# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # … with 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899133
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0362369684 -0.0093371484  0.0448566108 -0.0107007282  0.0229804405
##   [6] -0.0116046323  0.0128159738 -0.0291532466  0.0024016264 -0.0123342993
##  [11]  0.0427272409  0.0051753012  0.0273314837  0.0278821075  0.0180030234
##  [16] -0.0161299577  0.0212802736 -0.0089073244  0.0137184596  0.0023198246
##  [21] -0.0411830969 -0.0315040054  0.0195976888  0.0352598235  0.0034052182
##  [26]  0.0118653045  0.0195135304 -0.0097653787  0.0124511436  0.0339993299
##  [31]  0.0214520820  0.0108918348  0.0237382459  0.0196492986 -0.0006244387
##  [36]  0.0212757156  0.0328308534  0.0446771991  0.0279974266 -0.0404819020
##  [41] -0.0011403183  0.0028950282  0.0177919178 -0.0261912598 -0.0382406030
##  [46]  0.0076490402 -0.0345448616  0.0294230409  0.0090443905 -0.0325223260
##  [51]  0.0103047939 -0.0197366143 -0.0375746036  0.0650963410  0.0010361093
##  [56] -0.0477922271  0.0030103907  0.0352646370  0.0196629410  0.0226135767
##  [61]  0.0107449785  0.0133080902  0.0035631684  0.0263888344  0.0054317315
##  [66]  0.0702464397  0.0141690190 -0.0148388721  0.0031966742  0.0306216071
##  [71]  0.0033309769  0.0335754129  0.0039011723 -0.0143897104 -0.0170026980
##  [76]  0.0108689723  0.0243584415  0.0541263928  0.0201606172  0.0110132164
##  [81]  0.0080656972  0.0010837944 -0.0160790560 -0.0271220959  0.0183395945
##  [86]  0.0007155985  0.0184294180 -0.0160991748 -0.0047514922 -0.0410264917
##  [91] -0.0032080321  0.0418449007 -0.0247512742 -0.0354107914  0.0316848866
##  [96]  0.0225672981  0.0357377153 -0.0031918002  0.0239334267 -0.0215665014
## [101] -0.0498985662  0.0557731220  0.0387815898 -0.0034286117  0.0062770856
## [106]  0.0343032158  0.0052672557  0.0251172934  0.0113752568  0.0433054938
## [111] -0.0227297846  0.0023709964  0.0296330571 -0.0266306015  0.0063592669
## [116] -0.0305918911  0.0148494649 -0.0109252916  0.0283545811  0.0100463491
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.04 
##  3   0.991
##  4   1.04 
##  5   0.989
##  6   1.02 
##  7   0.988
##  8   1.01 
##  9   0.971
## 10   1.00 
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.04
##  3   1.03
##  4   1.07
##  5   1.06
##  6   1.09
##  7   1.07
##  8   1.09
##  9   1.05
## 10   1.06
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.445397

6 Simulation function

simulate_accumulation <- function(initial_value, N,  mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   274.
## 2   279.
## 3   282.
## 4   286.
## 5   285.
## 6   287.
dump(list = c("simulate_accumulation"), 
     file = "../Desktop/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                        N             = 120, 
                                        mean_return   = mean_port_return, 
                                        sd_return     = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rename column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # … with 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 0.99 1.74 2.02 2.48 3.58

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() + 
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with maximum, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>% 
    
    summarise(max    = max(growth), 
              median = median(growth), 
              min    = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.58   2.02 0.992
# Step 2 Plot
monte_carlo_sim_51 %>% 
    
    # Filter for max, median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median | 
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() + 
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme(plot.subtitle = element_text(hjust = 0.5)) + 
    
    labs(title = "Simulating growth of $1 over 120 months", 
         subtitle = "Maximum, Median, and Minimum Simulation")