# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # … with 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899132
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0234749
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.0224060227  0.0467079557  0.0138235451 -0.0248294986  0.0074083372
##   [6]  0.0134103831 -0.0276161327 -0.0065369192  0.0520205030  0.0164091252
##  [11] -0.0319839591  0.0024085624  0.0060227911  0.0203443195  0.0295612012
##  [16]  0.0285239925  0.0286264135  0.0259891741  0.0225096091 -0.0220537374
##  [21]  0.0053839611 -0.0032398669 -0.0129644567  0.0157794546  0.0199522374
##  [26]  0.0524803660 -0.0106409768  0.0103812783  0.0233760741  0.0851841262
##  [31] -0.0094118370 -0.0443599262  0.0202732562  0.0081960691  0.0240720354
##  [36]  0.0096010555  0.0555998714  0.0147843783  0.0312738932  0.0332369480
##  [41]  0.0365601114  0.0522057346  0.0195431153 -0.0122693191 -0.0086934595
##  [46] -0.0042411686  0.0410711553  0.0010361835  0.0158137912 -0.0074207525
##  [51] -0.0121978958 -0.0086308050  0.0263358282  0.0077567333  0.0240096639
##  [56]  0.0231367395  0.0013727543  0.0015472913  0.0081982515 -0.0094059860
##  [61]  0.0478214933 -0.0093457839  0.0033597860  0.0296100412  0.0038382618
##  [66]  0.0014605512  0.0262004402 -0.0104886389  0.0054840314 -0.0279039386
##  [71] -0.0044484974 -0.0469392326 -0.0073534613  0.0025277250 -0.0275115955
##  [76] -0.0126069897  0.0127570676  0.0158925511  0.0205464673  0.0247459333
##  [81]  0.0143856205 -0.0313565818 -0.0446839218 -0.0310233534  0.0295996197
##  [86]  0.0274178594  0.0101115862 -0.0061947217  0.0559373834  0.0460901092
##  [91]  0.0159039257  0.0301422597  0.0141636988  0.0144127928 -0.0270316880
##  [96]  0.0630224752  0.0055953433 -0.0253804206  0.0138869290 -0.0177508434
## [101]  0.0208511139 -0.0148661105  0.0167069674 -0.0033803572  0.0461280751
## [106]  0.0096982306  0.0165489334 -0.0277649084  0.0015069807 -0.0172864693
## [111]  0.0224990537  0.0109801829 -0.0007487827 -0.0157926602 -0.0145445059
## [116] -0.0092090062 -0.0142431084  0.0157769552 -0.0086526198  0.0019162467
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1 
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.978
##  3   1.05 
##  4   1.01 
##  5   0.975
##  6   1.01 
##  7   1.01 
##  8   0.972
##  9   0.993
## 10   1.05 
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>% 
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth 
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.978
##  3  1.02 
##  4  1.04 
##  5  1.01 
##  6  1.02 
##  7  1.03 
##  8  1.00 
##  9  0.998
## 10  1.05 
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 9.486947

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return))) 
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>% 
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth) 
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) 
## # A tibble: 241 × 1
##    growth
##     <dbl>
##  1  100  
##  2   98.7
##  3   97.8
##  4   97.9
##  5   96.8
##  6   97.3
##  7   97.9
##  8   98.4
##  9   99.1
## 10  101. 
## # … with 231 more rows
dump(list = c("simulate_accumulation"), 
              file = "../00_scripts/accumulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1's as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))
starts 
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
#Simulate
set.seed(1234)
monte_carlo_simulation_51 <- starts %>%
    
    #Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                        N = 120, 
                                        mean_return = mean_port_return, 
                                        sd_return = stddev_port_return)) %>%
    #Add column Month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>% 
    
    # Rearrange column rows
    set_names(c("month", names(starts))) %>% 
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth") 
    

monte_carlo_simulation_51 
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # … with 6,161 more rows
# Find quantiles
monte_carlo_simulation_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_simulation_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with max, median, min

# Step 1 summarize data into max, median, and min of last value 
sim_summary <- monte_carlo_simulation_51 %>% 
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth), 
              median = median(growth),
                 min = min(growth)) 
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# STep 2 plot

monte_carlo_simulation_51 %>% 
    
    # Filter for max, median and min sim
    group_by(sim) %>% 
   filter(last(growth) == sim_summary$max |
              last(growth) == sim_summary$min |
              last(growth) == sim_summary$median) %>% 
    ungroup() %>%
    
    # Plot
     ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months",
         subtitle = "Max, Median, and Minimum Simulation")