Introduction

In this worked example you will replicate a PCA on a published dataset.

The example is split into 2 Parts:

In this Data Preparation phase, you will do the following things:

  1. Load the SNP genotypes in .vcf format (vcfR::read.vcfR())
  2. Extract the genotypes into an R-compatible format (vcfR::extract.gt())
  3. Rotate the data into the standard R analysis format (t())
  4. Remove individuals (rows) from the data set that have >50% NAs (using a function I wrote)
  5. Remove SNPs (columns) that are fixed
  6. Impute remaining NAs (using a for() loop)
  7. Save the prepared data as a .csv file for the next step (write.csv())

Biological background

This worked example is based on a paper in the journal Molecular Ecology from 2017 by Jennifer Walsh titled Subspecies delineation amid phenotypic, geographic and genetic discordance in a songbird.

The study investigated variation between two bird species in the genus Ammodramus: A. nenlsoni and A. caudacutus.

The species A. nenlsoni has been divided into 3 sub-species: A. n. nenlsoni, A.n. alterus, and A n. subvirgatus. The other species, A. caudacutus, has been divided into two subspecies, A.c. caudacutus and A.c. diversus.

The purpose of this study was to investigate to what extent these five subspecies recognized by taxonomists are supported by genetic data. The author’s collected DNA from 75 birds (15 per subspecies) and genotyped 1929 SNPs. They then analyzed the data with Principal Components Analysis (PCA), among other genetic analyzes.

This tutorial will work through all of the steps necessary to re-analyze Walsh et al.s data

Tasks

In the code below all code is provided. Your tasks will be to do 2 things:

  1. Give a meaningful title to all sections marked “TODO: TITLE”
  2. Write 1 to 2 sentences describing what is being done and why in all sections marked “TODO: EXPLAIN”

Preliminaries

Load the vcfR and other packages with library().

library(vcfR)    
## Warning: package 'vcfR' was built under R version 4.2.2
## 
##    *****       ***   vcfR   ***       *****
##    This is vcfR 1.13.0 
##      browseVignettes('vcfR') # Documentation
##      citation('vcfR') # Citation
##    *****       *****      *****       *****
library(vegan)
## Warning: package 'vegan' was built under R version 4.2.2
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(ggplot2)
library(ggpubr)

Make sure that your working directory is set to the location of the file all_loci.vcf.

getwd()
## [1] "C:/Users/slmg/OneDrive/Desktop/comp bio final proj(biosc 1540)"
list.files()
##  [1] "07-mean_imputation.docx"             
##  [2] "07-mean_imputation.html"             
##  [3] "07-mean_imputation.Rmd"              
##  [4] "08-PCA_worked.html"                  
##  [5] "08-PCA_worked.Rmd"                   
##  [6] "09-PCA_worked_example-SNPs-part1.Rmd"
##  [7] "all_loci-1.vcf"                      
##  [8] "all_loci.vcf"                        
##  [9] "bird_snps_remove_NAs.html"           
## [10] "bird_snps_remove_NAs.Rmd"            
## [11] "removing_fixed_alleles.html"         
## [12] "removing_fixed_alleles.Rmd"          
## [13] "rsconnect"                           
## [14] "SNPs_cleaned.csv"                    
## [15] "transpose_VCF_data.html"             
## [16] "transpose_VCF_data.Rmd"              
## [17] "walsh2017morphology.csv"             
## [18] "working_directory_practice.html"     
## [19] "working_directory_practice.Rmd"
list.files(pattern = "vcf")
## [1] "all_loci-1.vcf" "all_loci.vcf"

Data preparation

Loading the data from the file

VCF files can be read in with the function ‘vcfR::read.vcfR()’ and can be saved to an object, in this case it is saved to the snps object.The VCF file must be in your working directory for this function to work properly.

snps <- vcfR::read.vcfR("all_loci.vcf", convertNA  = TRUE)
## Scanning file to determine attributes.
## File attributes:
##   meta lines: 8
##   header_line: 9
##   variant count: 1929
##   column count: 81
## 
Meta line 8 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
##   Character matrix gt rows: 1929
##   Character matrix gt cols: 81
##   skip: 0
##   nrows: 1929
##   row_num: 0
## 
Processed variant 1000
Processed variant: 1929
## All variants processed

Extracting numeric/genotype scores from the snps

Using the function ‘vcfR::extract.gt()’ the numeric scores of the SNPs can be calculated. SNPS are letters and we need to convert them into numeric scores so that it is easier to analyze them.

snps_num <- vcfR::extract.gt(snps, 
           element = "GT",
           IDtoRowNames  = F,
           as.numeric = T,
           convertNA = T,
           return.alleles = F)

Transpose the matrix

Transposing flips the rows and columns of the matrix. Right now the SNPs are the columns and the samples are the rows. When we transpose it, using the function ‘t()’ the rows become the SNPs and the samples become the columns.

snps_num_t <- t(snps_num) 

Convert the matrix to a data frame

The original data was in the form of a matrix. Using the function ‘data.frame()’ it can change this matrix into a data frame which makes it easier to apply functions to it.

snps_num_df <- data.frame(snps_num_t) 

Finding the indexes of the NAs in the dataframe using the function

Apply the function ‘find_NAs()’ in order to find the index of the NAs in the columns and return those indexes.

find_NAs <- function(x){
  NAs_TF <- is.na(x)
  i_NA <- which(NAs_TF == TRUE)
  N_NA <- length(i_NA)
  
  cat("Results:",N_NA, "NAs present\n.")
  return(i_NA)
}

Use a for loop to find the NAs

The for loop allows you to look through all the rows which correspond with individuals and to find the NAs.

# N_rows
# number of rows (individuals)
N_rows <- nrow(snps_num_t)

# N_NA
# vector to hold output (number of NAs)
N_NA   <- rep(x = 0, times = N_rows)

# N_SNPs
# total number of columns (SNPs)
N_SNPs <- ncol(snps_num_t)

# the for() loop
for(i in 1:N_rows){
  
  # for each row, find the location of
  ## NAs with snps_num_t()
  i_NA <- find_NAs(snps_num_t[i,]) 
  
  # then determine how many NAs
  ## with length()
  N_NA_i <- length(i_NA)
  
  # then save the output to 
  ## our storage vector
  N_NA[i] <- N_NA_i
}
## Results: 28 NAs present
## .Results: 20 NAs present
## .Results: 28 NAs present
## .Results: 24 NAs present
## .Results: 23 NAs present
## .Results: 63 NAs present
## .Results: 51 NAs present
## .Results: 38 NAs present
## .Results: 34 NAs present
## .Results: 24 NAs present
## .Results: 48 NAs present
## .Results: 21 NAs present
## .Results: 42 NAs present
## .Results: 78 NAs present
## .Results: 45 NAs present
## .Results: 21 NAs present
## .Results: 42 NAs present
## .Results: 34 NAs present
## .Results: 66 NAs present
## .Results: 54 NAs present
## .Results: 59 NAs present
## .Results: 52 NAs present
## .Results: 47 NAs present
## .Results: 31 NAs present
## .Results: 63 NAs present
## .Results: 40 NAs present
## .Results: 40 NAs present
## .Results: 22 NAs present
## .Results: 60 NAs present
## .Results: 48 NAs present
## .Results: 961 NAs present
## .Results: 478 NAs present
## .Results: 59 NAs present
## .Results: 26 NAs present
## .Results: 285 NAs present
## .Results: 409 NAs present
## .Results: 1140 NAs present
## .Results: 600 NAs present
## .Results: 1905 NAs present
## .Results: 25 NAs present
## .Results: 1247 NAs present
## .Results: 23 NAs present
## .Results: 750 NAs present
## .Results: 179 NAs present
## .Results: 433 NAs present
## .Results: 123 NAs present
## .Results: 65 NAs present
## .Results: 49 NAs present
## .Results: 192 NAs present
## .Results: 433 NAs present
## .Results: 66 NAs present
## .Results: 597 NAs present
## .Results: 1891 NAs present
## .Results: 207 NAs present
## .Results: 41 NAs present
## .Results: 268 NAs present
## .Results: 43 NAs present
## .Results: 110 NAs present
## .Results: 130 NAs present
## .Results: 90 NAs present
## .Results: 271 NAs present
## .Results: 92 NAs present
## .Results: 103 NAs present
## .Results: 175 NAs present
## .Results: 31 NAs present
## .Results: 66 NAs present
## .Results: 64 NAs present
## .Results: 400 NAs present
## .Results: 192 NAs present
## .Results: 251 NAs present
## .Results: 69 NAs present
## .Results: 58 NAs present
## .

Setting a cutoff at 50% for the amount of SNPs that have NAs and adding that cutoff line to the histogram.

# 50% of N_SNPs
cutoff50 <- N_SNPs*0.5

hist(N_NA)            
abline(v = cutoff50, 
       col = 2, 
       lwd = 2, 
       lty = 2)

Finding the percentage of SNPs which have more than 50% of Nas and removing those SNPS.

percent_NA <- N_NA/N_SNPs*100

# Call which() on percent_NA
i_NA_50percent <- which(percent_NA > 50) 

snps_num_t02 <- snps_num_t[-i_NA_50percent, ]

Determining the sample locations from the SNPs

Looking at the row names and renames them to say sample and their identifier. Then, it gets rid of the ATCG that might be in the ID of the SNPs name as well.

row_names <- row.names(snps_num_t02) # Key

row_names02 <- gsub("sample_","",row_names)

sample_id <- gsub("^([ATCG]*)(_)(.*)",
                  "\\3",
                  row_names02)
pop_id <- gsub("[01-9]*",    
               "",
               sample_id)

table(pop_id)  
## pop_id
## Alt Cau Div Nel Sub 
##  15  12  15  15  11

Removal of invariant columns

Applying the function to omit the invariant columns. Invariant columns mean that these samples all have these SNPs and the information will not be useful when analyzing the data.

invar_omit <- function(x){
  cat("Dataframe of dim",dim(x), "processed...\n")
  sds <- apply(x, 2, sd, na.rm = TRUE)
  i_var0 <- which(sds == 0)
 
  
  cat(length(i_var0),"columns removed\n")
  
  if(length(i_var0) > 0){
     x <- x[, -i_var0]
  }
  
  ## add return()  with x in it
  return(x)                      
}


snps_no_invar <- invar_omit(snps_num_t02) 
## Dataframe of dim 68 1929 processed...
## 591 columns removed

Mean Imputation

Use a for loop in order to loop through the data frame of snps and replace all the NAs with the mean of that column.

snps_noNAs <- snps_no_invar

N_col <- ncol(snps_no_invar)
for(i in 1:N_col){
  
  # get the current column
  column_i <- snps_noNAs[, i]
  
  # get the mean of the current column
  mean_i <- mean(column_i, na.rm = TRUE)
  
  # get the NAs in the current column
  NAs_i <- which(is.na(column_i))
  
  # record the number of NAs
  N_NAs <- length(NAs_i)

  # replace the NAs in the current column
  column_i[NAs_i] <- mean_i
  
  # replace the original column with the
  ## updated columns
  snps_noNAs[, i] <- column_i
  
}

Save the data

Save the data as a .csv file which can be loaded again later.

write.csv(snps_noNAs, file = "SNPs_cleaned.csv",
          row.names = F)

Check for the presence of the file with list.files()

list.files(pattern = ".csv")
## [1] "SNPs_cleaned.csv"        "walsh2017morphology.csv"

Next steps:

In Part 2, we will re-load the SNPs_cleaned.csv file and carry an an analysis with PCA.