Introduction

In this worked example you will replicate a PCA on a published dataset.

The example is split into 2 Parts:

In this Data Preparation phase, you will do the following things:

  1. Load the SNP genotypes in .vcf format (vcfR::read.vcfR())
  2. Extract the genotypes into an R-compatible format (vcfR::extract.gt())
  3. Rotate the data into the standard R analysis format (t())
  4. Remove individuals (rows) from the data set that have >50% NAs (using a function I wrote)
  5. Remove SNPs (columns) that are fixed
  6. Impute remaining NAs (using a for() loop)
  7. Save the prepared data as a .csv file for the next step (write.csv())

Biological background

This worked example is based on a paper in the journal Molecular Ecology from 2017 by Jennifer Walsh titled Subspecies delineation amid phenotypic, geographic and genetic discordance in a songbird.

The study investigated variation between two bird species in the genus Ammodramus: A. nenlsoni and A. caudacutus.

The species A. nenlsoni has been divided into 3 sub-species: A. n. nenlsoni, A.n. alterus, and A n. subvirgatus. The other species, A. caudacutus, has been divided into two subspecies, A.c. caudacutus and A.c. diversus.

The purpose of this study was to investigate to what extent these five subspecies recognized by taxonomists are supported by genetic data. The author’s collected DNA from 75 birds (15 per subspecies) and genotyped 1929 SNPs. They then analyzed the data with Principal Components Analysis (PCA), among other genetic analyzes.

This tutorial will work through all of the steps necessary to re-analyze Walsh et al.s data

Tasks

In the code below all code is provided. Your tasks will be to do 2 things:

  1. Give a meaningful title to all sections marked “TODO: TITLE”
  2. Write 1 to 2 sentences describing what is being done and why in all sections marked “TODO: EXPLAIN”

Preliminaries

Load the vcfR and other packages with library().

library(vcfR)    
## 
##    *****       ***   vcfR   ***       *****
##    This is vcfR 1.13.0 
##      browseVignettes('vcfR') # Documentation
##      citation('vcfR') # Citation
##    *****       *****      *****       *****
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(ggplot2)
library(ggpubr)

Make sure that your working directory is set to the location of the file all_loci.vcf.

getwd()
## [1] "/Users/eeshamukherjee/Downloads/Computaional Bio 1/Final Project"
list.files()
##  [1] "07-mean_imputation.html"             
##  [2] "07-mean_imputation.Rmd"              
##  [3] "08-PCA_worked.html"                  
##  [4] "08-PCA_worked.Rmd"                   
##  [5] "09-PCA_worked_example-SNPs-part1.Rmd"
##  [6] "all_loci.vcf"                        
##  [7] "bird_snps_remove_NAs.html"           
##  [8] "bird_snps_remove_NAs.Rmd"            
##  [9] "Loading_VCF_to_R.Rmd"                
## [10] "My_snp.vcf.gz"                       
## [11] "removing_fixed_alleles.html"         
## [12] "removing_fixed_alleles.Rmd"          
## [13] "rsconnect"                           
## [14] "SNPs_cleaned.csv"                    
## [15] "transpose_VCF_data.html"             
## [16] "transpose_VCF_data.Rmd"              
## [17] "walsh2017morphology.csv"             
## [18] "walsh2017morphology.RData"           
## [19] "working_directory_practice[49].Rmd"
list.files(pattern = "vcf")
## [1] "all_loci.vcf"  "My_snp.vcf.gz"

Data preparation

Load SNP data

Read in .vcf file here so that we can work with the data. Assign the data to object snps, which is an object of vcfR. The last output line should print “All variants processed”.

snps <- vcfR::read.vcfR("all_loci.vcf", convertNA  = TRUE)
## Scanning file to determine attributes.
## File attributes:
##   meta lines: 8
##   header_line: 9
##   variant count: 1929
##   column count: 81
## 
Meta line 8 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
##   Character matrix gt rows: 1929
##   Character matrix gt cols: 81
##   skip: 0
##   nrows: 1929
##   row_num: 0
## 
Processed variant 1000
Processed variant: 1929
## All variants processed

Extracting the Important Data from the .vcf File

We need to extract the genotype data that we plan to use, so extract the character data containing the genotypes, and convert it into numeric scores so that we can use it more easliy in R later.

snps_num <- vcfR::extract.gt(snps, 
           element = "GT",
           IDtoRowNames  = F,
           as.numeric = T,
           convertNA = T,
           return.alleles = F)

Changing the Genotype Scores into Numeric Values

.vcf data is automatically in columns and samples in rows. We want to change these SNPs to numeric data so we can do some analysis. Use the function t() and then assign that output to a new matrix called snps_num_t.

snps_num_t <- t(snps_num) 

Convert the matrix to a df, and assign it to snps_num_df. We will use this later to create the plots necessary for analysis.

snps_num_df <- data.frame(snps_num_t) 

Remove NAs

Create a function called find_NAs(), this will let us know how many NAs are in the df and what index they are located at. The function takes the row number you want to search for NAs, and prints the indices where NAs were found within the indicated row.

find_NAs <- function(x){
  NAs_TF <- is.na(x)
  i_NA <- which(NAs_TF == TRUE)
  N_NA <- length(i_NA)
  
  cat("Results:",N_NA, "NAs present\n.")
  return(i_NA)
}

A for() loop is used to repeat the process through each row individually for NAs. The output will contain the number of NAs in each row.

# N_rows
# number of rows (individuals)
N_rows <- nrow(snps_num_t)

# N_NA
# vector to hold output (number of NAs)
N_NA   <- rep(x = 0, times = N_rows)

# N_SNPs
# total number of columns (SNPs)
N_SNPs <- ncol(snps_num_t)

# the for() loop
for(i in 1:N_rows){
  
  # for each row, find the location of
  ## NAs with snps_num_t()
  i_NA <- find_NAs(snps_num_t[i,]) 
  
  # then determine how many NAs
  ## with length()
  N_NA_i <- length(i_NA)
  
  # then save the output to 
  ## our storage vector
  N_NA[i] <- N_NA_i
}
## Results: 28 NAs present
## .Results: 20 NAs present
## .Results: 28 NAs present
## .Results: 24 NAs present
## .Results: 23 NAs present
## .Results: 63 NAs present
## .Results: 51 NAs present
## .Results: 38 NAs present
## .Results: 34 NAs present
## .Results: 24 NAs present
## .Results: 48 NAs present
## .Results: 21 NAs present
## .Results: 42 NAs present
## .Results: 78 NAs present
## .Results: 45 NAs present
## .Results: 21 NAs present
## .Results: 42 NAs present
## .Results: 34 NAs present
## .Results: 66 NAs present
## .Results: 54 NAs present
## .Results: 59 NAs present
## .Results: 52 NAs present
## .Results: 47 NAs present
## .Results: 31 NAs present
## .Results: 63 NAs present
## .Results: 40 NAs present
## .Results: 40 NAs present
## .Results: 22 NAs present
## .Results: 60 NAs present
## .Results: 48 NAs present
## .Results: 961 NAs present
## .Results: 478 NAs present
## .Results: 59 NAs present
## .Results: 26 NAs present
## .Results: 285 NAs present
## .Results: 409 NAs present
## .Results: 1140 NAs present
## .Results: 600 NAs present
## .Results: 1905 NAs present
## .Results: 25 NAs present
## .Results: 1247 NAs present
## .Results: 23 NAs present
## .Results: 750 NAs present
## .Results: 179 NAs present
## .Results: 433 NAs present
## .Results: 123 NAs present
## .Results: 65 NAs present
## .Results: 49 NAs present
## .Results: 192 NAs present
## .Results: 433 NAs present
## .Results: 66 NAs present
## .Results: 597 NAs present
## .Results: 1891 NAs present
## .Results: 207 NAs present
## .Results: 41 NAs present
## .Results: 268 NAs present
## .Results: 43 NAs present
## .Results: 110 NAs present
## .Results: 130 NAs present
## .Results: 90 NAs present
## .Results: 271 NAs present
## .Results: 92 NAs present
## .Results: 103 NAs present
## .Results: 175 NAs present
## .Results: 31 NAs present
## .Results: 66 NAs present
## .Results: 64 NAs present
## .Results: 400 NAs present
## .Results: 192 NAs present
## .Results: 251 NAs present
## .Results: 69 NAs present
## .Results: 58 NAs present
## .

Create an object containing the number equal to 50% of the total number of columns. Then, create a histogram to show the variation in the number of NAs through each row in the df.

# 50% of N_SNPs
cutoff50 <- N_SNPs*0.5

hist(N_NA)            
abline(v = cutoff50, 
       col = 2, 
       lwd = 2, 
       lty = 2)

Determine number of NAs in each row and create an object that contains only rows with less than 50% of the data as NAs.

percent_NA <- N_NA/N_SNPs*100

# Call which() on percent_NA
i_NA_50percent <- which(percent_NA > 50) 

snps_num_t02 <- snps_num_t[-i_NA_50percent, ]

Determine the Sampling Locations of the Data

Change the sample names the population code, create a frequency table with the number of samples taken from each of the population codes.

row_names <- row.names(snps_num_t02) # Key

row_names02 <- gsub("sample_","",row_names)

sample_id <- gsub("^([ATCG]*)(_)(.*)",
                  "\\3",
                  row_names02)
pop_id <- gsub("[01-9]*",    
               "",
               sample_id)

table(pop_id)  
## pop_id
## Alt Cau Div Nel Sub 
##  15  12  15  15  11

Getting Rid of Invariant Columns

Create the function invar_omit(), this removes the columns that are considered invariant from the df. The function prints the number of invarient columns removed. Use it on the df and create a new df, snps_no_invar., which will not contain any invariant columns.

invar_omit <- function(x){
  cat("Dataframe of dim",dim(x), "processed...\n")
  sds <- apply(x, 2, sd, na.rm = TRUE)
  i_var0 <- which(sds == 0)
 
  
  cat(length(i_var0),"columns removed\n")
  
  if(length(i_var0) > 0){
     x <- x[, -i_var0]
  }
  
  ## add return()  with x in it
  return(x)                      
}


snps_no_invar <- invar_omit(snps_num_t02) 
## Dataframe of dim 68 1929 processed...
## 591 columns removed

Replacing Coloumn NAs

Reassign df snps_no_invar to df snps_noNAs, which does not contain invariant columns that we created in the last step. Use a for() loop to complete mean imputation, this will replace the remaining NAs in each column with the mean of that column, using mean() fucntion. Make sure to set na.rm = TRUE to ensure that the mean could be calculated while ignoring the NAs in the column.

snps_noNAs <- snps_no_invar

N_col <- ncol(snps_no_invar)
for(i in 1:N_col){
  
  # get the current column
  column_i <- snps_noNAs[, i]
  
  # get the mean of the current column
  mean_i <- mean(column_i, na.rm = TRUE)
  
  # get the NAs in the current column
  NAs_i <- which(is.na(column_i))
  
  # record the number of NAs
  N_NAs <- length(NAs_i)

  # replace the NAs in the current column
  column_i[NAs_i] <- mean_i
  
  # replace the original column with the
  ## updated columns
  snps_noNAs[, i] <- column_i
  
}

Save the data

Save the data as a .csv file which can be loaded again later.

write.csv(snps_noNAs, file = "SNPs_cleaned.csv",
          row.names = F)

Check for the presence of the file with list.files()

list.files(pattern = ".csv")
## [1] "SNPs_cleaned.csv"        "walsh2017morphology.csv"

Next steps:

In Part 2, we will re-load the SNPs_cleaned.csv file and carry an an analysis with PCA.