Import data

# excel file
data <- read_excel("Salaries.xlsx")
data
## # A tibble: 397 × 6
##    rank      discipline yrs.since.phd yrs.service sex    salary
##    <chr>     <chr>              <dbl>       <dbl> <chr>   <dbl>
##  1 Prof      B                     19          18 Male   139750
##  2 Prof      B                     20          16 Male   173200
##  3 AsstProf  B                      4           3 Male    79750
##  4 Prof      B                     45          39 Male   115000
##  5 Prof      B                     40          41 Male   141500
##  6 AssocProf B                      6           6 Male    97000
##  7 Prof      B                     30          23 Male   175000
##  8 Prof      B                     45          45 Male   147765
##  9 Prof      B                     21          20 Male   119250
## 10 Prof      B                     18          18 Female 129000
## # … with 387 more rows

Filter

filter(data, rank == "Prof")
## # A tibble: 266 × 6
##    rank  discipline yrs.since.phd yrs.service sex    salary
##    <chr> <chr>              <dbl>       <dbl> <chr>   <dbl>
##  1 Prof  B                     19          18 Male   139750
##  2 Prof  B                     20          16 Male   173200
##  3 Prof  B                     45          39 Male   115000
##  4 Prof  B                     40          41 Male   141500
##  5 Prof  B                     30          23 Male   175000
##  6 Prof  B                     45          45 Male   147765
##  7 Prof  B                     21          20 Male   119250
##  8 Prof  B                     18          18 Female 129000
##  9 Prof  B                     20          18 Male   104800
## 10 Prof  B                     12           3 Male   117150
## # … with 256 more rows

Arrange

arrange(data, desc(salary))
## # A tibble: 397 × 6
##    rank  discipline yrs.since.phd yrs.service sex   salary
##    <chr> <chr>              <dbl>       <dbl> <chr>  <dbl>
##  1 Prof  B                     38          38 Male  231545
##  2 Prof  A                     43          43 Male  205500
##  3 Prof  A                     29           7 Male  204000
##  4 Prof  A                     42          18 Male  194800
##  5 Prof  B                     26          19 Male  193000
##  6 Prof  B                     49          60 Male  192253
##  7 Prof  B                     34          33 Male  189409
##  8 Prof  B                     56          49 Male  186960
##  9 Prof  A                     33          18 Male  186023
## 10 Prof  A                     39           9 Male  183800
## # … with 387 more rows

Select

select(data, rank, discipline, yrs.since.phd, salary)
## # A tibble: 397 × 4
##    rank      discipline yrs.since.phd salary
##    <chr>     <chr>              <dbl>  <dbl>
##  1 Prof      B                     19 139750
##  2 Prof      B                     20 173200
##  3 AsstProf  B                      4  79750
##  4 Prof      B                     45 115000
##  5 Prof      B                     40 141500
##  6 AssocProf B                      6  97000
##  7 Prof      B                     30 175000
##  8 Prof      B                     45 147765
##  9 Prof      B                     21 119250
## 10 Prof      B                     18 129000
## # … with 387 more rows

Add a new colum

mutate(data,
       gain = desc(yrs.since.phd - yrs.service))
## # A tibble: 397 × 7
##    rank      discipline yrs.since.phd yrs.service sex    salary  gain
##    <chr>     <chr>              <dbl>       <dbl> <chr>   <dbl> <dbl>
##  1 Prof      B                     19          18 Male   139750    -1
##  2 Prof      B                     20          16 Male   173200    -4
##  3 AsstProf  B                      4           3 Male    79750    -1
##  4 Prof      B                     45          39 Male   115000    -6
##  5 Prof      B                     40          41 Male   141500     1
##  6 AssocProf B                      6           6 Male    97000     0
##  7 Prof      B                     30          23 Male   175000    -7
##  8 Prof      B                     45          45 Male   147765     0
##  9 Prof      B                     21          20 Male   119250    -1
## 10 Prof      B                     18          18 Female 129000     0
## # … with 387 more rows

Summarize

These graphs show that the more time spent in working in their industries, then the higher their salary will become over time. A good amount of people who have higher salaries will be able to work their way up in a company and/or industry. These are also the type of people who not only know a lot more than other who are just starting out, but they will able to work a lot better to provide more for the company.