# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # … with 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899134
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] 0.0324049753 -0.0357795989 -0.0008797231 0.0282295738 -0.0075012701
## [6] 0.0215437482 0.0121423030 0.0195436348 -0.0163826759 -0.0053401664
## [11] 0.0146430800 0.0207243050 -0.0184635773 -0.0174925854 -0.0145645424
## [16] 0.0160034941 -0.0230766848 -0.0114986222 0.0399665444 0.0345421863
## [21] -0.0042338509 -0.0027912439 0.0025298111 0.0098391706 -0.0007846162
## [26] 0.0611719795 0.0372316734 0.0502330907 -0.0276720997 0.0215236752
## [31] 0.0075742772 0.0484075707 -0.0024094560 -0.0094647882 0.0174020953
## [36] 0.0173532570 0.0016052496 -0.0040381239 0.0066765769 -0.0194166683
## [41] 0.0115686837 -0.0313604173 0.0341687964 0.0396051735 -0.0268683936
## [46] 0.0178126265 0.0166284956 0.0109257540 0.0078346807 0.0039006807
## [51] 0.0203235766 -0.0324226391 0.0238188551 -0.0130779882 0.0237929549
## [56] -0.0093078277 0.0215838848 0.0105364366 -0.0072163888 -0.0036812599
## [61] 0.0223926144 -0.0177557593 0.0251105906 0.0386704024 0.0548517225
## [66] -0.0057730918 -0.0069452261 -0.0134032830 -0.0224077182 0.0137840198
## [71] -0.0328479267 0.0033034530 -0.0080848306 0.0209432128 0.0143310296
## [76] 0.0116777142 0.0265380901 -0.0223843314 0.0299951325 -0.0104643670
## [81] -0.0025105068 0.0074121005 0.0361525688 0.0028528789 -0.0082130053
## [86] 0.0285906325 -0.0112789022 -0.0078995741 -0.0637298802 0.0531266847
## [91] 0.0026410688 -0.0105544578 0.0276437293 0.0196504389 0.0279672414
## [96] -0.0246638111 -0.0370931550 -0.0341792450 0.0044571426 0.0458230701
## [101] -0.0210193900 -0.0096953672 0.0143471143 -0.0643567132 -0.0390159778
## [106] 0.0004773066 -0.0015912309 0.0042169493 -0.0081289453 0.0203704311
## [111] 0.0010809664 -0.0348826274 0.0231529972 0.0012635492 -0.0035526493
## [116] -0.0085353783 0.0130944687 0.0121824300 -0.0348617588 -0.0091009937
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 1.03
## 3 0.964
## 4 0.999
## 5 1.03
## 6 0.992
## 7 1.02
## 8 1.01
## 9 1.02
## 10 0.984
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 1.03
## 3 0.995
## 4 0.995
## 5 1.02
## 6 1.01
## 7 1.04
## 8 1.05
## 9 1.07
## 10 1.05
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 4.256114
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 341.
## 2 345.
## 3 349.
## 4 348.
## 5 345.
## 6 349.
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 1 1 1 1 1 1 1 1 1 1 1 1
# Simulate
# For reproducible research
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add a column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # … with 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 1.17 1.59 1.98 2.40 3.88
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 120 months")
# Step 1 Summarize data into max, median, min of last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3.88 1.98 1.17
# Step 2 Plot
monte_carlo_sim_51 %>%
# Filter for max, median, min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 120 months",
subtitle = "Max, Median, Minimum Simulation")