install.packages("Bolstad", repos = "http://cran.us.r-project.org")
##
## The downloaded binary packages are in
## /var/folders/lq/q4b5f6yj44l8z66cd61zxhm40000gn/T//Rtmp1lp9Xl/downloaded_packages
library(Bolstad)
##
## Attaching package: 'Bolstad'
## The following objects are masked from 'package:stats':
##
## IQR, sd, var
head(bears)
## ID Age Month Sex Head.L Head.W Neck.G Length Chest.G Weight Obs.No Name
## 1 39 19 7 1 10.0 5.0 15.0 45.0 23 65 1 Allen
## 2 41 19 7 2 11.0 6.5 20.0 47.5 24 70 1 Berta
## 3 41 20 8 2 12.0 6.0 17.0 57.0 27 74 2 Berta
## 4 41 23 11 2 12.5 5.0 20.5 59.5 38 142 3 Berta
## 5 41 29 5 2 12.0 6.0 18.0 62.0 31 121 4 Berta
## 6 43 19 7 1 11.0 5.5 16.0 53.0 26 80 1 Clyde
biometric <- read.table(header=TRUE, file="a tiny biometric survey.txt")
head(biometric)
## HEIGHT WRIST HANDSPAN FEMALE
## 1 66 6.0 8.0 TRUE
## 2 63 8.0 6.0 TRUE
## 3 68 6.0 7.7 FALSE
## 4 59 8.0 6.0 TRUE
## 5 63 6.5 7.5 TRUE
## 6 72 9.0 11.0 FALSE
For the bears data, conduct an F test comparing the male vs. female variances of weight. With “raw” data, you can use the var.test() function to compare variances. Is this result consistent with the GMVH?
with(bears,
var.test(Weight[Sex==1],Weight[Sex==2], alternative="greater")
)
##
## F test to compare two variances
##
## data: Weight[Sex == 1] and Weight[Sex == 2]
## F = 3.4439, num df = 98, denom df = 43, p-value = 9.13e-06
## alternative hypothesis: true ratio of variances is greater than 1
## 95 percent confidence interval:
## 2.195713 Inf
## sample estimates:
## ratio of variances
## 3.443867
For the biometric data, does HEIGHT for males (FEMALE==FALSE) have a greater variance than for females?
with(biometric, var.test(HEIGHT[FEMALE==FALSE],HEIGHT[FEMALE==TRUE], alternative="greater")
)
##
## F test to compare two variances
##
## data: HEIGHT[FEMALE == FALSE] and HEIGHT[FEMALE == TRUE]
## F = 0.083772, num df = 95, denom df = 142, p-value = 1
## alternative hypothesis: true ratio of variances is greater than 1
## 95 percent confidence interval:
## 0.06180264 Inf
## sample estimates:
## ratio of variances
## 0.08377206
For the biometric data, does WRIST circumference for males (FEMALE==FALSE) have a greater variance than for females?
with(biometric, var.test(WRIST[FEMALE==FALSE],WRIST[FEMALE==TRUE], alternative="greater")
)
##
## F test to compare two variances
##
## data: WRIST[FEMALE == FALSE] and WRIST[FEMALE == TRUE]
## F = 0.45291, num df = 95, denom df = 142, p-value = 1
## alternative hypothesis: true ratio of variances is greater than 1
## 95 percent confidence interval:
## 0.3341334 Inf
## sample estimates:
## ratio of variances
## 0.4529102
For the biometric data, does HANDSPAN for males (FEMALE==FALSE) have a greater variance than for females?
with(biometric, var.test(HANDSPAN[FEMALE==FALSE],HANDSPAN[FEMALE==TRUE], alternative="greater")
)
##
## F test to compare two variances
##
## data: HANDSPAN[FEMALE == FALSE] and HANDSPAN[FEMALE == TRUE]
## F = 1.1755, num df = 95, denom df = 142, p-value = 0.1902
## alternative hypothesis: true ratio of variances is greater than 1
## 95 percent confidence interval:
## 0.8671922 Inf
## sample estimates:
## ratio of variances
## 1.175459
What do you conclude about the Greater Male Variance Hypothesis?