# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # … with 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899133
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] 0.0362369684 -0.0093371484 0.0448566108 -0.0107007282 0.0229804405
## [6] -0.0116046323 0.0128159738 -0.0291532466 0.0024016264 -0.0123342993
## [11] 0.0427272409 0.0051753012 0.0273314837 0.0278821075 0.0180030234
## [16] -0.0161299577 0.0212802736 -0.0089073244 0.0137184596 0.0023198246
## [21] -0.0411830969 -0.0315040054 0.0195976888 0.0352598235 0.0034052182
## [26] 0.0118653045 0.0195135304 -0.0097653787 0.0124511436 0.0339993299
## [31] 0.0214520820 0.0108918348 0.0237382459 0.0196492986 -0.0006244387
## [36] 0.0212757156 0.0328308534 0.0446771991 0.0279974266 -0.0404819020
## [41] -0.0011403183 0.0028950282 0.0177919178 -0.0261912598 -0.0382406030
## [46] 0.0076490402 -0.0345448616 0.0294230409 0.0090443905 -0.0325223260
## [51] 0.0103047939 -0.0197366143 -0.0375746036 0.0650963410 0.0010361093
## [56] -0.0477922271 0.0030103907 0.0352646370 0.0196629410 0.0226135767
## [61] 0.0107449785 0.0133080902 0.0035631684 0.0263888344 0.0054317315
## [66] 0.0702464397 0.0141690190 -0.0148388721 0.0031966742 0.0306216071
## [71] 0.0033309769 0.0335754129 0.0039011723 -0.0143897104 -0.0170026980
## [76] 0.0108689723 0.0243584415 0.0541263928 0.0201606172 0.0110132164
## [81] 0.0080656972 0.0010837944 -0.0160790560 -0.0271220959 0.0183395945
## [86] 0.0007155985 0.0184294180 -0.0160991748 -0.0047514922 -0.0410264917
## [91] -0.0032080321 0.0418449007 -0.0247512742 -0.0354107914 0.0316848866
## [96] 0.0225672981 0.0357377153 -0.0031918002 0.0239334267 -0.0215665014
## [101] -0.0498985662 0.0557731220 0.0387815898 -0.0034286117 0.0062770856
## [106] 0.0343032158 0.0052672557 0.0251172934 0.0113752568 0.0433054938
## [111] -0.0227297846 0.0023709964 0.0296330571 -0.0266306015 0.0063592669
## [116] -0.0305918911 0.0148494649 -0.0109252916 0.0283545811 0.0100463491
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 1.04
## 3 0.991
## 4 1.04
## 5 0.989
## 6 1.02
## 7 0.988
## 8 1.01
## 9 0.971
## 10 1.00
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 1.04
## 3 1.03
## 4 1.07
## 5 1.06
## 6 1.09
## 7 1.07
## 8 1.09
## 9 1.05
## 10 1.06
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.445397
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 274.
## 2 279.
## 3 282.
## 4 286.
## 5 285.
## 6 287.
dump(list = c("simulate_accumulation"),
file = "../Desktop/simulate_accumulation.R")
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 1 1 1 1 1 1 1 1 1 1 1 1
# Simulate
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rename column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # … with 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 0.99 1.74 2.02 2.48 3.58
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 120 months")
Line plot with maximum, median, and min
# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3.58 2.02 0.992
# Step 2 Plot
monte_carlo_sim_51 %>%
# Filter for max, median, and min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 120 months",
subtitle = "Maximum, Median, and Minimum Simulation")