Unordered factor levels
# Transform data: calculate average tv hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE)
)
tvhours_by_relig
## # A tibble: 15 × 2
## relig avg_tvhours
## <fct> <dbl>
## 1 No answer 2.72
## 2 Don't know 4.62
## 3 Inter-nondenominational 2.87
## 4 Native american 3.46
## 5 Christian 2.79
## 6 Orthodox-christian 2.42
## 7 Moslem/islam 2.44
## 8 Other eastern 1.67
## 9 Hinduism 1.89
## 10 Buddhism 2.38
## 11 Other 2.73
## 12 None 2.71
## 13 Jewish 2.52
## 14 Catholic 2.96
## 15 Protestant 3.15
# Plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
Ordered factor levels
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
Moving a single level to the front
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours,
y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Don't know"))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
#Recode
gss_cat %>%
# Rename levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # … with 3,119 more rows
# Collapse multiple levels into one
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black", "other"))) %>%
select(race, race_col) %>%
filter(race != "White")
## Warning: Unknown levels in `f`: other
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Other
## 5 Black Minority
## 6 Other Other
## 7 Black Minority
## 8 Other Other
## 9 Black Minority
## 10 Black Minority
## # … with 5,078 more rows
# Lump small levels into other levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From strings
"2022/11/01" %>% ymd()
## [1] "2022-11-01"
# From numbers
20221101 %>% ymd()
## [1] "2022-11-01"
"2022-11-01 05-42-06" %>% ymd_hms()
## [1] "2022-11-01 05:42:06 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(depature = make_datetime(year = year, month = month,
day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute depature
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # … with 336,766 more rows
# From date to date-time
today() %>% as_datetime()
## [1] "2022-12-07 UTC"
# From date-time to date
now() %>% as_date()
## [1] "2022-12-07"
date_time <- ymd_hms("2022-11-01 05-42-06")
date_time
## [1] "2022-11-01 05:42:06 UTC"
year(date_time)
## [1] 2022
month(date_time, label = TRUE, abbr = FALSE)
## [1] November
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 305
mday(date_time)
## [1] 1
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Tuesday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Creates flights_dt
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
# Floor date from rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-08-03 15:57:00 2013-08-01 00:00:00
## 2 2013-09-07 06:05:00 2013-09-01 00:00:00
## 3 2013-02-14 18:50:00 2013-02-01 00:00:00
## 4 2013-09-29 09:50:00 2013-09-01 00:00:00
## 5 2013-11-27 17:37:00 2013-11-01 00:00:00
## 6 2013-04-28 20:29:00 2013-04-01 00:00:00
## 7 2013-06-01 09:26:00 2013-06-01 00:00:00
## 8 2013-01-04 11:05:00 2013-01-01 00:00:00
## 9 2013-09-28 10:59:00 2013-09-01 00:00:00
## 10 2013-02-20 20:31:00 2013-02-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-08-25 15:57:00 2013-01-01 15:57:00
## 2 2013-05-18 14:51:00 2013-01-01 14:51:00
## 3 2013-04-16 12:44:00 2013-01-01 12:44:00
## 4 2013-09-21 09:44:00 2013-01-01 09:44:00
## 5 2013-09-04 05:46:00 2013-01-01 05:46:00
## 6 2013-01-05 16:10:00 2013-01-01 16:10:00
## 7 2013-05-01 06:00:00 2013-01-01 06:00:00
## 8 2013-03-08 06:59:00 2013-01-01 06:59:00
## 9 2013-10-13 09:20:00 2013-01-01 09:20:00
## 10 2013-12-31 07:06:00 2013-01-01 07:06:00