library("boot")
library(rjags)
library(data.table)
library(tidyverse)
library(stringi)
X <- x
mod1_csim = as.mcmc(do.call(rbind, mod1_sim))
plot(mod1_sim, ask=TRUE)

gelman.diag(mod1_sim)
Potential scale reduction factors:

     Point est. Upper C.I.
b[1]          1          1
b[2]          1          1
b[3]          1          1

Multivariate psrf

1
autocorr.plot(mod1_sim)

effectiveSize(mod1_sim)
    b[1]     b[2]     b[3] 
8195.520 5985.394 7999.867 
#  Geweke diagnostic
geweke.plot(mod1_sim)

par(mfrow=c(3,2))
densplot(mod1_csim[,1:3], xlim=c(-3.0,3.0))

colnames(X)
[1] "chr17_150259_C_A" "chr17_150380_C_T" "chr17_151226_C_T" "Label"           
#Find DIC
dic1 = dic.samples(mod1, n.iter=1e3)

  |                                                        
  |                                                  |   0%
  |                                                        
  |*                                                 |   2%
  |                                                        
  |**                                                |   4%
  |                                                        
  |***                                               |   6%
  |                                                        
  |****                                              |   8%
  |                                                        
  |*****                                             |  10%
  |                                                        
  |******                                            |  12%
  |                                                        
  |*******                                           |  14%
  |                                                        
  |********                                          |  16%
  |                                                        
  |*********                                         |  18%
  |                                                        
  |**********                                        |  20%
  |                                                        
  |***********                                       |  22%
  |                                                        
  |************                                      |  24%
  |                                                        
  |*************                                     |  26%
  |                                                        
  |**************                                    |  28%
  |                                                        
  |***************                                   |  30%
  |                                                        
  |****************                                  |  32%
  |                                                        
  |*****************                                 |  34%
  |                                                        
  |******************                                |  36%
  |                                                        
  |*******************                               |  38%
  |                                                        
  |********************                              |  40%
  |                                                        
  |*********************                             |  42%
  |                                                        
  |**********************                            |  44%
  |                                                        
  |***********************                           |  46%
  |                                                        
  |************************                          |  48%
  |                                                        
  |*************************                         |  50%
  |                                                        
  |**************************                        |  52%
  |                                                        
  |***************************                       |  54%
  |                                                        
  |****************************                      |  56%
  |                                                        
  |*****************************                     |  58%
  |                                                        
  |******************************                    |  60%
  |                                                        
  |*******************************                   |  62%
  |                                                        
  |********************************                  |  64%
  |                                                        
  |*********************************                 |  66%
  |                                                        
  |**********************************                |  68%
  |                                                        
  |***********************************               |  70%
  |                                                        
  |************************************              |  72%
  |                                                        
  |*************************************             |  74%
  |                                                        
  |**************************************            |  76%
  |                                                        
  |***************************************           |  78%
  |                                                        
  |****************************************          |  80%
  |                                                        
  |*****************************************         |  82%
  |                                                        
  |******************************************        |  84%
  |                                                        
  |*******************************************       |  86%
  |                                                        
  |********************************************      |  88%
  |                                                        
  |*********************************************     |  90%
  |                                                        
  |**********************************************    |  92%
  |                                                        
  |***********************************************   |  94%
  |                                                        
  |************************************************  |  96%
  |                                                        
  |************************************************* |  98%
  |                                                        
  |**************************************************| 100%
dic1
Mean deviance:  299.8 
penalty 1.46 
Penalized deviance: 301.3 
LS0tCnRpdGxlOiAiSkFHUyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgoKCgpgYGB7cn0KbGlicmFyeSgiYm9vdCIpCmxpYnJhcnkocmphZ3MpCmxpYnJhcnkoZGF0YS50YWJsZSkKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoc3RyaW5naSkKYGBgCgpgYGB7ciwgZWNobz1GQUxTRSwgcmVzdWx0cyA9ICdoaWRlJyxlcnJvcj1UUlVFfQp4IDwtIGZyZWFkKCcvVXNlcnMvY2hhcG1hbmxtL0Rlc2t0b3AvQmlvV3VsZl9Mb2dzLzExMTUyMDIyL0JheWVzX2RmX3Rlc3RfTUwudHN2JykKeF93dCA8LSBmcmVhZCgnL1VzZXJzL2NoYXBtYW5sbS9EZXNrdG9wL0Jpb1d1bGZfTG9ncy8xMTE1MjAyMi9CYXllc19kZl90ZXN0X3d0X01MLnRzdicpCmBgYAoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzID0gJ2hpZGUnLGVycm9yPVRSVUV9CnggPC0gbmEub21pdCh4KQpgYGAKCgpgYGB7ciwgZWNobz1GQUxTRSwgcmVzdWx0cyA9ICdoaWRlJyxlcnJvcj1UUlVFfQp4IDwtIHggJT4lIAogIG11dGF0ZShzYW1wbGVJRCA9IHN0cl9yZXBsYWNlKHNhbXBsZUlELCAiU0pMR0ciLCAibGdnIikpICU+JQogIG11dGF0ZShzYW1wbGVJRCA9IHN0cl9yZXBsYWNlKHNhbXBsZUlELCAiSF9MQy0iLCAiIikpICU+JQogIG11dGF0ZShzYW1wbGVJRCA9IHN0cl9yZXBsYWNlKHNhbXBsZUlELCAiLUciLCAiIikpICU+JQogIG11dGF0ZShzYW1wbGVJRCA9IHN0cl9yZXBsYWNlKHNhbXBsZUlELCAiX0cxIiwgIiIpKSAlPiUKICBtdXRhdGUoc2FtcGxlSUQgPSBzdHJfcmVwbGFjZShzYW1wbGVJRCwgIl9HMiIsICIiKSkgJT4lCiAgbXV0YXRlKHNhbXBsZUlEID0gc3RyX3JlcGxhY2Uoc2FtcGxlSUQsICJTSk5PUk0iLCAibm9ybSIpKQpgYGAKCmBgYHtyLGVjaG89RkFMU0UscmVzdWx0cyA9ICdoaWRlJyxlcnJvcj1UUlVFfQp4IDwtIHggJT4lIG11dGF0ZShMYWJlbCA9IGNhc2Vfd2hlbihzdHJpX2RldGVjdF9maXhlZChzYW1wbGVJRCwgImxnZyIpIH4gJzEnLCBUUlVFIH4gJzAnKSkKeCA8LSB4ICU+JSBzZWxlY3QoYyhjaHIxN18xNTAyNTlfQ19BLGNocjE3XzE1MDM4MF9DX1QsY2hyMTdfMTUxMjI2X0NfVCwgTGFiZWwpKQp4JExhYmVsIDwtYXMuaW50ZWdlcih4JExhYmVsKQpgYGAKCmBgYHtyLGVycm9yPVRSVUV9ClggPC0geApgYGAKCgpgYGB7cixlY2hvPUZBTFNFLGVycm9yPVRSVUV9Cm1vZDFfc3RyaW5nID0gIm1vZGVsewpmb3IgKGkgaW4gMTpsZW5ndGgoeSkpewojIFByb2JhYmlsaXR5IG9mIHBhdGllbnQgSUQgMSB2cyAwCnlbaV0gfiBkYmVybihwW2ldKQpsb2dpdChwW2ldKSA9IGludCArIGJbMV0qY2hyMTdfMTUwMjU5X0NfQVtpXSArIGJbMl0qY2hyMTdfMTUwMzgwX0NfVFtpXSArIGJbM10qY2hyMTdfMTUxMjI2X0NfVFtpXQp9CiNub24gaW5mb3JtYXRpdmUgcHJpb3IgZm9yIGludGVyY2VwdAppbnQgfiBkbm9ybSgwLjAsMS4wLzI1LjApCmZvciAoaiBpbiAxOjMpewpiW2pdIH4gZGRleHAoMC4wLCBzcXJ0KDIuMCkpCn0KCn0iCgoKc2V0LnNlZWQoOTIpCmBgYAoKCgoKYGBge3IsZWNobz1GQUxTRSwgcmVzdWx0cyA9ICdoaWRlJyxlcnJvcj1UUlVFfQpkYXRhX2phZ3MgPSBsaXN0KHk9WCRMYWJlbCwgY2hyMTdfMTUwMjU5X0NfQT1YJGNocjE3XzE1MDI1OV9DX0EsIGNocjE3XzE1MDM4MF9DX1Q9WCRjaHIxN18xNTAzODBfQ19ULCBjaHIxN18xNTEyMjZfQ19UPVgkY2hyMTdfMTUxMjI2X0NfVCkKCnBhcmFtcz1jKCJpbml0IiwiYiIpCgptb2QxID0gamFncy5tb2RlbCh0ZXh0Q29ubmVjdGlvbihtb2QxX3N0cmluZyksIGRhdGE9ZGF0YV9qYWdzLCBuLmNoYWlucz0zKQpgYGAKCgpgYGB7cixlY2hvPUZBTFNFLCByZXN1bHRzID0gJ2hpZGUnLGVycm9yPVRSVUV9Cm1vZDFfc2ltID0gY29kYS5zYW1wbGVzKG1vZGVsPW1vZDEsIHZhcmlhYmxlLm5hbWVzPXBhcmFtcywgbi5pdGVyID0gNWUzKQpgYGAKCgpgYGB7cn0KbW9kMV9jc2ltID0gYXMubWNtYyhkby5jYWxsKHJiaW5kLCBtb2QxX3NpbSkpCmBgYAoKYGBge3J9CnBsb3QobW9kMV9zaW0sIGFzaz1UUlVFKQpgYGAKCmBgYHtyfQpnZWxtYW4uZGlhZyhtb2QxX3NpbSkKYGBgCgoKYGBge3J9CmF1dG9jb3JyLnBsb3QobW9kMV9zaW0pCmBgYAoKYGBge3J9CmVmZmVjdGl2ZVNpemUobW9kMV9zaW0pCmBgYAoKYGBge3J9CiMgIEdld2VrZSBkaWFnbm9zdGljCmdld2VrZS5wbG90KG1vZDFfc2ltKQpgYGAKCi0gQSAzIHZhcmlhYmxlcyBhcmUgbm90IGEgc3Ryb25nIHByZWRpY3RvcnMgb2YgdGhlIG91dGNvbWUgYmVjYXVzZSB0aGV5IG92ZXJsYXAgd2l0aCAwCgpgYGB7cn0KcGFyKG1mcm93PWMoMywyKSkKZGVuc3Bsb3QobW9kMV9jc2ltWywxOjNdLCB4bGltPWMoLTMuMCwzLjApKQpjb2xuYW1lcyhYKQpgYGAKCgoKYGBge3IsZXJyb3I9VFJVRX0KI0ZpbmQgRElDCmRpYzEgPSBkaWMuc2FtcGxlcyhtb2QxLCBuLml0ZXI9MWUzKQpkaWMxCmBgYAoKCgoK