 0.00
## 1+2+5+7+8+9 7 -555.34 1125.38 9.24 0.00
## 1+2+3+6+7+10 16 -544.92 1125.40 9.25 0.00
## 1+2+4+6+9 15 -546.14 1125.40 9.26 0.00
## 1+2+6+7+9 15 -546.15 1125.42 9.27 0.00
## 1+4+5+6+7+8 16 -544.93 1125.42 9.27 0.00
## 1+2+3+5+6+7+8+9 18 -542.45 1125.42 9.28 0.00
## 1+2+4+6+7 15 -546.17 1125.45 9.30 0.00
## 2+3+5+6+7+8+9+10 18 -542.48 1125.49 9.34 0.00
## 1+5+6+8+9+10 16 -544.97 1125.49 9.35 0.00
## 3+4+5+7 5 -557.56 1125.49 9.35 0.00
## 3+4+6+8+9+10 16 -544.97 1125.50 9.36 0.00
## 5+6+7+8+9+10 16 -544.97 1125.50 9.36 0.00
## 1+2+3+4+8 6 -556.49 1125.50 9.36 0.00
## 1+2+3+4+6+7 16 -544.98 1125.51 9.36 0.00
## 1+5+6+7+8+10 16 -544.98 1125.52 9.37 0.00
## 1+2+5+7+8+10 7 -555.43 1125.56 9.41 0.00
## 3+4+6+7+8+10 16 -545.01 1125.58 9.43 0.00
## 1+3+4+5+6+9+10 17 -543.77 1125.58 9.43 0.00
## 1+3+4+6+8+10 16 -545.01 1125.58 9.43 0.00
## 1+2+3+4+5+6+8+10 18 -542.55 1125.62 9.48 0.00
## 1+3+4+6+8+9 16 -545.05 1125.66 9.51 0.00
## 1+8+9 4 -558.71 1125.67 9.53 0.00
## 3+4+5+6+7+9+10 17 -543.83 1125.68 9.54 0.00
## 2+4+6+7+9 15 -546.28 1125.69 9.54 0.00
## 3+4+6+7+8+9 16 -545.08 1125.71 9.56 0.00
## 3+6+7+8+9+10 16 -545.08 1125.71 9.57 0.00
## 1+3+6+8+9+10 16 -545.08 1125.71 9.57 0.00
## 1+2+3+5+7+8+9+10 9 -553.30 1125.72 9.58 0.00
## 1+2 3 -559.79 1125.73 9.58 0.00
## 1+3+8+10 5 -557.69 1125.75 9.60 0.00
## 1+2+5+9+10 6 -556.62 1125.76 9.62 0.00
## 1+4+6+8+10 15 -546.33 1125.77 9.62 0.00
## 2+3+4+5+6+7+8+10 18 -542.62 1125.77 9.63 0.00
## 1+8+10 4 -558.77 1125.78 9.63 0.00
## 1+5+6+7+8+9 16 -545.11 1125.78 9.63 0.00
## 1+3+4+6+7+8 16 -545.11 1125.78 9.64 0.00
## 1+2+3+4+5+6+7+8 18 -542.63 1125.78 9.64 0.00
## 1+3+6+7+8+10 16 -545.12 1125.79 9.65 0.00
## 4+6+8+9+10 15 -546.34 1125.80 9.65 0.00
## 4+6+7+8+10 15 -546.34 1125.80 9.65 0.00
## 1+2+3+5+7+9 7 -555.56 1125.80 9.66 0.00
## 4+5+7+9+10 6 -556.66 1125.84 9.69 0.00
## 1+2+3+10 5 -557.74 1125.84 9.70 0.00
## 2+3+5+7+9 6 -556.66 1125.84 9.70 0.00
## 1+3+4+5+6+7+10 17 -543.91 1125.85 9.70 0.00
## 1+3+4+5+6+7+9 17 -543.92 1125.86 9.72 0.00
## 1+4+5+9+10 6 -556.67 1125.86 9.72 0.00
## 1+3+6+7+8+9 16 -545.16 1125.87 9.72 0.00
## 1+2+4+5+8+9+10 8 -554.49 1125.87 9.72 0.00
## 1+2+3+5+6+7+8+10 18 -542.67 1125.87 9.73 0.00
## 2+4+5+7+8+9+10 8 -554.49 1125.88 9.73 0.00
## 2+5+7+9+10 6 -556.68 1125.88 9.73 0.00
## 1+5+7+8+9+10 7 -555.60 1125.88 9.74 0.00
## 1+3+8+9 5 -557.76 1125.89 9.74 0.00
## 1+3+4 4 -558.84 1125.91 9.77 0.00
## 1+3+7+8 5 -557.78 1125.93 9.78 0.00
## 1+6+7+8+10 15 -546.41 1125.93 9.78 0.00
## 1+6+8+9+10 15 -546.41 1125.93 9.78 0.00
## 6+7+8+9+10 15 -546.42 1125.96 9.82 0.00
## 1+2+4+8 5 -557.80 1125.97 9.82 0.00
## 1+4+8+9 5 -557.82 1126.00 9.86 0.00
## 1+4+6+8+9 15 -546.45 1126.02 9.87 0.00
## 1+4+6+7+8 15 -546.45 1126.02 9.87 0.00
## 3+4+10 4 -558.92 1126.08 9.93 0.00
## 1+7+8 4 -558.93 1126.10 9.95 0.00
## 1+3+4+8+9 6 -556.80 1126.12 9.97 0.00
## 1+2+3+4+5+7+9 8 -554.62 1126.14 10.00 0.00
## 1+2+4+5+7+8+9 8 -554.63 1126.16 10.01 0.00
## 1+5+9+10 5 -557.90 1126.17 10.02 0.00
## 1+6+7+8+9 15 -546.53 1126.17 10.03 0.00
## 5+7+9+10 5 -557.91 1126.18 10.03 0.00
## 1+3+4+8+10 6 -556.84 1126.19 10.04 0.00
## 1+3+5+6+7+9+10 17 -544.09 1126.21 10.06 0.00
## 1+3+4+10 5 -557.93 1126.22 10.07 0.00
## 1+2+3+4+5+6+9+10 18 -542.86 1126.26 10.11 0.00
## 1+4+5+7+8+9+10 8 -554.68 1126.26 10.12 0.00
## 1+3+4+5+6+8+9+10 18 -542.87 1126.27 10.12 0.00
## 1+3+4+7+8 6 -556.88 1126.27 10.12 0.00
## 1+4+5+6+9+10 16 -545.36 1126.27 10.13 0.00
## 4+5+6+7+9+10 16 -545.36 1126.28 10.13 0.00
## 1+4+5 4 -559.02 1126.29 10.14 0.00
## 4+6+7+8+9 15 -546.59 1126.29 10.15 0.00
## 1+4+5+6+7+10 16 -545.37 1126.30 10.15 0.00
## 1+2+10 4 -559.04 1126.33 10.18 0.00
## 1+3+10 4 -559.04 1126.33 10.18 0.00
## 2+3+4+5+6+7+9+10 18 -542.92 1126.37 10.22 0.00
## 1+2+5+9 5 -558.01 1126.38 10.23 0.00
## 1+2+3+4+5+6+7+9 18 -542.93 1126.38 10.24 0.00
## 1+4+8+10 5 -558.03 1126.43 10.29 0.00
## 1+3+4+5+6+7+8+9 18 -542.95 1126.43 10.29 0.00
## 3+4+5+6+7+8+9+10 18 -542.96 1126.44 10.30 0.00
## 1+2+3+4+5+7+8+9+10 10 -552.53 1126.45 10.30 0.00
## 1+2+3+5+7+9+10 8 -554.78 1126.45 10.30 0.00
## 1+2+5+7+10 6 -556.98 1126.47 10.32 0.00
## 1+2+4 4 -559.11 1126.47 10.33 0.00
## 1+2+5+7 5 -558.05 1126.47 10.33 0.00
## 1+2+3+5+6+7+9+10 18 -542.98 1126.49 10.35 0.00
## 1+2+8+9 5 -558.07 1126.50 10.35 0.00
## 2+4+5+6+8+9+10 17 -544.24 1126.51 10.36 0.00
## 1+2+4+5+9+10 7 -555.92 1126.53 10.38 0.00
## 1+3+4+5+6+7+8+10 18 -543.01 1126.54 10.40 0.00
## 1+2+4+5+7+8+10 8 -554.83 1126.55 10.40 0.00
## 2+4+5+7+9+10 7 -555.93 1126.55 10.41 0.00
## 2+3+10 4 -559.17 1126.58 10.44 0.00
## 1+2+3+8+9 6 -557.04 1126.59 10.44 0.00
## 1+2+4+5+6+8+10 17 -544.28 1126.59 10.45 0.00
## 1+4+6+7+10 15 -546.74 1126.60 10.45 0.00
## 2+4+5+6+7+8+10 17 -544.29 1126.60 10.45 0.00
## 1+2+3+8+10 6 -557.05 1126.61 10.46 0.00
## 1+2+3+7 5 -558.12 1126.61 10.47 0.00
## 1+4+6+9+10 15 -546.75 1126.62 10.47 0.00
## 1+10 3 -560.24 1126.63 10.48 0.00
## 1+3+4+5+7+9+10 8 -554.87 1126.63 10.48 0.00
## 1+4+7+8 5 -558.13 1126.63 10.49 0.00
## 4+6+7+9+10 15 -546.76 1126.64 10.49 0.00
## 1+2+3+7+8 6 -557.07 1126.65 10.51 0.00
## 1+4+5+6+7+9 16 -545.55 1126.66 10.51 0.00
## 2+4+5+6+7+8+9 17 -544.32 1126.66 10.51 0.00
## 1+2+5+6+8+9+10 17 -544.32 1126.66 10.51 0.00
## 2+5+6+7+8+9+10 17 -544.32 1126.66 10.52 0.00
## 1+2+4+5+6+8+9 17 -544.32 1126.67 10.52 0.00
## 3+4+8+10 5 -558.16 1126.68 10.54 0.00
## 3+4+6+7+9+10 16 -545.57 1126.70 10.55 0.00
## 1+3+4+6+9+10 16 -545.58 1126.72 10.58 0.00
## 1+5+6+7+9+10 16 -545.59 1126.74 10.60 0.00
## 1+2+3+4+10 6 -557.12 1126.75 10.61 0.00
## 1+4+10 4 -559.26 1126.76 10.61 0.00
## 1+2+5+6+7+8+10 17 -544.37 1126.76 10.61 0.00
## 1+2+4+5+9 6 -557.12 1126.76 10.62 0.00
## 1+3+4+6+7+10 16 -545.61 1126.77 10.63 0.00
## 1+2+3+9 5 -558.21 1126.78 10.63 0.00
## 1+2+3+4+5+6+7+10 18 -543.13 1126.79 10.64 0.00
## 1+6+7+9+10 15 -546.84 1126.79 10.65 0.00
## 2+4+5 4 -559.28 1126.80 10.65 0.00
## 1+2+5+6+7+8+9 17 -544.39 1126.81 10.66 0.00
## 1+2+4+5+6+7+8 17 -544.39 1126.81 10.66 0.00
## 1+2+8+10 5 -558.22 1126.81 10.67 0.00
## 1+3+5+6+7+8+9+10 18 -543.16 1126.84 10.70 0.00
## 2+3+4+10 5 -558.25 1126.87 10.72 0.00
## 1+4+5+7+10 6 -557.18 1126.87 10.73 0.00
## 3+10 3 -560.37 1126.88 10.74 0.00
## 2+3+4+6+8+9+10 17 -544.44 1126.91 10.76 0.00
## 1+5+7+10 5 -558.27 1126.91 10.76 0.00
## 1+4+6+7+9 15 -546.90 1126.92 10.77 0.00
## 1+3+4+6+7+9 16 -545.69 1126.93 10.78 0.00
## 1+3+6+7+9+10 16 -545.70 1126.95 10.81 0.00
## 1+2+3+6+8+9+10 17 -544.46 1126.95 10.81 0.00
## 2+3+6+7+8+9+10 17 -544.46 1126.95 10.81 0.00
## 1+2+7+8 5 -558.30 1126.97 10.82 0.00
## 1+2+3+4+6+8+9 17 -544.48 1126.98 10.83 0.00
## 4+10 3 -560.43 1127.00 10.85 0.00
## 2+3+4+6+7+8+9 17 -544.49 1127.00 10.86 0.00
## 1+3+5+7 5 -558.33 1127.02 10.87 0.00
## 1+2+3+6+7+8+9 17 -544.50 1127.02 10.87 0.00
## 3+8+10 4 -559.40 1127.04 10.90 0.00
## 1+2+4+5+7 6 -557.27 1127.05 10.90 0.00
## 2+3+4+6+7+8+10 17 -544.53 1127.09 10.94 0.00
## 1+2+3+4+6+8+10 17 -544.53 1127.09 10.94 0.00
## 1+2+3+4+5+7+9+10 9 -553.99 1127.10 10.96 0.00
## 1+3+5+7+9+10 7 -556.21 1127.12 10.97 0.00
## 1+8+9+10 5 -558.38 1127.12 10.97 0.00
## 1+2+3+6+7+8+10 17 -544.56 1127.14 11.00 0.00
## 1+2+5+7+8+9+10 8 -555.14 1127.18 11.03 0.00
## 1+2+4+5+6+9+10 17 -544.58 1127.20 11.05 0.00
## 2+4+5+6+7+9+10 17 -544.59 1127.20 11.06 0.00
## 1+2+3+4+6+7+8 17 -544.59 1127.21 11.07 0.00
## 1+3+4+5+7+9 7 -556.27 1127.23 11.08 0.00
## 1+2+4+6+8+10 16 -545.84 1127.24 11.10 0.00
## 1+2+6+8+9+10 16 -545.85 1127.26 11.11 0.00
## 1+4 3 -560.56 1127.27 11.12 0.00
## 2+4+6+8+9+10 16 -545.86 1127.27 11.12 0.00
## 1+2+6+7+8+10 16 -545.86 1127.27 11.13 0.00
## 2+4+6+7+8+10 16 -545.86 1127.28 11.13 0.00
## 1+3 3 -560.57 1127.29 11.15 0.00
## 2+6+7+8+9+10 16 -545.87 1127.30 11.15 0.00
## 1+3+5+9 5 -558.47 1127.31 11.16 0.00
## 1+2+4+5+6+7+10 17 -544.65 1127.32 11.17 0.00
## 1+2+3+4+7 6 -557.41 1127.34 11.20 0.00
## 1+2+5+6+7+9+10 17 -544.66 1127.35 11.21 0.00
## 1+2+4+6+8+9 16 -545.91 1127.37 11.22 0.00
## 4+8+10 4 -559.57 1127.38 11.24 0.00
## 1+2+3+4+9 6 -557.44 1127.39 11.24 0.00
## 1+2+4+10 5 -558.51 1127.39 11.24 0.00
## 1+2+6+7+8+9 16 -545.92 1127.39 11.25 0.00
## 1+2+4+5+6+7+9 17 -544.69 1127.40 11.25 0.00
## 1+2+4+6+7+8 16 -545.92 1127.40 11.26 0.00
## 1+2+4+5+7+10 7 -556.36 1127.41 11.27 0.00
## 3+4+5+7+9 6 -557.46 1127.44 11.29 0.00
## 2+10 3 -560.66 1127.46 11.32 0.00
## 1+2+4+8+9 6 -557.48 1127.47 11.33 0.00
## 1+2+9 4 -559.62 1127.49 11.34 0.00
## 8+10 3 -560.68 1127.51 11.36 0.00
## 1+2+3+4+8+9 7 -556.41 1127.51 11.37 0.00
## 1+4+5+6+8+9+10 17 -544.75 1127.53 11.39 0.00
## 1+4+5+6+7+8+10 17 -544.76 1127.55 11.40 0.00
## 4+5+6+7+8+9+10 17 -544.76 1127.55 11.40 0.00
## 4+9+10 4 -559.66 1127.55 11.41 0.00
## 10 2 -561.74 1127.56 11.41 0.00
## 1+2+9+10 5 -558.60 1127.56 11.42 0.00
## 2+4+6+7+8+9 16 -546.02 1127.59 11.45 0.00
## 1+2+7 4 -559.68 1127.61 11.47 0.00
## 2+3+4+6+7+9+10 17 -544.79 1127.61 11.47 0.00
## 1+2+3+4+6+9+10 17 -544.80 1127.62 11.47 0.00
## 3+4+9+10 5 -558.63 1127.62 11.48 0.00
## 1+2+3+4+8+10 7 -556.47 1127.64 11.49 0.00
## 1+2+3+4+5+6+8+9+10 19 -542.29 1127.64 11.50 0.00
## 1+2+3+6+7+9+10 17 -544.81 1127.65 11.50 0.00
## 1+2+3+4+7+8 7 -556.49 1127.66 11.52 0.00
## 1+3+8+9+10 6 -557.58 1127.67 11.52 0.00
## 1+4+8+9+10 6 -557.58 1127.68 11.53 0.00
## 1+2+4+6+9+10 16 -546.06 1127.68 11.53 0.00
## 1+9+10 4 -559.73 1127.69 11.55 0.00
## 1+2+4+6+7+10 16 -546.07 1127.69 11.55 0.00
## 1+2+6+7+9+10 16 -546.07 1127.70 11.55 0.00
## 1+2+3+4+6+7+9 17 -544.84 1127.70 11.56 0.00
## 1+2+3+4+5+6+7+8+9 19 -542.32 1127.71 11.56 0.00
## 1+4+9+10 5 -558.68 1127.72 11.57 0.00
## 2+4+6+7+9+10 16 -546.08 1127.72 11.58 0.00
## 1+2+3+9+10 6 -557.62 1127.75 11.61 0.00
## 1+7+8+9 5 -558.70 1127.76 11.61 0.00
## 2+3+4+5+6+7+8+9+10 19 -542.36 1127.80 11.65 0.00
## 1+2+3+4+6+7+10 17 -544.89 1127.82 11.67 0.00
## 1+4+5+6+7+8+9 17 -544.90 1127.82 11.67 0.00
## 1+3+4+7 5 -558.73 1127.82 11.67 0.00
## 1+2+3+7+10 6 -557.65 1127.82 11.68 0.00
## 1+3+7+8+10 6 -557.66 1127.83 11.68 0.00
## 1+7+8+10 5 -558.73 1127.83 11.68 0.00
## 1+2+4+6+7+9 16 -546.14 1127.83 11.69 0.00
## 2+3+8+10 5 -558.73 1127.84 11.69 0.00
## 1+2+5+7+9+10 7 -556.59 1127.88 11.73 0.00
## 1+2+3+5+6+7+8+9+10 19 -542.41 1127.88 11.74 0.00
## 2+4+10 4 -559.83 1127.89 11.75 0.00
## 1+5+6+7+8+9+10 17 -544.97 1127.96 11.81 0.00
## 1+3+4+9+10 6 -557.72 1127.96 11.82 0.00
## 1+3+4+6+8+9+10 17 -544.97 1127.97 11.83 0.00
## 3+4+6+7+8+9+10 17 -544.97 1127.97 11.83 0.00
## 1+2+4+8+10 6 -557.74 1127.99 11.84 0.00
## 1+3+7+8+9 6 -557.74 1127.99 11.84 0.00
## 1+4+5+7+9+10 7 -556.65 1127.99 11.84 0.00
## 1+3+4+9 5 -558.81 1127.99 11.85 0.00
## 1+3+4+6+7+8+10 17 -545.01 1128.04 11.90 0.00
## 1+3+4+5+6+7+9+10 18 -543.77 1128.07 11.93 0.00
## 1+2+4+5+7+8+9+10 9 -554.48 1128.08 11.93 0.00
## 1+3+4+8+9+10 7 -556.70 1128.08 11.94 0.00
## 1+2+4+7+8 6 -557.79 1128.10 11.95 0.00
## 1+3+9+10 5 -558.87 1128.10 11.95 0.00
## 1+5 3 -560.98 1128.10 11.96 0.00
## 1+4+5+9 5 -558.87 1128.11 11.96 0.00
## 1+2+4+9 5 -558.88 1128.12 11.97 0.00
## 1+2+3+4+5+6+7+8+10 19 -542.53 1128.12 11.97 0.00
## 1+3+4+6+7+8+9 17 -545.05 1128.13 11.98 0.00
## 1+3+7+10 5 -558.89 1128.14 11.99 0.00
## 1+4+7+8+9 6 -557.82 1128.15 12.00 0.00
## 1+5+7+9+10 6 -557.82 1128.16 12.01 0.00
## 4+8+9+10 5 -558.90 1128.17 12.03 0.00
## 3+4+7+10 5 -558.91 1128.18 12.03 0.00
## 2+3+4+8+10 6 -557.83 1128.18 12.04 0.00
## 1+3+6+7+8+9+10 17 -545.08 1128.19 12.04 0.00
## 1+3+4+7+10 6 -557.84 1128.20 12.06 0.00
## 9+10 3 -561.03 1128.20 12.06 0.00
## 1+4+6+8+9+10 16 -546.33 1128.21 12.06 0.00
## 1+4+6+7+8+10 16 -546.33 1128.21 12.06 0.00
## 1+2+8+9+10 6 -557.85 1128.22 12.08 0.00
## 4+6+7+8+9+10 16 -546.34 1128.23 12.09 0.00
## 1+4+5+7 5 -558.94 1128.24 12.10 0.00
## 1+2+7+10 5 -558.95 1128.27 12.12 0.00
## 2+9+10 4 -560.02 1128.28 12.13 0.00
## 1+3+4+7+8+9 7 -556.79 1128.28 12.13 0.00
## 2+3+9+10 5 -558.96 1128.29 12.15 0.00
## 1+3+4+7+8+10 7 -556.82 1128.34 12.19 0.00
## 3+4+8+9+10 6 -557.92 1128.35 12.21 0.00
## 1+6+7+8+9+10 16 -546.41 1128.37 12.22 0.00
## 8+9+10 4 -560.08 1128.39 12.25 0.00
## 1+7+10 4 -560.08 1128.40 12.25 0.00
## 1+2+5+7+9 6 -557.95 1128.42 12.27 0.00
## 3+9+10 4 -560.10 1128.44 12.29 0.00
## 1+4+6+7+8+9 16 -546.45 1128.46 12.31 0.00
## 1+2+4+7 5 -559.05 1128.46 12.31 0.00
## 1 2 -562.22 1128.50 12.36 0.00
## 2+8+10 4 -560.13 1128.50 12.36 0.00
## 1+2+4+9+10 6 -558.00 1128.52 12.38 0.00
## 2+3+4+9+10 6 -558.01 1128.54 12.40 0.00
## 1+4+7+8+10 6 -558.02 1128.56 12.41 0.00
## 1+2+3+8+9+10 7 -556.95 1128.60 12.45 0.00
## 2+4+9+10 5 -559.12 1128.61 12.46 0.00
## 1+2+7+8+9 6 -558.05 1128.62 12.48 0.00
## 1+2+3+4+9+10 7 -556.97 1128.64 12.49 0.00
## 2+3+7+10 5 -559.16 1128.69 12.54 0.00
## 1+4+7+10 5 -559.17 1128.70 12.55 0.00
## 1+2+4+5+7+9+10 8 -555.91 1128.71 12.56 0.00
## 1+2+3+7+8+9 7 -557.02 1128.73 12.58 0.00
## 3+8+9+10 5 -559.18 1128.73 12.59 0.00
## 1+2+3+7+8+10 7 -557.02 1128.73 12.59 0.00
## 1+4+5+6+7+9+10 17 -545.36 1128.74 12.59 0.00
## 1+2+3+7+9 6 -558.12 1128.75 12.60 0.00
## 1+3+4+5+6+7+8+9+10 19 -542.86 1128.78 12.64 0.00
## 1+2+3+4+5+6+7+9+10 19 -542.86 1128.80 12.65 0.00
## 3+4+7+8+10 6 -558.16 1128.83 12.68 0.00
## 1+2+3+4+7+10 7 -557.07 1128.83 12.68 0.00
## 2+4+5+9 5 -559.24 1128.85 12.71 0.00
## 2+4+5+7 5 -559.25 1128.87 12.73 0.00
## 1+2+4+5+7+9 7 -557.10 1128.89 12.75 0.00
## 3+7+10 4 -560.33 1128.89 12.75 0.00
## 1+2+7+8+10 6 -558.20 1128.91 12.77 0.00
## 1+3+7 4 -560.34 1128.93 12.78 0.00
## 1+4+9 4 -560.36 1128.95 12.81 0.00
## 2+4+8+10 5 -559.31 1128.99 12.85 0.00
## 1+2+4+5+6+8+9+10 18 -544.23 1128.99 12.85 0.00
## 2+4+5+6+7+8+9+10 18 -544.24 1129.00 12.85 0.00
## 2+3+4+7+10 6 -558.25 1129.01 12.86 0.00
## 1+4+6+7+9+10 16 -546.74 1129.04 12.89 0.00
## 4+7+10 4 -560.41 1129.07 12.92 0.00
## 1+2+4+5+6+7+8+10 18 -544.27 1129.08 12.93 0.00
## 1+3+5+7+9 6 -558.29 1129.10 12.95 0.00
## 1+4+7 4 -560.43 1129.11 12.97 0.00
## 1+2+4+5+6+7+8+9 18 -544.31 1129.15 13.01 0.00
## 1+2+5+6+7+8+9+10 18 -544.31 1129.15 13.01 0.00
## 3+7+8+10 5 -559.40 1129.17 13.02 0.00
## 1+3+4+6+7+9+10 17 -545.57 1129.17 13.02 0.00
## 1+7+8+9+10 6 -558.35 1129.22 13.08 0.00
## 1+2+4+8+9+10 7 -557.31 1129.31 13.16 0.00
## 2+5 3 -561.60 1129.35 13.20 0.00
## 1+3+9 4 -560.57 1129.39 13.25 0.00
## 2+3+4+6+7+8+9+10 18 -544.44 1129.41 13.26 0.00
## 1+2+3+4+6+8+9+10 18 -544.44 1129.41 13.26 0.00
## 1+2+4+7+10 6 -558.45 1129.42 13.27 0.00
## 1+2+7+9 5 -559.53 1129.42 13.28 0.00
## 1+2+3+6+7+8+9+10 18 -544.46 1129.46 13.31 0.00
## 1+2+3+4+7+9 7 -557.39 1129.46 13.32 0.00
## 2+8+9+10 5 -559.55 1129.46 13.32 0.00
## 1+2+3+4+6+7+8+9 18 -544.47 1129.48 13.33 0.00
## 4+7+8+10 5 -559.57 1129.50 13.35 0.00
## 2+7+10 4 -560.65 1129.54 13.39 0.00
## 7+10 3 -561.70 1129.54 13.40 0.00
## 1+7+9+10 5 -559.60 1129.57 13.42 0.00
## 1+2+7+9+10 6 -558.53 1129.58 13.43 0.00
## 1+2+3+4+6+7+8+10 18 -544.53 1129.59 13.44 0.00
## 1+2+3+4+8+9+10 8 -556.36 1129.61 13.46 0.00
## 7+8+10 4 -560.68 1129.61 13.46 0.00
## 2+3+8+9+10 6 -558.55 1129.61 13.47 0.00
## 1+2+4+7+8+9 7 -557.48 1129.64 13.50 0.00
## 4+7+9+10 5 -559.65 1129.67 13.52 0.00
## 1+2+4+5+6+7+9+10 18 -544.58 1129.70 13.55 0.00
## 1+2+4+6+8+9+10 17 -545.84 1129.70 13.56 0.00
## 1+2+3+4+7+8+9 8 -556.41 1129.71 13.56 0.00
## 1+2+4+6+7+8+10 17 -545.84 1129.71 13.57 0.00
## 1+2+6+7+8+9+10 17 -545.85 1129.73 13.58 0.00
## 2+4+6+7+8+9+10 17 -545.86 1129.74 13.59 0.00
## 1+4+7+9+10 6 -558.62 1129.75 13.60 0.00
## 3+4+7+9+10 6 -558.62 1129.76 13.61 0.00
## 1+5+7 4 -560.77 1129.78 13.63 0.00
## 1+3+7+8+9+10 7 -557.55 1129.79 13.64 0.00
## 1+2+3+7+9+10 7 -557.55 1129.79 13.64 0.00
## 1+2+3+4+7+8+10 8 -556.46 1129.82 13.68 0.00
## 1+2+4+6+7+8+9 17 -545.91 1129.84 13.69 0.00
## 1+4+7+8+9+10 7 -557.58 1129.84 13.70 0.00
## 2+4+8+9+10 6 -558.67 1129.86 13.71 0.00
## 2+3+4+8+9+10 7 -557.62 1129.93 13.79 0.00
## 1+3+4+7+9 6 -558.71 1129.94 13.79 0.00
## 1+3+7+9+10 6 -558.73 1129.98 13.83 0.00
## 2+3+7+8+10 6 -558.73 1129.98 13.84 0.00
## 2+4+7+10 5 -559.82 1130.01 13.86 0.00
## 1+3+4+7+9+10 7 -557.66 1130.01 13.87 0.00
## 1+4+5+6+7+8+9+10 18 -544.75 1130.02 13.88 0.00
## 1+7 3 -561.96 1130.06 13.92 0.00
## 1+5+9 4 -560.92 1130.08 13.93 0.00
## 1+2+3+4+6+7+9+10 18 -544.79 1130.11 13.97 0.00
## 1+4+5+7+9 6 -558.80 1130.12 13.97 0.00
## 1+2+4+7+8+10 7 -557.72 1130.14 13.99 0.00
## 1+2+4+6+7+9+10 17 -546.06 1130.14 14.00 0.00
## 1+2+4+7+9 6 -558.82 1130.16 14.02 0.00
## 1+2+3+4+5+6+7+8+9+10 20 -542.27 1130.19 14.04 0.00
## 7+9+10 4 -561.00 1130.25 14.10 0.00
## 1+3+4+7+8+9+10 8 -556.69 1130.27 14.12 0.00
## 4+7+8+9+10 6 -558.89 1130.30 14.16 0.00
## 2+3+4+7+8+10 7 -557.83 1130.35 14.20 0.00
## 1+2+7+8+9+10 7 -557.84 1130.37 14.22 0.00
## 1+9 3 -562.12 1130.38 14.23 0.00
## 2+7+9+10 5 -560.01 1130.39 14.25 0.00
## 2+3+7+9+10 6 -558.96 1130.43 14.28 0.00
## 1+3+4+6+7+8+9+10 18 -544.97 1130.48 14.33 0.00
## 3+7+9+10 5 -560.07 1130.50 14.35 0.00
## 7+8+9+10 5 -560.07 1130.52 14.37 0.00
## 3+4+7+8+9+10 7 -557.91 1130.52 14.37 0.00
## 3+4+8 4 -561.18 1130.61 14.47 0.00
## 2+7+8+10 5 -560.13 1130.63 14.48 0.00
## 1+2+4+7+9+10 7 -557.97 1130.63 14.48 0.00
## 1+4+6+7+8+9+10 17 -546.33 1130.68 14.53 0.00
## 2+3+4+7+9+10 7 -558.01 1130.72 14.57 0.00
## 2+4+7+9+10 6 -559.12 1130.76 14.61 0.00
## 1+2+3+7+8+9+10 8 -556.93 1130.76 14.61 0.00
## 1+2+3+4+7+9+10 8 -556.93 1130.76 14.62 0.00
## 1+4+7+9 5 -560.25 1130.86 14.72 0.00
## 3+7+8+9+10 6 -559.18 1130.88 14.73 0.00
## 2+4+5+7+9 6 -559.21 1130.94 14.80 0.00
## 1+3+7+9 5 -560.34 1131.05 14.90 0.00
## 2+4+7+8+10 6 -559.31 1131.13 14.98 0.00
## 2+3+4+8 5 -560.42 1131.21 15.07 0.00
## 2+5+7 4 -561.58 1131.40 15.25 0.00
## 2+5+9 4 -561.60 1131.44 15.29 0.00
## 1+2+4+7+8+9+10 8 -557.30 1131.50 15.36 0.00
## 1+2+4+5+6+7+8+9+10 19 -544.22 1131.52 15.37 0.00
## 2+7+8+9+10 6 -559.55 1131.61 15.46 0.00
## 4+5 3 -562.76 1131.66 15.51 0.00
## 2+3+7+8+9+10 7 -558.55 1131.79 15.64 0.00
## 1+5+7+9 5 -560.72 1131.80 15.65 0.00
## 1+2+3+4+7+8+9+10 9 -556.35 1131.83 15.68 0.00
## 1+2+3+4+6+7+8+9+10 19 -544.44 1131.95 15.80 0.00
## 1+7+9 4 -561.87 1131.99 15.85 0.00
## 2+4+7+8+9+10 7 -558.66 1132.01 15.86 0.00
## 3+5 3 -562.95 1132.04 15.89 0.00
## 2+3+4+7+8+9+10 8 -557.61 1132.12 15.97 0.00
## 1+2+4+6+7+8+9+10 18 -545.84 1132.20 16.06 0.00
## 3+4+7+8 5 -560.94 1132.24 16.09 0.00
## 3+5+9 4 -562.19 1132.62 16.47 0.00
## 3+4+8+9 5 -561.18 1132.72 16.57 0.00
## 2+3+4+7+8 6 -560.20 1132.91 16.76 0.00
## 2+3+4+8+9 6 -560.42 1133.35 17.20 0.00
## 2+5+7+9 5 -561.58 1133.52 17.37 0.00
## 4+5+7 4 -562.74 1133.72 17.58 0.00
## 4+5+9 4 -562.76 1133.75 17.61 0.00
## 2+3+8 4 -562.87 1133.98 17.84 0.00
## 4+8 3 -563.93 1134.00 17.86 0.00
## 3+5+7 4 -562.95 1134.13 17.99 0.00
## 3+4+7+8+9 6 -560.94 1134.39 18.24 0.00
## 2+4+8 4 -563.20 1134.65 18.50 0.00
## 3+5+7+9 5 -562.17 1134.71 18.57 0.00
## 2+3+4+7+8+9 7 -560.20 1135.08 18.94 0.00
## 4+7+8 4 -563.55 1135.35 19.20 0.00
## 2+3+7+8 5 -562.59 1135.55 19.40 0.00
## 4+5+7+9 5 -562.74 1135.84 19.69 0.00
## 2+3+8+9 5 -562.78 1135.92 19.77 0.00
## 4+8+9 4 -563.86 1135.96 19.81 0.00
## 3+8 3 -564.95 1136.04 19.89 0.00
## 2+4+7+8 5 -562.85 1136.07 19.92 0.00
## 2+3+4 4 -563.98 1136.21 20.06 0.00
## 2+4+8+9 5 -563.13 1136.62 20.47 0.00
## 4+7+8+9 5 -563.44 1137.25 21.10 0.00
## 3+7+8 4 -564.61 1137.47 21.32 0.00
## 2+3+7+8+9 6 -562.53 1137.58 21.44 0.00
## 3+8+9 4 -564.80 1137.84 21.69 0.00
## 2+8 3 -565.90 1137.95 21.81 0.00
## 2+3+4+9 5 -563.80 1137.97 21.83 0.00
## 2+4+7+8+9 6 -562.73 1137.98 21.83 0.00
## 2+3+4+7 5 -563.83 1138.02 21.87 0.00
## 2+7+8 4 -565.48 1139.20 23.06 0.00
## 3+7+8+9 5 -564.51 1139.39 23.25 0.00
## 2+3+4+7+9 6 -563.68 1139.88 23.73 0.00
## 2+8+9 4 -565.90 1140.04 23.90 0.00
## 8 2 -568.00 1140.07 23.92 0.00
## 7+8 3 -567.50 1141.15 25.01 0.00
## 2+7+8+9 5 -565.46 1141.29 25.14 0.00
## 8+9 3 -568.00 1142.14 25.99 0.00
## 7+8+9 4 -567.50 1143.24 27.10 0.00
## 2+3 3 -568.56 1143.26 27.12 0.00
## 3+4 3 -568.61 1143.36 27.22 0.00
## 2+4 3 -568.84 1143.83 27.68 0.00
## 2+3+9 4 -567.86 1143.97 27.82 0.00
## 3+4+9 4 -568.17 1144.58 28.43 0.00
## 2+3+7 4 -568.36 1144.97 28.82 0.00
## 3+4+7 4 -568.44 1145.13 28.98 0.00
## 2+4+7 4 -568.55 1145.35 29.20 0.00
## 5 2 -570.66 1145.39 29.24 0.00
## 2+3+7+9 5 -567.74 1145.84 29.70 0.00
## 2+4+9 4 -568.84 1145.92 29.78 0.00
## 3+4+7+9 5 -568.06 1146.48 30.34 0.00
## 5+9 3 -570.34 1146.83 30.69 0.00
## 5+7 3 -570.65 1147.44 31.30 0.00
## 2+4+7+9 5 -568.55 1147.47 31.33 0.00
## 5+7+9 4 -570.34 1148.93 32.78 0.00
## 2 2 -574.68 1153.44 37.29 0.00
## 4 2 -575.12 1154.31 38.17 0.00
## 2+7 3 -574.32 1154.78 38.63 0.00
## 2+9 3 -574.48 1155.11 38.96 0.00
## 4+7 3 -574.80 1155.74 39.59 0.00
## 4+9 3 -575.06 1156.26 40.12 0.00
## 2+7+9 4 -574.17 1156.58 40.43 0.00
## 4+7+9 4 -574.76 1157.76 41.62 0.00
## 3+9 3 -581.05 1168.25 52.10 0.00
## 3+7+9 4 -580.95 1170.14 54.00 0.00
## 3 2 -584.30 1172.68 56.53 0.00
## 3+7 3 -584.03 1174.21 58.07 0.00
## 9 2 -595.40 1194.87 78.73 0.00
## 7+9 3 -595.02 1196.18 80.03 0.00
## (Null) 1 -597.63 1197.29 81.14 0.00
## 7 2 -597.04 1198.15 82.01 0.00
##
## Term codes:
## Canopy CWD_AGB Duff FWD_AGB Litter_AGB LU_FT_Code
## 1 2 3 4 5 6
## MF_FCCP PrimFor_500 SoilDens Trees
## 7 8 9 10
##
## Model-averaged coefficients:
## (full average)
## Estimate Std. Error Adjusted SE z value Pr(>|z|)
## (Intercept) 3.4320272 0.1591203 0.1602430 21.418 <2e-16 ***
## Duff 0.0144140 0.0141597 0.0142060 1.015 0.310
## FWD_AGB 0.0018147 0.0040311 0.0040472 0.448 0.654
## Litter_AGB 0.0243333 0.0189551 0.0190072 1.280 0.200
## PrimFor_500 0.0006019 0.0007257 0.0007277 0.827 0.408
## CWD_AGB 0.0002946 0.0005265 0.0005285 0.557 0.577
## LU_FT_CodeMA -0.0013133 0.1512660 0.1523855 0.009 0.993
## LU_FT_CodePA 0.0635148 0.1543328 0.1553546 0.409 0.683
## LU_FT_CodePFlog 0.1166728 0.1736924 0.1745915 0.668 0.504
## LU_FT_CodePFlogbur 0.1522615 0.1891404 0.1899364 0.802 0.423
## LU_FT_CodePFund 0.1659877 0.2038392 0.2046599 0.811 0.417
## LU_FT_CodeREF 0.0612725 0.1520268 0.1530604 0.400 0.689
## LU_FT_CodeSFinter 0.1531857 0.1894235 0.1902264 0.805 0.421
## LU_FT_CodeSFold 0.0608570 0.1560067 0.1570857 0.387 0.698
## LU_FT_CodeSFyoung 0.0628221 0.1729060 0.1741164 0.361 0.718
## LU_FT_CodeSHA 0.2810634 0.2965756 0.2974175 0.945 0.345
## Trees 0.0001394 0.0004511 0.0004534 0.307 0.759
## MF_FCCP 0.0007256 0.0382827 0.0385711 0.019 0.985
## SoilDens -0.0000321 0.0004119 0.0004144 0.077 0.938
## Canopy 0.0075676 0.0577191 0.0580711 0.130 0.896
##
## (conditional average)
## Estimate Std. Error Adjusted SE z value Pr(>|z|)
## (Intercept) 3.4320272 0.1591204 0.1602430 21.418 <2e-16 ***
## Duff 0.0221392 0.0117014 0.0117873 1.878 0.0604 .
## FWD_AGB 0.0050997 0.0053771 0.0054110 0.942 0.3460
## Litter_AGB 0.0326128 0.0145440 0.0146348 2.228 0.0259 *
## PrimFor_500 0.0010869 0.0006509 0.0006551 1.659 0.0971 .
## CWD_AGB 0.0007311 0.0006072 0.0006115 1.196 0.2319
## LU_FT_CodeMA -0.0022278 0.1970062 0.1984643 0.011 0.9910
## LU_FT_CodePA 0.1077395 0.1887817 0.1901980 0.566 0.5711
## LU_FT_CodePFlog 0.1979107 0.1873435 0.1887558 1.049 0.2944
## LU_FT_CodePFlogbur 0.2582795 0.1824853 0.1838825 1.405 0.1601
## LU_FT_CodePFund 0.2815631 0.1947812 0.1962357 1.435 0.1513
## LU_FT_CodeREF 0.1039358 0.1864689 0.1878978 0.553 0.5802
## LU_FT_CodeSFinter 0.2598473 0.1820695 0.1834839 1.416 0.1567
## LU_FT_CodeSFold 0.1032311 0.1921201 0.1936057 0.533 0.5939
## LU_FT_CodeSFyoung 0.1065645 0.2145966 0.2162504 0.493 0.6222
## LU_FT_CodeSHA 0.4767649 0.2364257 0.2382128 2.001 0.0453 *
## Trees 0.0004673 0.0007273 0.0007321 0.638 0.5233
## MF_FCCP 0.0029965 0.0777536 0.0783400 0.038 0.9695
## SoilDens -0.0001233 0.0008002 0.0008053 0.153 0.8783
## Canopy 0.0283403 0.1090303 0.1097280 0.258 0.7962
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confset.95p <- get.models(selec, cumsum(weight) <= .95)
avgmod.95p <- model.avg(confset.95p)
avgmod.95p$coefficients
## (Intercept) Duff FWD_AGB Litter_AGB PrimFor_500 CWD_AGB
## full 3.430584 0.01465205 0.001780807 0.02499268 0.0006127082 0.0002887040
## subset 3.430584 0.02219668 0.005191741 0.03270330 0.0011005938 0.0007304337
## LU_FT_CodeMA LU_FT_CodePA LU_FT_CodePFlog LU_FT_CodePFlogbur
## full -0.0008568164 0.06415575 0.1182567 0.1537818
## subset -0.0014469374 0.10834218 0.1997044 0.2596970
## LU_FT_CodePFund LU_FT_CodeREF LU_FT_CodeSFinter LU_FT_CodeSFold
## full 0.1677946 0.06168069 0.1541881 0.06138779
## subset 0.2833610 0.10416246 0.2603831 0.10366782
## LU_FT_CodeSFyoung LU_FT_CodeSHA Trees MF_FCCP SoilDens
## full 0.06349272 0.2829572 0.0001270356 0.0008858057 -3.280297e-05
## subset 0.10722249 0.4778403 0.0004504761 0.0039389910 -1.350626e-04
## Canopy
## full 0.005651748
## subset 0.023120115
confint(avgmod.95p)
## 2.5 % 97.5 %
## (Intercept) 3.1175357125 3.743631734
## Duff -0.0008585784 0.045251942
## FWD_AGB -0.0053282389 0.015711721
## Litter_AGB 0.0040560111 0.061350580
## PrimFor_500 -0.0001727379 0.002373926
## CWD_AGB -0.0004671555 0.001928023
## LU_FT_CodeMA -0.3897889356 0.386895061
## LU_FT_CodePA -0.2636954849 0.480379846
## LU_FT_CodePFlog -0.1693283879 0.568737224
## LU_FT_CodePFlogbur -0.1000889250 0.619482945
## LU_FT_CodePFund -0.1002431388 0.666965137
## LU_FT_CodeREF -0.2639376391 0.472262552
## LU_FT_CodeSFinter -0.0990527090 0.619818809
## LU_FT_CodeSFold -0.2755769562 0.482912598
## LU_FT_CodeSFyoung -0.3164483323 0.530893320
## LU_FT_CodeSHA 0.0117367528 0.943943884
## Trees -0.0009521465 0.001853099
## MF_FCCP -0.1492247236 0.157102706
## SoilDens -0.0017033059 0.001433181
## Canopy -0.1840157623 0.230255992
De forma geral, esse é o básico de como se executa uma seleção de modelos.