# Load packages

# Core
library(tidyverse)
library(tidyquant)

# Source function
source("../00_scripts/simulate_accumulation.R")

1 Import stock prices

Revise the code below.

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # … with 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899131
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0234749
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.0206612586 -0.0361148444  0.0300677617  0.0168692128 -0.0087690184
##   [6] -0.0193152957  0.0188744823 -0.0398030010 -0.0190975616 -0.0245026085
##  [11] -0.0074571750  0.0017925619 -0.0098009587  0.0123900555  0.0014557370
##  [16] -0.0210138471  0.0265295091  0.0099020338  0.0423339032  0.0167045738
##  [21]  0.0475784970  0.0206244829 -0.0037322785  0.0216034459 -0.0248968090
##  [26]  0.0322749033  0.0379176860  0.0120977963  0.0244811127 -0.0290337693
##  [31] -0.0083121746  0.0330731947 -0.0010023473  0.0144997781  0.0158084304
##  [36]  0.0248278361  0.0527327603 -0.0044231579  0.0211878999  0.0020741353
##  [41]  0.0300485105  0.0028526055  0.0407916253  0.0214686702  0.0086268309
##  [46] -0.0436187738  0.0143403748 -0.0083446853 -0.0184523762 -0.0012581116
##  [51] -0.0054180601 -0.0263390368 -0.0345179744  0.0029069103  0.0086155896
##  [56]  0.0144103278  0.0002471582  0.0079058214 -0.0272655156  0.0034187211
##  [61]  0.0114493552  0.0369282306  0.0307956683 -0.0158607357 -0.0117797186
##  [66]  0.0250974175  0.0105087069  0.0350397995  0.0308572037  0.0165021697
##  [71] -0.0345609158  0.0081293960 -0.0085505150 -0.0174917669 -0.0060487150
##  [76]  0.0169723147 -0.0068368069 -0.0515231249 -0.0065030862  0.0659956457
##  [81] -0.0007872566 -0.0009484020  0.0560451789 -0.0290428078 -0.0206696722
##  [86] -0.0029383749 -0.0012660157  0.0190672161  0.0065614236  0.0060796770
##  [91] -0.0365192856  0.0167920844 -0.0215465374 -0.0071831092  0.0249385776
##  [96] -0.0033996091 -0.0256550250  0.0461468376  0.0126903968  0.0346301086
## [101]  0.0107327411  0.0087968376  0.0073058850 -0.0099926855 -0.0037882191
## [106]  0.0131821581 -0.0005655971  0.0554528859  0.0325998234 -0.0089194728
## [111]  0.0492167414  0.0038770320  0.0341813005 -0.0115252595  0.0051494476
## [116] -0.0122059310 -0.0147708952  0.0242564916  0.0004880337  0.0469709169
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.979
##  3   0.964
##  4   1.03 
##  5   1.02 
##  6   0.991
##  7   0.981
##  8   1.02 
##  9   0.960
## 10   0.981
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.979
##  3  0.944
##  4  0.972
##  5  0.989
##  6  0.980
##  7  0.961
##  8  0.979
##  9  0.940
## 10  0.922
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 6.693794

No need

6 Simulation function

No need

7 Running multiple simulations

# Create a vector of 1s as a starting point 
sims <- 51
starts <- rep(100, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##   100   100   100   100   100   100   100   100   100   100   100   100
# simulate 
# for reproducible results
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
    
    # Stimulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N = 240,
                                        mean_return = mean_port_return,
                                        sd_return = stddev_port_return)) %>%
    
    # Add column month 
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>% 
    
    # Transform to long form 
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1     100
##  2     1 sim2     100
##  3     1 sim3     100
##  4     1 sim4     100
##  5     1 sim5     100
##  6     1 sim6     100
##  7     1 sim7     100
##  8     1 sim8     100
##  9     1 sim9     100
## 10     1 sim10    100
## # … with 6,161 more rows
# Find quantiles 
monte_carlo_sim_51 %>% 
    
    group_by(sim) %>% 
    summarise(growth = last(growth)) %>%
    ungroup() %>% 
    pull(growth) %>% 
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>% 
    round(2)
##     0%    25%    50%    75%   100% 
## 116.78 159.29 198.28 240.34 387.82

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>% 
    
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months")

Line Plot of Simulations with Max, Median, and Min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>% 
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  388.   198.  117.
# Step 2 Plot 
monte_carlo_sim_51 %>% 
    
    # Filter for max, median, and min
    group_by(sim) %>% 
    filter(last(growth) == sim_summary$max |
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    ungroup() %>% 
    
    # Plot 
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $100 over 240 months", subtitle = "Maximum, Median, and Minimum Simulation")

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?

Based on teh Monte Carlo simulation I believe it is safe to expect a return of around $198 over the course of 20 years. With this being said I think that the best case senario based off the simulations that were run is a return of $388, with the worst case senario being $117. A limitation of the simulation is having rnorm assuming all positive normal returns.