6.1 Kurva dan model linier

Kata linier dalam “model linier” mengacu pada “kombinasi linier”, bukan “garis lurus”. Seperti yang akan Anda lihat, Anda dapat membuat kurva rumit dengan mengambil kombinasi fungsi linier, dan menggunakan operasi proyeksi aljabar linier untuk mencocokkan kurva ini sedekat mungkin dengan data. Proses pencocokan itu disebut “pas”.

Sebagai ilustrasi, data dalam file “utilities.csv”merekam suhu rata-rata setiap bulan (dalam derajat F) serta penggunaan gas alam bulanan (dalam kaki kubik, ccf). Ada, seperti yang Anda duga, hubungan yang kuat antara keduanya.

library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
## 
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
## 
##     count, tally
## 
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
## 
##     D
Utils <- read.csv("http://www.mosaic-web.org/go/datasets/utilities.csv")
gf_point(ccf ~ temp, data = Utils) %>%
  gf_labs(y = "Natural gas usage (ccf/month)", 
          x = "Average outdoor temperature (F)")

Utilities = read.csv("http://www.mosaic-web.org/go/datasets/utilities.csv")
gf_point(ccf ~ temp, data = Utilities)

Untuk menemukan skalar numerik yang paling cocok dengan data — untuk “menyesuaikan fungsi” dengan data — dapat dilakukan dengan project( )operator aljabar linier.

project(ccf ~ temp + 1, data = Utilities)
## (Intercept)        temp 
##  253.098208   -3.464251

Operator project( )memberikan nilai skalar. Fungsi pemasangan terbaik itu sendiri dibangun dengan menggunakan nilai skalar ini untuk menggabungkan fungsi yang terlibat.

model_fun = makeFun( 253.098 - 3.464*temp ~ temp)
gf_point(ccf ~ temp, data=Utils) %>%
  slice_plot(model_fun(temp) ~ temp)

Setelah Anda menyelesaikan proyeksi dan menemukan koefisien, Anda dapat membuat fungsi matematika yang sesuai dengan menggunakan koefisien dalam ekspresi matematika untuk membuat fungsi. Seperti semua fungsi, nama yang Anda gunakan untuk argumen adalah masalah pilihan pribadi, meskipun masuk akal untuk menggunakan nama yang mengingatkan Anda tentang apa yang diwakili oleh fungsi tersebut. Pilihan vektor apa yang akan digunakan dalam proyeksi ada di tangan Anda: bagian dari seni pemodel.

Sepanjang ilmu alam dan sosial, teknik yang sangat penting dan banyak digunakan adalah menggunakan banyak variabel dalam sebuah proyeksi. Sebagai ilustrasi, lihat data “used-hondas.csv”harga mobil Honda bekas.

Hondas = read.csv("http://www.mosaic-web.org/go/datasets/used-hondas.csv")
head(Hondas)
##   Price Year Mileage Location Color Age
## 1 20746 2006   18394  St.Paul  Grey   1
## 2 19787 2007       8  St.Paul Black   0
## 3 17987 2005   39998  St.Paul  Grey   2
## 4 17588 2004   35882  St.Paul Black   3
## 5 16987 2004   25306  St.Paul  Grey   3
## 6 16987 2005   33399  St.Paul Black   2

Seperti yang Anda lihat, kumpulan data menyertakan variabel Price, Age, dan Mileage. Tampaknya masuk akal untuk berpikir bahwa harga akan bergantung pada jarak tempuh dan usia mobil. Inilah model yang sangat sederhana yang menggunakan kedua variabel:

project(Price ~ Age + Mileage + 1, data = Hondas)
##   (Intercept)           Age       Mileage 
##  2.133049e+04 -5.382931e+02 -7.668922e-02

Anda dapat memplotnya sebagai fungsi matematika:

car_price <- makeFun(21330-5.383e2*age-7.669e-2*miles ~ age & miles)
contour_plot(car_price(age, miles) ~ age + miles,
  domain(age=range(2, 8), miles=range(0, 60000))) %>%
  gf_labs(title = "Miles per gallon")

Model yang agak lebih canggih mungkin menyertakan apa yang disebut “interaksi” antara usia dan jarak tempuh, menyadari bahwa pengaruh usia mungkin berbeda tergantung pada jarak tempuh.

project(Price ~ Age + Mileage + Age*Mileage + 1, data = Hondas)
##   (Intercept)           Age       Mileage   Age:Mileage 
##  2.213744e+04 -7.494928e+02 -9.413962e-02  3.450033e-03
car_price2 <- makeFun(22137 - 7.495e2*age - 9.414e-2*miles +
                         3.450e-3*age*miles ~ age & miles)
contour_plot(
  car_price2(Age, Mileage) ~ Age + Mileage,  
  domain(Age = range(0, 10), Mileage = range(0, 100000))) %>%
  gf_labs(title = "Price of car (USD)")

Terima Kasih