Executive Networks — NOT SIGNIFICANT

We target:
1. Is there a main effect of Anxiety level (Normal, Mild, Moderate, Severe, Extreme) on Executive Network?
2. Is there a main effect of Depression level (Normal, Mild, Moderate, Severe, Extreme) on Executive Network?
3. Is there a main effect of Stress level (Normal, Mild, Moderate, Severe, Extreme) on Executive Network?
4. Is there an interaction effect between Anxiety and Depression level on Executive Network?
5. Is there an interaction effect between Anxiety and Stress level on Executive Network?
6. Is there an interaction effect between Stress and Depression level on Executive Network?
7. Is there an interaction effect between Anxiety, Stress, and Depression level on Executive Network?

## Call:
##    aov(formula = Executive.Networks ~ Stress_level * Anxiety_level * 
##     Depression_level, data = df)
## 
## Terms:
##                 Stress_level Anxiety_level Depression_level
## Sum of Squares      32446.30      37668.63         22122.48
## Deg. of Freedom            4             4                4
##                 Stress_level:Anxiety_level Stress_level:Depression_level
## Sum of Squares                    22416.69                      36444.12
## Deg. of Freedom                          6                             6
##                 Anxiety_level:Depression_level Residuals
## Sum of Squares                        21272.96 159200.57
## Deg. of Freedom                              3        27
## 
## Residual standard error: 76.78748
## 97 out of 125 effects not estimable
## Estimated effects may be unbalanced
##                                Df Sum Sq Mean Sq F value Pr(>F)
## Stress_level                    4  32446    8112   1.376  0.269
## Anxiety_level                   4  37669    9417   1.597  0.204
## Depression_level                4  22122    5531   0.938  0.457
## Stress_level:Anxiety_level      6  22417    3736   0.634  0.702
## Stress_level:Depression_level   6  36444    6074   1.030  0.428
## Anxiety_level:Depression_level  3  21273    7091   1.203  0.328
## Residuals                      27 159201    5896

D Prime — Only Depression has the main effect on D prime. No Interaction was found.

We target:
1. Is there a main effect of Anxiety level (Normal, Mild, Moderate, Severe, Extreme) on D Prime?
2. Is there a main effect of Depression level (Normal, Mild, Moderate, Severe, Extreme) on D Prime?
3. Is there a main effect of Stress level (Normal, Mild, Moderate, Severe, Extreme) on D Prime?
4. Is there an interaction effect between Anxiety and Depression level on D Prime?
5. Is there an interaction effect between Anxiety and Stress level on D Prime?
6. Is there an interaction effect between Stress and Depression level on D Prime?
7. Is there an interaction effect between Anxiety, Stress, and Depression level on D Prime?

## Call:
##    aov(formula = D.prime ~ Stress_level * Anxiety_level * Depression_level, 
##     data = df)
## 
## Terms:
##                 Stress_level Anxiety_level Depression_level
## Sum of Squares      2.398726      0.481932         2.830890
## Deg. of Freedom            4             4                4
##                 Stress_level:Anxiety_level Stress_level:Depression_level
## Sum of Squares                    1.159990                      1.511599
## Deg. of Freedom                          6                             6
##                 Anxiety_level:Depression_level Residuals
## Sum of Squares                        0.416591  5.926194
## Deg. of Freedom                              3        26
## 
## Residual standard error: 0.4774207
## 97 out of 125 effects not estimable
## Estimated effects may be unbalanced
## 1 observation deleted due to missingness
##                                Df Sum Sq Mean Sq F value Pr(>F)  
## Stress_level                    4  2.399  0.5997   2.631 0.0572 .
## Anxiety_level                   4  0.482  0.1205   0.529 0.7157  
## Depression_level                4  2.831  0.7077   3.105 0.0325 *
## Stress_level:Anxiety_level      6  1.160  0.1933   0.848 0.5449  
## Stress_level:Depression_level   6  1.512  0.2519   1.105 0.3860  
## Anxiety_level:Depression_level  3  0.417  0.1389   0.609 0.6150  
## Residuals                      26  5.926  0.2279                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness

Because only Depression level has a main effect on D Prime, I would recommend performing one way ANOVA for Depression level on D Prime.

Target: Is there a significant different in D Prime in different Depression level? — - NOT SIGNIFICANT!

## Call:
##    aov(formula = D.prime ~ Depression_level, data = df)
## 
## Terms:
##                 Depression_level Residuals
## Sum of Squares          2.255743 12.470178
## Deg. of Freedom                4        49
## 
## Residual standard error: 0.5044734
## Estimated effects may be unbalanced
## 1 observation deleted due to missingness
##                  Df Sum Sq Mean Sq F value Pr(>F)  
## Depression_level  4  2.256  0.5639   2.216 0.0809 .
## Residuals        49 12.470  0.2545                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness

C Score — Only Depression and Stress has the main effect on C Score. No Interaction was found.

We target:
1. Is there a main effect of Anxiety level (Normal, Mild, Moderate, Severe, Extreme) on C Score?
2. Is there a main effect of Depression level (Normal, Mild, Moderate, Severe, Extreme) on C Score?
3. Is there a main effect of Stress level (Normal, Mild, Moderate, Severe, Extreme) on C Score?
4. Is there an interaction effect between Anxiety and Depression level on C Score?
5. Is there an interaction effect between Anxiety and Stress level on C Score?
6. Is there an interaction effect between Stress and Depression level on C Score?
7. Is there an interaction effect between Anxiety, Stress, and Depression level on C Score?

## Call:
##    aov(formula = C.score ~ Stress_level * Anxiety_level * Depression_level, 
##     data = df)
## 
## Terms:
##                 Stress_level Anxiety_level Depression_level
## Sum of Squares     0.5597389     0.0957010        0.4767797
## Deg. of Freedom            4             4                4
##                 Stress_level:Anxiety_level Stress_level:Depression_level
## Sum of Squares                   0.2494700                     0.1703638
## Deg. of Freedom                          6                             6
##                 Anxiety_level:Depression_level Residuals
## Sum of Squares                       0.0828002 1.0486322
## Deg. of Freedom                              3        26
## 
## Residual standard error: 0.2008283
## 97 out of 125 effects not estimable
## Estimated effects may be unbalanced
## 1 observation deleted due to missingness
##                                Df Sum Sq Mean Sq F value Pr(>F)  
## Stress_level                    4 0.5597 0.13993   3.470 0.0212 *
## Anxiety_level                   4 0.0957 0.02393   0.593 0.6706  
## Depression_level                4 0.4768 0.11919   2.955 0.0388 *
## Stress_level:Anxiety_level      6 0.2495 0.04158   1.031 0.4279  
## Stress_level:Depression_level   6 0.1704 0.02839   0.704 0.6491  
## Anxiety_level:Depression_level  3 0.0828 0.02760   0.684 0.5697  
## Residuals                      26 1.0486 0.04033                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness

Because Depression level has a main effect on C Score, I would recommend performing one way ANOVA for Depression level on C Score.

Target: Is there a significant different in C Score in different Depression level? —- – YAY!!!! SIGNIFICANT!

## Call:
##    aov(formula = C.score ~ Depression_level, data = df)
## 
## Terms:
##                 Depression_level Residuals
## Sum of Squares         0.4970014 2.1864845
## Deg. of Freedom                4        49
## 
## Residual standard error: 0.2112395
## Estimated effects may be unbalanced
## 1 observation deleted due to missingness
##                  Df Sum Sq Mean Sq F value Pr(>F)  
## Depression_level  4  0.497 0.12425   2.785 0.0366 *
## Residuals        49  2.187 0.04462                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness

Tukey Test – NOT SIGNIFICANT

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = C.score ~ Depression_level, data = df)
## 
## $Depression_level
##                         diff         lwr       upr     p adj
## Mild-Normal      -0.07582667 -0.38474503 0.2330917 0.9566051
## Moderate-Normal   0.12037083 -0.08395946 0.3247011 0.4625418
## Severe-Normal     0.22032333 -0.08859503 0.5292417 0.2720430
## Extreme-Normal    0.21259333 -0.03963746 0.4648241 0.1361635
## Moderate-Mild     0.19619750 -0.10291142 0.4953064 0.3534822
## Severe-Mild       0.29615000 -0.08219619 0.6744962 0.1907782
## Extreme-Mild      0.28842000 -0.04524997 0.6220900 0.1198815
## Severe-Moderate   0.09995250 -0.19915642 0.3990614 0.8772307
## Extreme-Moderate  0.09222250 -0.14789406 0.3323391 0.8119874
## Extreme-Severe   -0.00773000 -0.34139997 0.3259400 0.9999956

Scheffe Test - NOT SIGNIFICANT

## 
##   Posthoc multiple comparisons of means: Scheffe Test 
##     95% family-wise confidence level
## 
## $Depression_level
##                         diff      lwr.ci    upr.ci   pval    
## Mild-Normal      -0.07582667 -0.42497086 0.2733175 0.9744    
## Moderate-Normal   0.12037083 -0.11056635 0.3513080 0.5985    
## Severe-Normal     0.22032333 -0.12882086 0.5694675 0.4064    
## Extreme-Normal    0.21259333 -0.07248171 0.4976684 0.2399    
## Moderate-Mild     0.19619750 -0.14185991 0.5342549 0.4930    
## Severe-Mild       0.29615000 -0.13146256 0.7237626 0.3110    
## Extreme-Mild      0.28842000 -0.08869883 0.6655388 0.2173    
## Severe-Moderate   0.09995250 -0.23810491 0.4380099 0.9238    
## Extreme-Moderate  0.09222250 -0.17916086 0.3636059 0.8793    
## Extreme-Severe   -0.00773000 -0.38484883 0.3693888 1.0000    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Bonferroni Method

## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  df$C.score and df$Depression_level 
## 
##          Normal Mild Moderate Severe
## Mild     1.00   -    -        -     
## Moderate 1.00   0.69 -        -     
## Severe   0.49   0.31 1.00     -     
## Extreme  0.21   0.18 1.00     1.00  
## 
## P value adjustment method: bonferroni

Because Stress level has a main effect on C Score, I would recommend performing one way ANOVA for Depression level on C Score.

Target: Is there a significant different in C Score in different Stress level? —- – YAY!!!! SIGNIFICANT!

## Call:
##    aov(formula = C.score ~ Stress_level, data = df)
## 
## Terms:
##                 Stress_level Residuals
## Sum of Squares     0.5597389 2.1237470
## Deg. of Freedom            4        49
## 
## Residual standard error: 0.2081869
## Estimated effects may be unbalanced
## 1 observation deleted due to missingness
##              Df Sum Sq Mean Sq F value Pr(>F)  
## Stress_level  4 0.5597 0.13993   3.229 0.0198 *
## Residuals    49 2.1237 0.04334                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness

Descriptive Statistics

## # A tibble: 5 × 4
##   Stress_level     N  Mean     SD
##   <fct>        <int> <dbl>  <dbl>
## 1 Normal          20  1.47 0.126 
## 2 Mild             7  1.48 0.187 
## 3 Moderate        11  1.64 0.262 
## 4 Severe          11  1.72 0.305 
## 5 Extreme          6  1.53 0.0432

Tukey Test - SIGNIFICANT between Severe and Normal

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = C.score ~ Stress_level, data = df)
## 
## $Stress_level
##                         diff         lwr       upr     p adj
## Mild-Normal       0.01253421 -0.24814020 0.2732086 0.9999197
## Moderate-Normal   0.16628421 -0.05708589 0.3896543 0.2331038
## Severe-Normal     0.25436603  0.03099593 0.4777361 0.0182274
## Extreme-Normal    0.06499254 -0.21110029 0.3410854 0.9626001
## Moderate-Mild     0.15375000 -0.13130485 0.4388049 0.5500640
## Severe-Mild       0.24183182 -0.04322303 0.5268867 0.1318347
## Extreme-Mild      0.05245833 -0.27554978 0.3804664 0.9910440
## Severe-Moderate   0.08808182 -0.16331293 0.3394766 0.8575618
## Extreme-Moderate -0.10129167 -0.40051127 0.1979279 0.8720991
## Extreme-Severe   -0.18937348 -0.48859309 0.1098461 0.3896018

Boxplot

## Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).

A One Way ANOVA indicated that there is a significant difference in C score between different Stress Levels, F(4,49) = 3.229, p < 0.05. A post hoc Tukey test indicated that there is a significant difference in C score between Normal (M = 1.47, SD = 0.23) and Extreme level (M = 1.53, SD = 0.04). No other pair-wise difference found.