R Markdown

library(wooldridge)
data(wagepan)
library(rmarkdown)
paged_table(wagepan)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
wagepan2 <- wagepan %>% mutate(denbesbuyuk = ifelse(exper>=5,1,0))
wagepan2 <- wagepan2 %>% relocate(nr, year, exper, denbesbuyuk, lwage, married)
head(wagepan2, 10)
##    nr year exper denbesbuyuk      lwage married agric black bus construc ent
## 1  13 1980     1           0  1.1975402       0     0     0   1        0   0
## 2  13 1981     2           0  1.8530600       0     0     0   0        0   0
## 3  13 1982     3           0  1.3444617       0     0     0   1        0   0
## 4  13 1983     4           0  1.4332134       0     0     0   1        0   0
## 5  13 1984     5           1  1.5681251       0     0     0   0        0   0
## 6  13 1985     6           1  1.6998910       0     0     0   1        0   0
## 7  13 1986     7           1 -0.7202626       0     0     0   1        0   0
## 8  13 1987     8           1  1.6691879       0     0     0   1        0   0
## 9  17 1980     4           0  1.6759624       0     0     0   0        0   0
## 10 17 1981     5           1  1.5183982       0     0     0   0        0   0
##    fin hisp poorhlth hours manuf min nrthcen nrtheast occ1 occ2 occ3 occ4 occ5
## 1    0    0        0  2672     0   0       0        1    0    0    0    0    0
## 2    0    0        0  2320     0   0       0        1    0    0    0    0    0
## 3    0    0        0  2940     0   0       0        1    0    0    0    0    0
## 4    0    0        0  2960     0   0       0        1    0    0    0    0    0
## 5    0    0        0  3071     0   0       0        1    0    0    0    0    1
## 6    0    0        0  2864     0   0       0        1    0    1    0    0    0
## 7    0    0        0  2994     0   0       0        1    0    1    0    0    0
## 8    0    0        0  2640     0   0       0        1    0    1    0    0    0
## 9    0    0        0  2484     0   0       0        1    0    1    0    0    0
## 10   0    0        0  2804     0   0       0        1    0    1    0    0    0
##    occ6 occ7 occ8 occ9 per pro pub rur south educ tra trad union d81 d82 d83
## 1     0    0    0    1   0   0   0   0     0   14   0    0     0   0   0   0
## 2     0    0    0    1   1   0   0   0     0   14   0    0     1   1   0   0
## 3     0    0    0    1   0   0   0   0     0   14   0    0     0   0   1   0
## 4     0    0    0    1   0   0   0   0     0   14   0    0     0   0   0   1
## 5     0    0    0    0   1   0   0   0     0   14   0    0     0   0   0   0
## 6     0    0    0    0   0   0   0   0     0   14   0    0     0   0   0   0
## 7     0    0    0    0   0   0   0   0     0   14   0    0     0   0   0   0
## 8     0    0    0    0   0   0   0   0     0   14   0    0     0   0   0   0
## 9     0    0    0    0   0   0   0   0     0   13   0    1     0   0   0   0
## 10    0    0    0    0   0   0   0   0     0   13   0    1     0   1   0   0
##    d84 d85 d86 d87 expersq
## 1    0   0   0   0       1
## 2    0   0   0   0       4
## 3    0   0   0   0       9
## 4    0   0   0   0      16
## 5    1   0   0   0      25
## 6    0   1   0   0      36
## 7    0   0   1   0      49
## 8    0   0   0   1      64
## 9    0   0   0   0      16
## 10   0   0   0   0      25
wagepan2 <- wagepan2 %>% mutate(bekar = ifelse(married==1,0,1))
wagepan2 <- wagepan2 %>% relocate(nr, year, d81, d82, d83, d84, d85, d86, d87)
head(wagepan2, 10)
##    nr year d81 d82 d83 d84 d85 d86 d87 exper denbesbuyuk      lwage married
## 1  13 1980   0   0   0   0   0   0   0     1           0  1.1975402       0
## 2  13 1981   1   0   0   0   0   0   0     2           0  1.8530600       0
## 3  13 1982   0   1   0   0   0   0   0     3           0  1.3444617       0
## 4  13 1983   0   0   1   0   0   0   0     4           0  1.4332134       0
## 5  13 1984   0   0   0   1   0   0   0     5           1  1.5681251       0
## 6  13 1985   0   0   0   0   1   0   0     6           1  1.6998910       0
## 7  13 1986   0   0   0   0   0   1   0     7           1 -0.7202626       0
## 8  13 1987   0   0   0   0   0   0   1     8           1  1.6691879       0
## 9  17 1980   0   0   0   0   0   0   0     4           0  1.6759624       0
## 10 17 1981   1   0   0   0   0   0   0     5           1  1.5183982       0
##    agric black bus construc ent fin hisp poorhlth hours manuf min nrthcen
## 1      0     0   1        0   0   0    0        0  2672     0   0       0
## 2      0     0   0        0   0   0    0        0  2320     0   0       0
## 3      0     0   1        0   0   0    0        0  2940     0   0       0
## 4      0     0   1        0   0   0    0        0  2960     0   0       0
## 5      0     0   0        0   0   0    0        0  3071     0   0       0
## 6      0     0   1        0   0   0    0        0  2864     0   0       0
## 7      0     0   1        0   0   0    0        0  2994     0   0       0
## 8      0     0   1        0   0   0    0        0  2640     0   0       0
## 9      0     0   0        0   0   0    0        0  2484     0   0       0
## 10     0     0   0        0   0   0    0        0  2804     0   0       0
##    nrtheast occ1 occ2 occ3 occ4 occ5 occ6 occ7 occ8 occ9 per pro pub rur south
## 1         1    0    0    0    0    0    0    0    0    1   0   0   0   0     0
## 2         1    0    0    0    0    0    0    0    0    1   1   0   0   0     0
## 3         1    0    0    0    0    0    0    0    0    1   0   0   0   0     0
## 4         1    0    0    0    0    0    0    0    0    1   0   0   0   0     0
## 5         1    0    0    0    0    1    0    0    0    0   1   0   0   0     0
## 6         1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
## 7         1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
## 8         1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
## 9         1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
## 10        1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
##    educ tra trad union expersq bekar
## 1    14   0    0     0       1     1
## 2    14   0    0     1       4     1
## 3    14   0    0     0       9     1
## 4    14   0    0     0      16     1
## 5    14   0    0     0      25     1
## 6    14   0    0     0      36     1
## 7    14   0    0     0      49     1
## 8    14   0    0     0      64     1
## 9    13   0    1     0      16     1
## 10   13   0    1     0      25     1
wagepan2 <- wagepan2 %>% mutate(d80= ifelse(year==1980,1,0))
wagepan2 <- wagepan2 %>% relocate(nr, year,d80, d81, d82, d83, d84, d85, d86, d87)
head(wagepan2, 10)
##    nr year d80 d81 d82 d83 d84 d85 d86 d87 exper denbesbuyuk      lwage married
## 1  13 1980   1   0   0   0   0   0   0   0     1           0  1.1975402       0
## 2  13 1981   0   1   0   0   0   0   0   0     2           0  1.8530600       0
## 3  13 1982   0   0   1   0   0   0   0   0     3           0  1.3444617       0
## 4  13 1983   0   0   0   1   0   0   0   0     4           0  1.4332134       0
## 5  13 1984   0   0   0   0   1   0   0   0     5           1  1.5681251       0
## 6  13 1985   0   0   0   0   0   1   0   0     6           1  1.6998910       0
## 7  13 1986   0   0   0   0   0   0   1   0     7           1 -0.7202626       0
## 8  13 1987   0   0   0   0   0   0   0   1     8           1  1.6691879       0
## 9  17 1980   1   0   0   0   0   0   0   0     4           0  1.6759624       0
## 10 17 1981   0   1   0   0   0   0   0   0     5           1  1.5183982       0
##    agric black bus construc ent fin hisp poorhlth hours manuf min nrthcen
## 1      0     0   1        0   0   0    0        0  2672     0   0       0
## 2      0     0   0        0   0   0    0        0  2320     0   0       0
## 3      0     0   1        0   0   0    0        0  2940     0   0       0
## 4      0     0   1        0   0   0    0        0  2960     0   0       0
## 5      0     0   0        0   0   0    0        0  3071     0   0       0
## 6      0     0   1        0   0   0    0        0  2864     0   0       0
## 7      0     0   1        0   0   0    0        0  2994     0   0       0
## 8      0     0   1        0   0   0    0        0  2640     0   0       0
## 9      0     0   0        0   0   0    0        0  2484     0   0       0
## 10     0     0   0        0   0   0    0        0  2804     0   0       0
##    nrtheast occ1 occ2 occ3 occ4 occ5 occ6 occ7 occ8 occ9 per pro pub rur south
## 1         1    0    0    0    0    0    0    0    0    1   0   0   0   0     0
## 2         1    0    0    0    0    0    0    0    0    1   1   0   0   0     0
## 3         1    0    0    0    0    0    0    0    0    1   0   0   0   0     0
## 4         1    0    0    0    0    0    0    0    0    1   0   0   0   0     0
## 5         1    0    0    0    0    1    0    0    0    0   1   0   0   0     0
## 6         1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
## 7         1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
## 8         1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
## 9         1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
## 10        1    0    1    0    0    0    0    0    0    0   0   0   0   0     0
##    educ tra trad union expersq bekar
## 1    14   0    0     0       1     1
## 2    14   0    0     1       4     1
## 3    14   0    0     0       9     1
## 4    14   0    0     0      16     1
## 5    14   0    0     0      25     1
## 6    14   0    0     0      36     1
## 7    14   0    0     0      49     1
## 8    14   0    0     0      64     1
## 9    13   0    1     0      16     1
## 10   13   0    1     0      25     1
kesenli <- lm(lwage ~ black + exper + expersq + married, data = wagepan2)
kesensiz <- lm(lwage ~ black + exper + expersq + married -1, data = wagepan2)
wagepan2 <- wagepan2 %>% mutate(sabit= 1)
sabitli <- lm(lwage ~ black + exper + expersq + married + sabit - 1, data = wagepan2)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
stargazer(kesensiz, kesenli, sabitli, type="text",single.row=TRUE, font.size = "tiny", column.labels = c("kesensiz", "kesenli", "sabitli"))
## 
## ====================================================================================================
##                                                   Dependent variable:                               
##                     --------------------------------------------------------------------------------
##                                                          lwage                                      
##                              kesensiz                   kesenli                    sabitli          
##                                 (1)                       (2)                        (3)            
## ----------------------------------------------------------------------------------------------------
## black                    -0.089*** (0.027)         -0.124*** (0.025)          -0.124*** (0.025)     
## exper                    0.443*** (0.005)           0.121*** (0.011)          0.121*** (0.011)      
## expersq                 -0.027*** (0.0005)         -0.007*** (0.001)          -0.007*** (0.001)     
## married                  0.133*** (0.018)           0.151*** (0.017)          0.151*** (0.017)      
## sabit                                                                         1.150*** (0.035)      
## Constant                                            1.150*** (0.035)                                
## ----------------------------------------------------------------------------------------------------
## Observations                   4,360                     4,360                      4,360           
## R2                             0.892                     0.081                      0.913           
## Adjusted R2                    0.892                     0.080                      0.913           
## Residual Std. Error      0.570 (df = 4356)         0.511 (df = 4355)          0.511 (df = 4355)     
## F Statistic         8,984.575*** (df = 4; 4356) 96.114*** (df = 4; 4355) 9,166.794*** (df = 5; 4355)
## ====================================================================================================
## Note:                                                                    *p<0.1; **p<0.05; ***p<0.01