# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # … with 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899133
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  5.664494e-02  2.132702e-03 -2.819401e-03  6.207251e-02 -1.558037e-02
##   [6]  2.621292e-02  4.017841e-02  4.366369e-03 -1.276966e-02  8.539063e-03
##  [11]  2.725477e-02  3.077369e-02 -3.939597e-03  2.939894e-02 -4.300034e-03
##  [16]  2.805713e-02 -2.078411e-02  5.715396e-03  4.276805e-02  4.718893e-02
##  [21]  1.523678e-02 -2.392857e-02  1.880352e-02 -3.654756e-02  1.410652e-02
##  [26] -2.782078e-02  2.431442e-02 -1.165357e-02  3.884026e-03  2.922365e-02
##  [31]  3.604176e-03  3.001632e-02  5.495354e-03  1.536899e-02 -2.284113e-02
##  [36]  6.089556e-02 -4.098606e-03  2.828056e-02  3.558082e-05  2.733682e-02
##  [41] -8.398606e-03  9.590824e-03 -1.399627e-02  1.626116e-02  1.190950e-02
##  [46] -2.529055e-02 -4.364196e-02  2.994095e-02  8.581562e-03  2.142634e-02
##  [51]  2.882006e-04 -2.251603e-02  3.025642e-02  9.858350e-03  8.867978e-03
##  [56]  1.363421e-02 -1.322459e-02 -1.564851e-02  4.775154e-02 -7.990845e-03
##  [61]  2.060054e-02 -4.677652e-03  3.784065e-02 -1.948780e-02 -2.638636e-03
##  [66]  1.972103e-03 -3.444016e-02  3.308583e-03  4.293697e-02  3.588417e-02
##  [71]  7.762206e-03 -1.587815e-02 -1.391481e-02 -1.401328e-02 -1.932965e-02
##  [76]  4.997728e-02 -3.405985e-03  3.576179e-02  1.807531e-02 -5.566100e-03
##  [81] -1.239962e-02 -8.423063e-03 -5.816009e-03  1.175545e-02 -2.612649e-02
##  [86] -1.983313e-02 -1.741944e-02  8.723943e-03  9.455142e-03  2.729623e-02
##  [91] -2.380087e-02  5.631010e-03  2.375116e-02 -2.657895e-02  3.351867e-03
##  [96]  2.133084e-02  3.397449e-02  5.930209e-02 -6.013563e-03 -8.423081e-03
## [101] -1.718189e-02  3.488058e-02 -2.462510e-03  1.762661e-02 -2.195097e-02
## [106]  2.599786e-02  5.381167e-03 -3.508837e-03  2.538609e-02  3.388541e-03
## [111]  1.220423e-02  3.996229e-02  8.301722e-03  2.467910e-02  3.814107e-02
## [116]  4.793166e-02  5.408995e-03 -3.033133e-02  2.989583e-05  1.841303e-02
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.06 
##  3   1.00 
##  4   0.997
##  5   1.06 
##  6   0.984
##  7   1.03 
##  8   1.04 
##  9   1.00 
## 10   0.987
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.06
##  3   1.06
##  4   1.06
##  5   1.12
##  6   1.10
##  7   1.13
##  8   1.18
##  9   1.18
## 10   1.17
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 9.701873

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(120, mean_return, sd_return)))
    
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   166.
## 2   166.
## 3   165.
## 4   166.
## 5   168.
## 6   169.
dump(list = c("simulate_accumulation"),
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point 
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# simulate 
# for reproducible results
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
    
    # Stimulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N = 120,
                                        mean_return = mean_port_return,
                                        sd_return = stddev_port_return)) %>%
    
    # Add column month 
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>% 
    
    # Transform to long form 
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # … with 6,161 more rows
# Find quantiles 
monte_carlo_sim_51 %>% 
    
    group_by(sim) %>% 
    summarise(growth = last(growth)) %>%
    ungroup() %>% 
    pull(growth) %>% 
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>% 
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>% 
    
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>% 
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot 
monte_carlo_sim_51 %>% 
    
    # Filter for max, median, and min
    group_by(sim) %>% 
    filter(last(growth) == sim_summary$max |
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    ungroup() %>% 
    
    # Plot 
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months", subtitle = "Maximum, Median, and Minimum Simulation")