library("boot")
library(rjags)
library(data.table)
library(tidyverse)
library(stringi)
X <- x
mod1_csim = as.mcmc(do.call(rbind, mod1_sim))
plot(mod1_sim, ask=TRUE)

gelman.diag(mod1_sim)
Potential scale reduction factors:
Point est. Upper C.I.
b[1] 1 1
b[2] 1 1
b[3] 1 1
Multivariate psrf
1
autocorr.plot(mod1_sim)



effectiveSize(mod1_sim)
b[1] b[2] b[3]
8195.520 5985.394 7999.867
# Geweke diagnostic
geweke.plot(mod1_sim)



- A 3 variables are not a strong predictors of the outcome because they overlap with 0
par(mfrow=c(3,2))
densplot(mod1_csim[,1:3], xlim=c(-3.0,3.0))

colnames(X)
[1] "chr17_150259_C_A" "chr17_150380_C_T" "chr17_151226_C_T" "Label"
#Find DIC
dic1 = dic.samples(mod1, n.iter=1e3)
|
| | 0%
|
|* | 2%
|
|** | 4%
|
|*** | 6%
|
|**** | 8%
|
|***** | 10%
|
|****** | 12%
|
|******* | 14%
|
|******** | 16%
|
|********* | 18%
|
|********** | 20%
|
|*********** | 22%
|
|************ | 24%
|
|************* | 26%
|
|************** | 28%
|
|*************** | 30%
|
|**************** | 32%
|
|***************** | 34%
|
|****************** | 36%
|
|******************* | 38%
|
|******************** | 40%
|
|********************* | 42%
|
|********************** | 44%
|
|*********************** | 46%
|
|************************ | 48%
|
|************************* | 50%
|
|************************** | 52%
|
|*************************** | 54%
|
|**************************** | 56%
|
|***************************** | 58%
|
|****************************** | 60%
|
|******************************* | 62%
|
|******************************** | 64%
|
|********************************* | 66%
|
|********************************** | 68%
|
|*********************************** | 70%
|
|************************************ | 72%
|
|************************************* | 74%
|
|************************************** | 76%
|
|*************************************** | 78%
|
|**************************************** | 80%
|
|***************************************** | 82%
|
|****************************************** | 84%
|
|******************************************* | 86%
|
|******************************************** | 88%
|
|********************************************* | 90%
|
|********************************************** | 92%
|
|*********************************************** | 94%
|
|************************************************ | 96%
|
|************************************************* | 98%
|
|**************************************************| 100%
dic1
Mean deviance: 299.8
penalty 1.46
Penalized deviance: 301.3
LS0tCnRpdGxlOiAiSkFHUyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgoKCgpgYGB7cn0KbGlicmFyeSgiYm9vdCIpCmxpYnJhcnkocmphZ3MpCmxpYnJhcnkoZGF0YS50YWJsZSkKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoc3RyaW5naSkKYGBgCgpgYGB7ciwgZWNobz1GQUxTRSwgcmVzdWx0cyA9ICdoaWRlJyxlcnJvcj1UUlVFfQp4IDwtIGZyZWFkKCcvVXNlcnMvY2hhcG1hbmxtL0Rlc2t0b3AvQmlvV3VsZl9Mb2dzLzExMTUyMDIyL0JheWVzX2RmX3Rlc3RfTUwudHN2JykKeF93dCA8LSBmcmVhZCgnL1VzZXJzL2NoYXBtYW5sbS9EZXNrdG9wL0Jpb1d1bGZfTG9ncy8xMTE1MjAyMi9CYXllc19kZl90ZXN0X3d0X01MLnRzdicpCmBgYAoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzID0gJ2hpZGUnLGVycm9yPVRSVUV9CnggPC0gbmEub21pdCh4KQpgYGAKCgpgYGB7ciwgZWNobz1GQUxTRSwgcmVzdWx0cyA9ICdoaWRlJyxlcnJvcj1UUlVFfQp4IDwtIHggJT4lIAogIG11dGF0ZShzYW1wbGVJRCA9IHN0cl9yZXBsYWNlKHNhbXBsZUlELCAiU0pMR0ciLCAibGdnIikpICU+JQogIG11dGF0ZShzYW1wbGVJRCA9IHN0cl9yZXBsYWNlKHNhbXBsZUlELCAiSF9MQy0iLCAiIikpICU+JQogIG11dGF0ZShzYW1wbGVJRCA9IHN0cl9yZXBsYWNlKHNhbXBsZUlELCAiLUciLCAiIikpICU+JQogIG11dGF0ZShzYW1wbGVJRCA9IHN0cl9yZXBsYWNlKHNhbXBsZUlELCAiX0cxIiwgIiIpKSAlPiUKICBtdXRhdGUoc2FtcGxlSUQgPSBzdHJfcmVwbGFjZShzYW1wbGVJRCwgIl9HMiIsICIiKSkgJT4lCiAgbXV0YXRlKHNhbXBsZUlEID0gc3RyX3JlcGxhY2Uoc2FtcGxlSUQsICJTSk5PUk0iLCAibm9ybSIpKQpgYGAKCmBgYHtyLGVjaG89RkFMU0UscmVzdWx0cyA9ICdoaWRlJyxlcnJvcj1UUlVFfQp4IDwtIHggJT4lIG11dGF0ZShMYWJlbCA9IGNhc2Vfd2hlbihzdHJpX2RldGVjdF9maXhlZChzYW1wbGVJRCwgImxnZyIpIH4gJzEnLCBUUlVFIH4gJzAnKSkKeCA8LSB4ICU+JSBzZWxlY3QoYyhjaHIxN18xNTAyNTlfQ19BLGNocjE3XzE1MDM4MF9DX1QsY2hyMTdfMTUxMjI2X0NfVCwgTGFiZWwpKQp4JExhYmVsIDwtYXMuaW50ZWdlcih4JExhYmVsKQpgYGAKCmBgYHtyLGVycm9yPVRSVUV9ClggPC0geApgYGAKCgpgYGB7cixlY2hvPUZBTFNFLGVycm9yPVRSVUV9Cm1vZDFfc3RyaW5nID0gIm1vZGVsewpmb3IgKGkgaW4gMTpsZW5ndGgoeSkpewojIFByb2JhYmlsaXR5IG9mIHBhdGllbnQgSUQgMSB2cyAwCnlbaV0gfiBkYmVybihwW2ldKQpsb2dpdChwW2ldKSA9IGludCArIGJbMV0qY2hyMTdfMTUwMjU5X0NfQVtpXSArIGJbMl0qY2hyMTdfMTUwMzgwX0NfVFtpXSArIGJbM10qY2hyMTdfMTUxMjI2X0NfVFtpXQp9CiNub24gaW5mb3JtYXRpdmUgcHJpb3IgZm9yIGludGVyY2VwdAppbnQgfiBkbm9ybSgwLjAsMS4wLzI1LjApCmZvciAoaiBpbiAxOjMpewpiW2pdIH4gZGRleHAoMC4wLCBzcXJ0KDIuMCkpCn0KCn0iCgoKc2V0LnNlZWQoOTIpCmBgYAoKCgoKYGBge3IsZWNobz1GQUxTRSwgcmVzdWx0cyA9ICdoaWRlJyxlcnJvcj1UUlVFfQpkYXRhX2phZ3MgPSBsaXN0KHk9WCRMYWJlbCwgY2hyMTdfMTUwMjU5X0NfQT1YJGNocjE3XzE1MDI1OV9DX0EsIGNocjE3XzE1MDM4MF9DX1Q9WCRjaHIxN18xNTAzODBfQ19ULCBjaHIxN18xNTEyMjZfQ19UPVgkY2hyMTdfMTUxMjI2X0NfVCkKCnBhcmFtcz1jKCJpbml0IiwiYiIpCgptb2QxID0gamFncy5tb2RlbCh0ZXh0Q29ubmVjdGlvbihtb2QxX3N0cmluZyksIGRhdGE9ZGF0YV9qYWdzLCBuLmNoYWlucz0zKQpgYGAKCgpgYGB7cixlY2hvPUZBTFNFLCByZXN1bHRzID0gJ2hpZGUnLGVycm9yPVRSVUV9Cm1vZDFfc2ltID0gY29kYS5zYW1wbGVzKG1vZGVsPW1vZDEsIHZhcmlhYmxlLm5hbWVzPXBhcmFtcywgbi5pdGVyID0gNWUzKQpgYGAKCgpgYGB7cn0KbW9kMV9jc2ltID0gYXMubWNtYyhkby5jYWxsKHJiaW5kLCBtb2QxX3NpbSkpCmBgYAoKYGBge3J9CnBsb3QobW9kMV9zaW0sIGFzaz1UUlVFKQpgYGAKCmBgYHtyfQpnZWxtYW4uZGlhZyhtb2QxX3NpbSkKYGBgCgoKYGBge3J9CmF1dG9jb3JyLnBsb3QobW9kMV9zaW0pCmBgYAoKYGBge3J9CmVmZmVjdGl2ZVNpemUobW9kMV9zaW0pCmBgYAoKYGBge3J9CiMgIEdld2VrZSBkaWFnbm9zdGljCmdld2VrZS5wbG90KG1vZDFfc2ltKQpgYGAKCi0gQSAzIHZhcmlhYmxlcyBhcmUgbm90IGEgc3Ryb25nIHByZWRpY3RvcnMgb2YgdGhlIG91dGNvbWUgYmVjYXVzZSB0aGV5IG92ZXJsYXAgd2l0aCAwCgpgYGB7cn0KcGFyKG1mcm93PWMoMywyKSkKZGVuc3Bsb3QobW9kMV9jc2ltWywxOjNdLCB4bGltPWMoLTMuMCwzLjApKQpjb2xuYW1lcyhYKQpgYGAKCgoKYGBge3IsZXJyb3I9VFJVRX0KI0ZpbmQgRElDCmRpYzEgPSBkaWMuc2FtcGxlcyhtb2QxLCBuLml0ZXI9MWUzKQpkaWMxCmBgYAoKCgoK