Introduction

In this worked example you will replicate a PCA on a published dataset.

The example is split into 2 Parts:

In this Data Preparation phase, you will do the following things:

  1. Load the SNP genotypes in .vcf format (vcfR::read.vcfR())
  2. Extract the genotypes into an R-compatible format (vcfR::extract.gt())
  3. Rotate the data into the standard R analysis format (t())
  4. Remove individuals (rows) from the data set that have >50% NAs (using a function I wrote)
  5. Remove SNPs (columns) that are fixed
  6. Impute remaining NAs (using a for() loop)
  7. Save the prepared data as a .csv file for the next step (write.csv())

Biological background

This worked example is based on a paper in the journal Molecular Ecology from 2017 by Jennifer Walsh titled Subspecies delineation amid phenotypic, geographic and genetic discordance in a songbird.

The study investigated variation between two bird species in the genus Ammodramus: A. nenlsoni and A. caudacutus.

The species A. nenlsoni has been divided into 3 sub-species: A. n. nenlsoni, A.n. alterus, and A n. subvirgatus. The other species, A. caudacutus, has been divided into two subspecies, A.c. caudacutus and A.c. diversus.

The purpose of this study was to investigate to what extent these five subspecies recognized by taxonomists are supported by genetic data. The author’s collected DNA from 75 birds (15 per subspecies) and genotyped 1929 SNPs. They then analyzed the data with Principal Components Analysis (PCA), among other genetic analyzes.

This tutorial will work through all of the steps necessary to re-analyze Walsh et al.s data

Tasks

In the code below all code is provided. Your tasks will be to do 2 things:

  1. Give a meaningful title to all sections marked “TODO: TITLE”
  2. Write 1 to 2 sentences describing what is being done and why in all sections marked “TODO: EXPLAIN”

Preliminaries

Load the vcfR and other packages with library().

library(vcfR)    
## 
##    *****       ***   vcfR   ***       *****
##    This is vcfR 1.13.0 
##      browseVignettes('vcfR') # Documentation
##      citation('vcfR') # Citation
##    *****       *****      *****       *****
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(ggplot2)
library(ggpubr)

Make sure that your working directory is set to the location of the file all_loci.vcf.

getwd()
## [1] "/Users/madisondougherty/Downloads/COMPBIO"
list.files()
## [1] "07-mean_imputation.Rmd"  "all_loci.vcf"           
## [3] "SNPs_cleaned.csv"        "walsh2017morphology.csv"
list.files(pattern = "vcf")
## [1] "all_loci.vcf"

Data preparation

Load in the SNP data

We need to read in the .vcf file here in order to be able to work with the data. Here, we assign the data to an object called snps, which is a vcfR object. This step is also important because after we run this line of code, the output that is printed tells us whether the data properly uploaded. The last line should say "All variants processed" and the second to last line should say "Processed Variant: …", which tells us the amount of SNPs in our data.

snps <- vcfR::read.vcfR("all_loci.vcf", convertNA  = TRUE)
## Scanning file to determine attributes.
## File attributes:
##   meta lines: 8
##   header_line: 9
##   variant count: 1929
##   column count: 81
## 
Meta line 8 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
##   Character matrix gt rows: 1929
##   Character matrix gt cols: 81
##   skip: 0
##   nrows: 1929
##   row_num: 0
## 
Processed variant 1000
Processed variant: 1929
## All variants processed

Extracting the Genotype Data from the .vcf File

Since .vcf files have a lot information included that isn’t necessary for our analysis, we need to extract the genotype data that we plan to use and convert it into a form that we can easily use in R. So, here, we extract the character data containing the genotypes, and convert it into numeric scores that we can later use in our analysis using the function vcfR::extract.gt() and the arguments as follows.

snps_num <- vcfR::extract.gt(snps, 
           element = "GT",
           IDtoRowNames  = F,
           as.numeric = T,
           convertNA = T,
           return.alleles = F)

Rotating the Genotype Scores into Numeric Data

.vcf data is automatically formatted with SNPs in columns and samples in rows. Our matrix containing the the genotype scores called snps_num is formatted this way, so we need to transpose the data in order to perform our analysis. We do this here by using the function t() and then assigning the output to a new matrix called snps_num_t.

snps_num_t <- t(snps_num) 

Here we convert the matrix to a data frame so that we can perform the appropriate functions on the data and make the plots necessary for analysis.

snps_num_df <- data.frame(snps_num_t) 

Remove NAs

In this step we create a function called find_NAs() that will tell us how many NAs are in our data frame of SNPs and print the index value of where an NA is located. When using the function, you input the row number you want to search for NAs in using bracket notation, and the function will print the indices where NAs were found within that row.

find_NAs <- function(x){
  NAs_TF <- is.na(x)
  i_NA <- which(NAs_TF == TRUE)
  N_NA <- length(i_NA)
  
  cat("Results:",N_NA, "NAs present\n.")
  return(i_NA)
}

In this process, we use a for() loop to go through every row of the data frame and search each row individually for NAs using the find_NAs function. The output will contain each row’s number of NAs.

# N_rows
# number of rows (individuals)
N_rows <- nrow(snps_num_t)

# N_NA
# vector to hold output (number of NAs)
N_NA   <- rep(x = 0, times = N_rows)

# N_SNPs
# total number of columns (SNPs)
N_SNPs <- ncol(snps_num_t)

# the for() loop
for(i in 1:N_rows){
  
  # for each row, find the location of
  ## NAs with snps_num_t()
  i_NA <- find_NAs(snps_num_t[i,]) 
  
  # then determine how many NAs
  ## with length()
  N_NA_i <- length(i_NA)
  
  # then save the output to 
  ## our storage vector
  N_NA[i] <- N_NA_i
}
## Results: 28 NAs present
## .Results: 20 NAs present
## .Results: 28 NAs present
## .Results: 24 NAs present
## .Results: 23 NAs present
## .Results: 63 NAs present
## .Results: 51 NAs present
## .Results: 38 NAs present
## .Results: 34 NAs present
## .Results: 24 NAs present
## .Results: 48 NAs present
## .Results: 21 NAs present
## .Results: 42 NAs present
## .Results: 78 NAs present
## .Results: 45 NAs present
## .Results: 21 NAs present
## .Results: 42 NAs present
## .Results: 34 NAs present
## .Results: 66 NAs present
## .Results: 54 NAs present
## .Results: 59 NAs present
## .Results: 52 NAs present
## .Results: 47 NAs present
## .Results: 31 NAs present
## .Results: 63 NAs present
## .Results: 40 NAs present
## .Results: 40 NAs present
## .Results: 22 NAs present
## .Results: 60 NAs present
## .Results: 48 NAs present
## .Results: 961 NAs present
## .Results: 478 NAs present
## .Results: 59 NAs present
## .Results: 26 NAs present
## .Results: 285 NAs present
## .Results: 409 NAs present
## .Results: 1140 NAs present
## .Results: 600 NAs present
## .Results: 1905 NAs present
## .Results: 25 NAs present
## .Results: 1247 NAs present
## .Results: 23 NAs present
## .Results: 750 NAs present
## .Results: 179 NAs present
## .Results: 433 NAs present
## .Results: 123 NAs present
## .Results: 65 NAs present
## .Results: 49 NAs present
## .Results: 192 NAs present
## .Results: 433 NAs present
## .Results: 66 NAs present
## .Results: 597 NAs present
## .Results: 1891 NAs present
## .Results: 207 NAs present
## .Results: 41 NAs present
## .Results: 268 NAs present
## .Results: 43 NAs present
## .Results: 110 NAs present
## .Results: 130 NAs present
## .Results: 90 NAs present
## .Results: 271 NAs present
## .Results: 92 NAs present
## .Results: 103 NAs present
## .Results: 175 NAs present
## .Results: 31 NAs present
## .Results: 66 NAs present
## .Results: 64 NAs present
## .Results: 400 NAs present
## .Results: 192 NAs present
## .Results: 251 NAs present
## .Results: 69 NAs present
## .Results: 58 NAs present
## .

Here, we first created an object containing the number equal to 50% of the total number of columns. Then, we create a histogram demonstrating the variation in the amount of NAs found in each row of the data frame. From the graph, we see that the majority of rows had less than 500 NAs, but there were still some rows that had as much as 2000 NAs. We then added a line for the value stored in the object cutoff50, which shows us how many of the columns were not included in the final analysis of the data.

# 50% of N_SNPs
cutoff50 <- N_SNPs*0.5

hist(N_NA)            
abline(v = cutoff50, 
       col = 2, 
       lwd = 2, 
       lty = 2)

Here, we determined how many NAs are in each row and we created an object that only contains the rows that had less than 50% of the data as NAs.

percent_NA <- N_NA/N_SNPs*100

# Call which() on percent_NA
i_NA_50percent <- which(percent_NA > 50) 

snps_num_t02 <- snps_num_t[-i_NA_50percent, ]

Determine the Sampling Locations of the Data

Here, we reduce the sample names down to just the population code, which tells us where the data was sampled from. Lastly, we created a frequency table that tells us how many samples were taken from each of the population codes.

row_names <- row.names(snps_num_t02) # Key

row_names02 <- gsub("sample_","",row_names)

sample_id <- gsub("^([ATCG]*)(_)(.*)",
                  "\\3",
                  row_names02)
pop_id <- gsub("[01-9]*",    
               "",
               sample_id)

table(pop_id)  
## pop_id
## Alt Cau Div Nel Sub 
##  15  12  15  15  11

Removing Invariant Columns

Here, we created the function invar_omit() , which removes the columns that are considered invariant from the data frame that we want to analyze. Invariant columns contain data that does not have any variance, and thus, is unnecessary to include in our analysis because it does not provide any useful information. The function we created here removes the invariant columns and then prints an output showing how many columns were removed. After creating the function, we used it on our data frame and created the new data frame, that now contains no invariant columns, snps_no_invar.

invar_omit <- function(x){
  cat("Dataframe of dim",dim(x), "processed...\n")
  sds <- apply(x, 2, sd, na.rm = TRUE)
  i_var0 <- which(sds == 0)
 
  
  cat(length(i_var0),"columns removed\n")
  
  if(length(i_var0) > 0){
     x <- x[, -i_var0]
  }
  
  ## add return()  with x in it
  return(x)                      
}


snps_no_invar <- invar_omit(snps_num_t02) 
## Dataframe of dim 68 1929 processed...
## 591 columns removed

Remove Invariant Columns

First, we replaced our data frame snps_noNAs with the data frame that doesn’t contain invariant columns that we created in the last step. Then we used a for() loop to complete mean imputation on our data frame to replace all of the remaining NAs in each column with the mean of each column, which we calculated using mean(). In that function, we used the argument na.rm = TRUE to ensure that the mean could be calculated while ignoring the NAs in the column.

snps_noNAs <- snps_no_invar

N_col <- ncol(snps_no_invar)
for(i in 1:N_col){
  
  # get the current column
  column_i <- snps_noNAs[, i]
  
  # get the mean of the current column
  mean_i <- mean(column_i, na.rm = TRUE)
  
  # get the NAs in the current column
  NAs_i <- which(is.na(column_i))
  
  # record the number of NAs
  N_NAs <- length(NAs_i)

  # replace the NAs in the current column
  column_i[NAs_i] <- mean_i
  
  # replace the original column with the
  ## updated columns
  snps_noNAs[, i] <- column_i
  
}

Save the data

Save the data as a .csv file which can be loaded again later.

write.csv(snps_noNAs, file = "SNPs_cleaned.csv",
          row.names = F)

Check for the presence of the file with list.files()

list.files(pattern = ".csv")
## [1] "SNPs_cleaned.csv"        "walsh2017morphology.csv"

Next steps:

In Part 2, we will re-load the SNPs_cleaned.csv file and carry an an analysis with PCA.