getting % cover data fully ready for analysis

library(tidyverse)
library(nlme)
library(lattice)

read in data

PFXcover <- read.csv("PFXcover.csv", header=T)

# plot info included in the datasets
# Yr is sample year, either 2021 or 2022
PFXcover$Yr <- factor(PFXcover$Yr)

# SH_GR is plant community strata
PFXcover$SH_GR <- factor(PFXcover$SH_GR)

# Trt is C (control) or T (treatment) with herbicide indaziflam 
PFXcover$Trt <- factor(PFXcover$Trt)

shrub_count is average count of shrubs > 15 cm within 2 x 30 m belt transect this is a proxy for shrub abundance I need to add in other environmental factors like soil type, aspect, and slope but this is what we are working with right now

Not that this is nested transect data. 3 observations (transects) per plot, per year for two consecutive years

research question:

Did indaziflam treatment areas have lower annual grass cover? How did this differ by year and veg structure?

exploratory figures

#facet by year
ggsh<-ggplot(data=PFXcover, aes(x=SH_GR, y=AG_I, 
                                fill=Trt))+
  geom_boxplot()+facet_grid(~Yr)+
  labs(x="Plant Community Type", y="Annual Grass cover (%)")+
  ylim(0,85)
ggsh

#facet by trt
ggsh<-ggplot(data=PFXcover, aes(x=SH_GR, y=AG_I, 
                                fill=Yr))+
  geom_boxplot()+facet_grid(~Trt)+
  labs(x="Plant Community Type", y="Annual Grass cover (%)")+
  ylim(0,85)
ggsh

plot the residuals

#make simple linear regression to plot the residuals
m1 <- lm(AG_I ~ SH_GR * Trt * Yr, data = PFXcover)
#plot the residuals

op <- par(mfrow = c(2,2), mar=c(4,4,2,2))
plot(m1, which=c(1), col=1, add.smooth=F, caption="")
plot(resid(m1) ~ PFXcover$SH_GR, xlab = "Comm type", ylab = "residuals")
plot(resid(m1) ~ PFXcover$Trt, xlab = "Trt", ylab = "residuals")
plot(resid(m1) ~ PFXcover$Yr, xlab = "Trt", ylab = "residuals")

par(op)

seems like there is some violation of heterogeneity of variance

try adding sopme random effect for Plot

library(nlme)
M1<-gls(AG_I~SH_GR * Trt * Yr *shrub_count,data=PFXcover)
M2 <- lme(AG_I~SH_GR * Trt * Yr *shrub_count, data = PFXcover,
          random = ~1 | SH_GR)
M3 <- lme(AG_I~SH_GR * Trt * Yr *shrub_count, data = PFXcover,
          random = ~1 | PlotID)
anova(M1, M2, M3) #M3 with PlotID as random effect is best
##    Model df      AIC      BIC    logLik   Test      L.Ratio p-value
## M1     1 33 1372.588 1471.496 -653.2942                            
## M2     2 34 1374.588 1476.494 -653.2942 1 vs 2 2.273737e-13       1
## M3     3 34 1336.324 1438.229 -634.1621
plot(M3, col = 1)

try some different variance structures

form = AG_I ~ Trt * Yr * SH_GR * shrub_count

# try var indent for each categorical variance
M4 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varIdent(form = ~1 | Trt))

M5 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varIdent(form = ~1 | Yr))

M6 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varIdent(form = ~1 | SH_GR))

#combination of all var indents
M7 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varComb(varIdent(form = ~1 | SH_GR),
                            varIdent(form = ~1 | Yr), 
                            weights = varIdent(form = ~1 | Trt)))
        
# from previous versions I know varExp(form =~ shrub_count) might be goog 
M8 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varExp(form =~ shrub_count))

#combination of all 
M9 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varComb(varIdent(form = ~1 | SH_GR),
                            varIdent(form = ~1 | Yr), 
                            varIdent(form = ~1 | Trt),
                            varExp(form =~ shrub_count)))



anova(M1, M2, M3, M4, M5, M6, M7, M8, M9)
## Warning in nlme::anova.lme(object = M1, M2, M3, M4, M5, M6, M7, M8, M9): fitted
## objects with different fixed effects. REML comparisons are not meaningful.
##    Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## M1     1 33 1372.588 1471.496 -653.2942                        
## M2     2 34 1374.588 1476.494 -653.2942 1 vs 2  0.00000       1
## M3     3 34 1336.324 1438.229 -634.1621                        
## M4     4 35 1312.972 1417.875 -621.4862 3 vs 4 25.35182  <.0001
## M5     5 35 1301.662 1406.564 -615.8309                        
## M6     6 37 1325.559 1436.456 -625.7795 5 vs 6 19.89708  <.0001
## M7     7 39 1253.111 1370.002 -587.5554 6 vs 7 76.44808  <.0001
## M8     8 35 1301.785 1406.688 -615.8927 7 vs 8 56.67450  <.0001
## M9     9 40 1239.609 1359.498 -579.8046 8 vs 9 72.17614  <.0001
AIC(M1, M2, M3, M4, M5, M6, M7, M8, M9)
##    df      AIC
## M1 33 1372.588
## M2 34 1374.588
## M3 34 1336.324
## M4 35 1312.972
## M5 35 1301.662
## M6 37 1325.559
## M7 39 1253.111
## M8 35 1301.785
## M9 40 1239.609
#M9 is best AIC, but high df?

#plot new residuals
plot(M9, col = 1) # looks good

how do I include temporal autocorrelation for measuring the same plot two years in a row

is that even realistic for two years of data?

results

summary(M9)
## Linear mixed-effects model fit by REML
##   Data: PFXcover 
##        AIC      BIC    logLik
##   1239.609 1359.498 -579.8046
## 
## Random effects:
##  Formula: ~1 | PlotID
##         (Intercept) Residual
## StdDev:    2.962816   9.8779
## 
## Combination of variance functions: 
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | SH_GR 
##  Parameter estimates:
##      HSHG      HSLG      LSHG      LSLG 
## 1.0000000 1.0813557 0.8126036 1.4318094 
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Yr 
##  Parameter estimates:
##     2021     2022 
## 1.000000 2.713881 
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Trt 
##  Parameter estimates:
##        C        T 
## 1.000000 0.601981 
##  Structure: Exponential of variance covariate
##  Formula: ~shrub_count 
##  Parameter estimates:
##       expon 
## -0.01081643 
## Fixed effects:  list(form) 
##                                       Value Std.Error  DF   t-value p-value
## (Intercept)                        -4.10269  10.03030 131 -0.409030  0.6832
## TrtT                                4.41608  10.82268  17  0.408039  0.6883
## Yr2022                             64.43399  13.99551 131  4.603904  0.0000
## SH_GRHSLG                          14.98974  11.62349  17  1.289607  0.2145
## SH_GRLSHG                          24.85581  20.94309  17  1.186826  0.2516
## SH_GRLSLG                           8.59556  16.93027  17  0.507703  0.6182
## shrub_count                         0.09883   0.10865  17  0.909545  0.3758
## TrtT:Yr2022                       -51.05726  16.55612 131 -3.083891  0.0025
## TrtT:SH_GRHSLG                     -7.66470  14.01727  17 -0.546804  0.5916
## TrtT:SH_GRLSHG                    -23.15054  21.92585  17 -1.055856  0.3058
## TrtT:SH_GRLSLG                      9.33363  18.73772  17  0.498120  0.6248
## Yr2022:SH_GRHSLG                  -14.50900  18.22446 131 -0.796128  0.4274
## Yr2022:SH_GRLSHG                   24.52296  41.45586 131  0.591544  0.5552
## Yr2022:SH_GRLSLG                  -21.21314  28.32230 131 -0.748991  0.4552
## TrtT:shrub_count                   -0.08209   0.11885  17 -0.690728  0.4991
## Yr2022:shrub_count                 -0.50147   0.15025 131 -3.337548  0.0011
## SH_GRHSLG:shrub_count              -0.15315   0.12245  17 -1.250726  0.2280
## SH_GRLSHG:shrub_count              -0.41803   0.50571  17 -0.826627  0.4199
## SH_GRLSLG:shrub_count               0.49884   0.31192  17  1.599259  0.1282
## TrtT:Yr2022:SH_GRHSLG              21.27460  21.04460 131  1.010930  0.3139
## TrtT:Yr2022:SH_GRLSHG             -49.10669  43.29168 131 -1.134322  0.2587
## TrtT:Yr2022:SH_GRLSLG              29.21213  32.06246 131  0.911101  0.3639
## TrtT:Yr2022:shrub_count             0.41345   0.17909 131  2.308563  0.0225
## TrtT:SH_GRHSLG:shrub_count          0.09599   0.14096  17  0.680932  0.5051
## TrtT:SH_GRLSHG:shrub_count          0.49449   0.53639  17  0.921881  0.3695
## TrtT:SH_GRLSLG:shrub_count         -1.46001   0.88312  17 -1.653236  0.1166
## Yr2022:SH_GRHSLG:shrub_count        0.22887   0.17899 131  1.278675  0.2033
## Yr2022:SH_GRLSHG:shrub_count       -1.20477   1.05388 131 -1.143181  0.2550
## Yr2022:SH_GRLSLG:shrub_count       -0.45911   0.56155 131 -0.817579  0.4151
## TrtT:Yr2022:SH_GRHSLG:shrub_count  -0.25115   0.20734 131 -1.211292  0.2280
## TrtT:Yr2022:SH_GRLSHG:shrub_count   1.92540   1.09688 131  1.755347  0.0815
## TrtT:Yr2022:SH_GRLSLG:shrub_count  -1.72238   1.71949 131 -1.001682  0.3183
##  Correlation: 
##                                   (Intr) TrtT   Yr2022 SH_GRHSLG SH_GRLSHG
## TrtT                              -0.927                                  
## Yr2022                            -0.598  0.555                           
## SH_GRHSLG                         -0.863  0.800  0.516                    
## SH_GRLSHG                         -0.479  0.444  0.287  0.413             
## SH_GRLSLG                         -0.592  0.549  0.355  0.511     0.284   
## shrub_count                       -0.977  0.905  0.575  0.843     0.468   
## TrtT:Yr2022                        0.506 -0.508 -0.845 -0.437    -0.242   
## TrtT:SH_GRHSLG                     0.716 -0.772 -0.428 -0.829    -0.343   
## TrtT:SH_GRLSHG                     0.457 -0.494 -0.274 -0.395    -0.955   
## TrtT:SH_GRLSLG                     0.535 -0.578 -0.320 -0.462    -0.256   
## Yr2022:SH_GRHSLG                   0.460 -0.426 -0.768 -0.460    -0.220   
## Yr2022:SH_GRLSHG                   0.202 -0.187 -0.338 -0.174    -0.306   
## Yr2022:SH_GRLSLG                   0.296 -0.274 -0.494 -0.255    -0.142   
## TrtT:shrub_count                   0.893 -0.969 -0.526 -0.771    -0.428   
## Yr2022:shrub_count                 0.571 -0.529 -0.970 -0.492    -0.273   
## SH_GRHSLG:shrub_count              0.867 -0.803 -0.510 -0.968    -0.415   
## SH_GRLSHG:shrub_count              0.210 -0.195 -0.124 -0.181    -0.952   
## SH_GRLSLG:shrub_count              0.340 -0.315 -0.200 -0.294    -0.163   
## TrtT:Yr2022:SH_GRHSLG             -0.398  0.399  0.665  0.398     0.191   
## TrtT:Yr2022:SH_GRLSHG             -0.193  0.194  0.323  0.167     0.293   
## TrtT:Yr2022:SH_GRLSLG             -0.261  0.262  0.437  0.225     0.125   
## TrtT:Yr2022:shrub_count           -0.479  0.482  0.814  0.413     0.229   
## TrtT:SH_GRHSLG:shrub_count        -0.753  0.817  0.443  0.841     0.361   
## TrtT:SH_GRLSHG:shrub_count        -0.198  0.215  0.117  0.171     0.898   
## TrtT:SH_GRLSLG:shrub_count        -0.120  0.130  0.071  0.104     0.058   
## Yr2022:SH_GRHSLG:shrub_count      -0.479  0.444  0.814  0.466     0.229   
## Yr2022:SH_GRLSHG:shrub_count      -0.081  0.075  0.138  0.070     0.258   
## Yr2022:SH_GRLSLG:shrub_count      -0.153  0.141  0.259  0.132     0.073   
## TrtT:Yr2022:SH_GRHSLG:shrub_count  0.413 -0.416 -0.703 -0.402    -0.198   
## TrtT:Yr2022:SH_GRLSHG:shrub_count  0.078 -0.079 -0.133 -0.067    -0.248   
## TrtT:Yr2022:SH_GRLSLG:shrub_count  0.050 -0.050 -0.085 -0.043    -0.024   
##                                   SH_GRLSLG shrb_c TrT:Y2022 TrT:SH_GRHSLG
## TrtT                                                                      
## Yr2022                                                                    
## SH_GRHSLG                                                                 
## SH_GRLSHG                                                                 
## SH_GRLSLG                                                                 
## shrub_count                        0.579                                  
## TrtT:Yr2022                       -0.300    -0.486                        
## TrtT:SH_GRHSLG                    -0.424    -0.699  0.392                 
## TrtT:SH_GRLSHG                    -0.271    -0.447  0.251     0.381       
## TrtT:SH_GRLSLG                    -0.904    -0.523  0.293     0.446       
## Yr2022:SH_GRHSLG                  -0.272    -0.442  0.649     0.382       
## Yr2022:SH_GRLSHG                  -0.120    -0.194  0.285     0.145       
## Yr2022:SH_GRLSLG                  -0.532    -0.284  0.418     0.212       
## TrtT:shrub_count                  -0.529    -0.914  0.482     0.748       
## Yr2022:shrub_count                -0.338    -0.559  0.820     0.408       
## SH_GRHSLG:shrub_count             -0.514    -0.887  0.431     0.803       
## SH_GRLSHG:shrub_count             -0.124    -0.215  0.104     0.150       
## SH_GRLSLG:shrub_count             -0.920    -0.348  0.169     0.244       
## TrtT:Yr2022:SH_GRHSLG              0.236     0.382 -0.787    -0.366       
## TrtT:Yr2022:SH_GRLSHG              0.115     0.186 -0.382    -0.150       
## TrtT:Yr2022:SH_GRLSLG              0.470     0.251 -0.516    -0.202       
## TrtT:Yr2022:shrub_count            0.284     0.469 -0.971    -0.372       
## TrtT:SH_GRHSLG:shrub_count         0.446     0.771 -0.406    -0.956       
## TrtT:SH_GRLSHG:shrub_count         0.117     0.203 -0.107    -0.166       
## TrtT:SH_GRLSLG:shrub_count         0.325     0.123 -0.065    -0.101       
## Yr2022:SH_GRHSLG:shrub_count       0.284     0.469 -0.688    -0.386       
## Yr2022:SH_GRLSHG:shrub_count       0.048     0.080 -0.117    -0.058       
## Yr2022:SH_GRLSLG:shrub_count       0.452     0.150 -0.219    -0.109       
## TrtT:Yr2022:SH_GRHSLG:shrub_count -0.245    -0.405  0.839     0.367       
## TrtT:Yr2022:SH_GRLSHG:shrub_count -0.046    -0.077  0.159     0.061       
## TrtT:Yr2022:SH_GRLSLG:shrub_count -0.148    -0.049  0.101     0.039       
##                                   TrT:SH_GRLSHG TrT:SH_GRLSLG Yr2022:SH_GRHSLG
## TrtT                                                                          
## Yr2022                                                                        
## SH_GRHSLG                                                                     
## SH_GRLSHG                                                                     
## SH_GRLSLG                                                                     
## shrub_count                                                                   
## TrtT:Yr2022                                                                   
## TrtT:SH_GRHSLG                                                                
## TrtT:SH_GRLSHG                                                                
## TrtT:SH_GRLSLG                     0.285                                      
## Yr2022:SH_GRHSLG                   0.210         0.246                        
## Yr2022:SH_GRLSHG                   0.293         0.108         0.259          
## Yr2022:SH_GRLSLG                   0.135         0.481         0.379          
## TrtT:shrub_count                   0.478         0.559         0.404          
## Yr2022:shrub_count                 0.261         0.305         0.745          
## SH_GRHSLG:shrub_count              0.397         0.464         0.440          
## SH_GRLSHG:shrub_count              0.909         0.112         0.095          
## SH_GRLSLG:shrub_count              0.156         0.831         0.154          
## TrtT:Yr2022:SH_GRHSLG             -0.197        -0.231        -0.866          
## TrtT:Yr2022:SH_GRLSHG             -0.297        -0.112        -0.248          
## TrtT:Yr2022:SH_GRLSLG             -0.129        -0.507        -0.335          
## TrtT:Yr2022:shrub_count           -0.238        -0.278        -0.625          
## TrtT:SH_GRHSLG:shrub_count        -0.403        -0.472        -0.382          
## TrtT:SH_GRLSHG:shrub_count        -0.943        -0.124        -0.089          
## TrtT:SH_GRLSLG:shrub_count        -0.064        -0.591        -0.054          
## Yr2022:SH_GRHSLG:shrub_count      -0.219        -0.256        -0.962          
## Yr2022:SH_GRLSHG:shrub_count      -0.246        -0.044        -0.106          
## Yr2022:SH_GRLSLG:shrub_count      -0.070        -0.408        -0.199          
## TrtT:Yr2022:SH_GRHSLG:shrub_count  0.206         0.241         0.830          
## TrtT:Yr2022:SH_GRLSHG:shrub_count  0.252         0.045         0.102          
## TrtT:Yr2022:SH_GRLSLG:shrub_count  0.025         0.265         0.065          
##                                   Yr2022:SH_GRLSHG Yr2022:SH_GRLSLG TrtT:_
## TrtT                                                                      
## Yr2022                                                                    
## SH_GRHSLG                                                                 
## SH_GRLSHG                                                                 
## SH_GRLSLG                                                                 
## shrub_count                                                               
## TrtT:Yr2022                                                               
## TrtT:SH_GRHSLG                                                            
## TrtT:SH_GRLSHG                                                            
## TrtT:SH_GRLSLG                                                            
## Yr2022:SH_GRHSLG                                                          
## Yr2022:SH_GRLSHG                                                          
## Yr2022:SH_GRLSLG                   0.167                                  
## TrtT:shrub_count                   0.178            0.260                 
## Yr2022:shrub_count                 0.327            0.479            0.511
## SH_GRHSLG:shrub_count              0.172            0.252            0.811
## SH_GRLSHG:shrub_count              0.272            0.061            0.196
## SH_GRLSLG:shrub_count              0.068            0.492            0.318
## TrtT:Yr2022:SH_GRHSLG             -0.225           -0.329           -0.379
## TrtT:Yr2022:SH_GRLSHG             -0.958           -0.160           -0.184
## TrtT:Yr2022:SH_GRLSLG             -0.147           -0.883           -0.249
## TrtT:Yr2022:shrub_count           -0.275           -0.402           -0.468
## TrtT:SH_GRHSLG:shrub_count        -0.150           -0.219           -0.843
## TrtT:SH_GRLSHG:shrub_count        -0.257           -0.058           -0.222
## TrtT:SH_GRLSLG:shrub_count        -0.024           -0.174           -0.135
## Yr2022:SH_GRHSLG:shrub_count      -0.275           -0.402           -0.429
## Yr2022:SH_GRLSHG:shrub_count      -0.972           -0.068           -0.073
## Yr2022:SH_GRLSLG:shrub_count      -0.088           -0.893           -0.137
## TrtT:Yr2022:SH_GRHSLG:shrub_count  0.237            0.347            0.404
## TrtT:Yr2022:SH_GRLSHG:shrub_count  0.934            0.066            0.076
## TrtT:Yr2022:SH_GRLSLG:shrub_count  0.029            0.292            0.049
##                                   Y2022:_ SH_GRHSLG: SH_GRLSHG: SH_GRLSLG:
## TrtT                                                                      
## Yr2022                                                                    
## SH_GRHSLG                                                                 
## SH_GRLSHG                                                                 
## SH_GRLSLG                                                                 
## shrub_count                                                               
## TrtT:Yr2022                                                               
## TrtT:SH_GRHSLG                                                            
## TrtT:SH_GRLSHG                                                            
## TrtT:SH_GRLSLG                                                            
## Yr2022:SH_GRHSLG                                                          
## Yr2022:SH_GRLSHG                                                          
## Yr2022:SH_GRLSLG                                                          
## TrtT:shrub_count                                                          
## Yr2022:shrub_count                                                        
## SH_GRHSLG:shrub_count              0.496                                  
## SH_GRLSHG:shrub_count              0.120   0.191                          
## SH_GRLSLG:shrub_count              0.195   0.309      0.075               
## TrtT:Yr2022:SH_GRHSLG             -0.645  -0.381     -0.082     -0.133    
## TrtT:Yr2022:SH_GRLSHG             -0.314  -0.165     -0.261     -0.065    
## TrtT:Yr2022:SH_GRLSLG             -0.423  -0.223     -0.054     -0.434    
## TrtT:Yr2022:shrub_count           -0.839  -0.416     -0.101     -0.163    
## TrtT:SH_GRHSLG:shrub_count        -0.431  -0.869     -0.166     -0.269    
## TrtT:SH_GRLSHG:shrub_count        -0.113  -0.180     -0.943     -0.071    
## TrtT:SH_GRLSLG:shrub_count        -0.069  -0.109     -0.026     -0.353    
## Yr2022:SH_GRHSLG:shrub_count      -0.839  -0.460     -0.101     -0.163    
## Yr2022:SH_GRLSHG:shrub_count      -0.143  -0.071     -0.261     -0.028    
## Yr2022:SH_GRLSLG:shrub_count      -0.268  -0.133     -0.032     -0.483    
## TrtT:Yr2022:SH_GRHSLG:shrub_count  0.725   0.397      0.087      0.141    
## TrtT:Yr2022:SH_GRLSHG:shrub_count  0.137   0.068      0.251      0.027    
## TrtT:Yr2022:SH_GRLSLG:shrub_count  0.087   0.043      0.010      0.158    
##                                   TrT:Y2022:SH_GRHSLG TrT:Y2022:SH_GRLSHG
## TrtT                                                                     
## Yr2022                                                                   
## SH_GRHSLG                                                                
## SH_GRLSHG                                                                
## SH_GRLSLG                                                                
## shrub_count                                                              
## TrtT:Yr2022                                                              
## TrtT:SH_GRHSLG                                                           
## TrtT:SH_GRLSHG                                                           
## TrtT:SH_GRLSLG                                                           
## Yr2022:SH_GRHSLG                                                         
## Yr2022:SH_GRLSHG                                                         
## Yr2022:SH_GRLSLG                                                         
## TrtT:shrub_count                                                         
## Yr2022:shrub_count                                                       
## SH_GRHSLG:shrub_count                                                    
## SH_GRLSHG:shrub_count                                                    
## SH_GRLSLG:shrub_count                                                    
## TrtT:Yr2022:SH_GRHSLG                                                    
## TrtT:Yr2022:SH_GRLSHG              0.301                                 
## TrtT:Yr2022:SH_GRLSLG              0.406               0.197             
## TrtT:Yr2022:shrub_count            0.764               0.371             
## TrtT:SH_GRHSLG:shrub_count         0.363               0.155             
## TrtT:SH_GRLSHG:shrub_count         0.084               0.261             
## TrtT:SH_GRLSLG:shrub_count         0.051               0.025             
## Yr2022:SH_GRHSLG:shrub_count       0.833               0.263             
## Yr2022:SH_GRLSHG:shrub_count       0.092               0.931             
## Yr2022:SH_GRLSLG:shrub_count       0.173               0.084             
## TrtT:Yr2022:SH_GRHSLG:shrub_count -0.960              -0.321             
## TrtT:Yr2022:SH_GRLSHG:shrub_count -0.125              -0.963             
## TrtT:Yr2022:SH_GRLSLG:shrub_count -0.080              -0.039             
##                                   TrT:Y2022:SH_GRLSLG TT:Y2022:_ TT:SH_GRHSLG:
## TrtT                                                                          
## Yr2022                                                                        
## SH_GRHSLG                                                                     
## SH_GRLSHG                                                                     
## SH_GRLSLG                                                                     
## shrub_count                                                                   
## TrtT:Yr2022                                                                   
## TrtT:SH_GRHSLG                                                                
## TrtT:SH_GRLSHG                                                                
## TrtT:SH_GRLSLG                                                                
## Yr2022:SH_GRHSLG                                                              
## Yr2022:SH_GRLSHG                                                              
## Yr2022:SH_GRLSLG                                                              
## TrtT:shrub_count                                                              
## Yr2022:shrub_count                                                            
## SH_GRHSLG:shrub_count                                                         
## SH_GRLSHG:shrub_count                                                         
## SH_GRLSLG:shrub_count                                                         
## TrtT:Yr2022:SH_GRHSLG                                                         
## TrtT:Yr2022:SH_GRLSHG                                                         
## TrtT:Yr2022:SH_GRLSLG                                                         
## TrtT:Yr2022:shrub_count            0.502                                      
## TrtT:SH_GRHSLG:shrub_count         0.210               0.395                  
## TrtT:SH_GRLSHG:shrub_count         0.055               0.104      0.187       
## TrtT:SH_GRLSLG:shrub_count         0.304               0.063      0.113       
## Yr2022:SH_GRHSLG:shrub_count       0.355               0.704      0.399       
## Yr2022:SH_GRLSHG:shrub_count       0.060               0.120      0.061       
## Yr2022:SH_GRLSLG:shrub_count       0.789               0.224      0.115       
## TrtT:Yr2022:SH_GRHSLG:shrub_count -0.433              -0.864     -0.378       
## TrtT:Yr2022:SH_GRLSHG:shrub_count -0.082              -0.163     -0.064       
## TrtT:Yr2022:SH_GRLSLG:shrub_count -0.537              -0.104     -0.041       
##                                   TT:SH_GRLSHG: TT:SH_GRLSLG: Y2022:SH_GRHSLG:
## TrtT                                                                          
## Yr2022                                                                        
## SH_GRHSLG                                                                     
## SH_GRLSHG                                                                     
## SH_GRLSLG                                                                     
## shrub_count                                                                   
## TrtT:Yr2022                                                                   
## TrtT:SH_GRHSLG                                                                
## TrtT:SH_GRLSHG                                                                
## TrtT:SH_GRLSLG                                                                
## Yr2022:SH_GRHSLG                                                              
## Yr2022:SH_GRLSHG                                                              
## Yr2022:SH_GRLSLG                                                              
## TrtT:shrub_count                                                              
## Yr2022:shrub_count                                                            
## SH_GRHSLG:shrub_count                                                         
## SH_GRLSHG:shrub_count                                                         
## SH_GRLSLG:shrub_count                                                         
## TrtT:Yr2022:SH_GRHSLG                                                         
## TrtT:Yr2022:SH_GRLSHG                                                         
## TrtT:Yr2022:SH_GRLSLG                                                         
## TrtT:Yr2022:shrub_count                                                       
## TrtT:SH_GRHSLG:shrub_count                                                    
## TrtT:SH_GRLSHG:shrub_count                                                    
## TrtT:SH_GRLSLG:shrub_count         0.030                                      
## Yr2022:SH_GRHSLG:shrub_count       0.095         0.058                        
## Yr2022:SH_GRLSHG:shrub_count       0.246         0.010         0.120          
## Yr2022:SH_GRLSLG:shrub_count       0.030         0.171         0.225          
## TrtT:Yr2022:SH_GRHSLG:shrub_count -0.090        -0.054        -0.863          
## TrtT:Yr2022:SH_GRLSHG:shrub_count -0.255        -0.010        -0.115          
## TrtT:Yr2022:SH_GRLSLG:shrub_count -0.011        -0.423        -0.073          
##                                   Y2022:SH_GRLSHG: Y2022:SH_GRLSLG:
## TrtT                                                               
## Yr2022                                                             
## SH_GRHSLG                                                          
## SH_GRLSHG                                                          
## SH_GRLSLG                                                          
## shrub_count                                                        
## TrtT:Yr2022                                                        
## TrtT:SH_GRHSLG                                                     
## TrtT:SH_GRLSHG                                                     
## TrtT:SH_GRLSLG                                                     
## Yr2022:SH_GRHSLG                                                   
## Yr2022:SH_GRLSHG                                                   
## Yr2022:SH_GRLSLG                                                   
## TrtT:shrub_count                                                   
## Yr2022:shrub_count                                                 
## SH_GRHSLG:shrub_count                                              
## SH_GRLSHG:shrub_count                                              
## SH_GRLSLG:shrub_count                                              
## TrtT:Yr2022:SH_GRHSLG                                              
## TrtT:Yr2022:SH_GRLSHG                                              
## TrtT:Yr2022:SH_GRLSLG                                              
## TrtT:Yr2022:shrub_count                                            
## TrtT:SH_GRHSLG:shrub_count                                         
## TrtT:SH_GRLSHG:shrub_count                                         
## TrtT:SH_GRLSLG:shrub_count                                         
## Yr2022:SH_GRHSLG:shrub_count                                       
## Yr2022:SH_GRLSHG:shrub_count                                       
## Yr2022:SH_GRLSLG:shrub_count       0.038                           
## TrtT:Yr2022:SH_GRHSLG:shrub_count -0.103           -0.194          
## TrtT:Yr2022:SH_GRLSHG:shrub_count -0.961           -0.037          
## TrtT:Yr2022:SH_GRLSLG:shrub_count -0.012           -0.327          
##                                   TT:Y2022:SH_GRHSLG: TT:Y2022:SH_GRLSHG:
## TrtT                                                                     
## Yr2022                                                                   
## SH_GRHSLG                                                                
## SH_GRLSHG                                                                
## SH_GRLSLG                                                                
## shrub_count                                                              
## TrtT:Yr2022                                                              
## TrtT:SH_GRHSLG                                                           
## TrtT:SH_GRLSHG                                                           
## TrtT:SH_GRLSLG                                                           
## Yr2022:SH_GRHSLG                                                         
## Yr2022:SH_GRLSHG                                                         
## Yr2022:SH_GRLSLG                                                         
## TrtT:shrub_count                                                         
## Yr2022:shrub_count                                                       
## SH_GRHSLG:shrub_count                                                    
## SH_GRLSHG:shrub_count                                                    
## SH_GRLSLG:shrub_count                                                    
## TrtT:Yr2022:SH_GRHSLG                                                    
## TrtT:Yr2022:SH_GRLSHG                                                    
## TrtT:Yr2022:SH_GRLSLG                                                    
## TrtT:Yr2022:shrub_count                                                  
## TrtT:SH_GRHSLG:shrub_count                                               
## TrtT:SH_GRLSHG:shrub_count                                               
## TrtT:SH_GRLSLG:shrub_count                                               
## Yr2022:SH_GRHSLG:shrub_count                                             
## Yr2022:SH_GRLSHG:shrub_count                                             
## Yr2022:SH_GRLSLG:shrub_count                                             
## TrtT:Yr2022:SH_GRHSLG:shrub_count                                        
## TrtT:Yr2022:SH_GRLSHG:shrub_count  0.141                                 
## TrtT:Yr2022:SH_GRLSLG:shrub_count  0.090               0.017             
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -2.095745536 -0.589855757  0.009866805  0.562309428  2.671504522 
## 
## Number of Observations: 180
## Number of Groups: 33
plot(M9)

ggsh<-ggplot(data=PFXcover, aes(x=SH_GR, y=AG_I, 
                                fill=Trt))+
  geom_boxplot()+
  labs(x="Plant Community Type", y="Annual Grass cover (%)")+
  scale_y_continuous(limits=c(0,75), expand=c(0,0))+
  scale_fill_brewer(palette="Dark2", name = "Indaziflam application",
                    labels = c("Control", "Treatment"))+
  theme_classic()+ theme(legend.position = "top")
ggsh
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).

#annual grass cover 
#with year
# maybe should not include year because did not model variance
ggyr<-ggplot(data=PFXcover, aes(x=SH_GR, y=AG_I, 
                                fill=Trt))+
  geom_boxplot()+facet_grid(~Yr)+
  labs(x="Plant Community Type", y="Annual Grass cover (%)")+
  scale_y_continuous(limits=c(0,70), expand=c(0,0))+
  scale_fill_brewer(palette="Dark2", name = "Indaziflam application",
                    labels = c("Control", "Treatment"))+
  theme_classic()+
  theme(legend.position = "top")
ggyr
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).

how do I update ggplot box plot with these new values?

is this good enough? What more needs to be done?

#without trend lines
ggag<-ggplot(data=PFXcover, aes(x=shrub_count, y=AG_I, color=Trt))+
  geom_point(size=3)+
  labs(x="Shrub abundance", y="Annual Grass cover (%)")+
  theme_classic()+
  scale_y_continuous(limits=c(0,70), expand=c(0,0))+
  scale_x_continuous(limits=c(0,185), expand=c(0,0))+
  scale_color_brewer(palette="Dark2", name = "Indaziflam application",
                    labels = c("Control", "Treatment"))+
  theme(legend.position = "top")
ggag
## Warning: Removed 1 rows containing missing values (geom_point).

#with trend lines
ggag<-ggag + geom_smooth(method = "lm", se=FALSE)
ggag
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Removed 1 rows containing missing values (geom_point).

ggag<-ggag + facet_wrap(~Yr)
ggag
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Removed 1 rows containing missing values (geom_point).
## Warning: Removed 3 rows containing missing values (geom_smooth).

try without SH_GR

M1<-gls(AG_I~ Trt * Yr *shrub_count,data=PFXcover)
M2 <- lme(AG_I~Trt * Yr *shrub_count, data = PFXcover,
          random = ~1 | SH_GR)
M3 <- lme(AG_I~Trt * Yr *shrub_count, data = PFXcover,
          random = ~1 | PlotID)
anova(M1, M2, M3)
##    Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## M1     1  9 1444.372 1472.699 -713.1858                        
## M2     2 10 1440.669 1472.143 -710.3343 1 vs 2 5.703037  0.0169
## M3     3 10 1411.852 1443.327 -695.9262
plot(M3, col = 1)

form = AG_I ~ Trt * Yr * shrub_count


# try var indent for each categorical variance
M4 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varIdent(form = ~1 | Trt))

M5 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varIdent(form = ~1 | Yr))

#combination of all var indents
M7 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varComb(varIdent(form = ~1 | Yr), 
                            weights = varIdent(form = ~1 | Trt)))
        
# from previous versions I know varExp(form =~ shrub_count) might be goog 
M8 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varExp(form =~ shrub_count))

#combination of all 
M9 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varComb(varIdent(form = ~1 | Yr), 
                            varIdent(form = ~1 | Trt),
                            varExp(form =~ shrub_count)))



anova(M1, M2, M3, M4, M5, M7, M8, M9)
##    Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## M1     1  9 1444.372 1472.699 -713.1858                        
## M2     2 10 1440.669 1472.143 -710.3343 1 vs 2  5.70304  0.0169
## M3     3 10 1411.852 1443.327 -695.9262                        
## M4     4 11 1384.357 1418.979 -681.1785 3 vs 4 29.49536  <.0001
## M5     5 11 1376.023 1410.645 -677.0115                        
## M7     6 12 1356.569 1394.339 -666.2845 5 vs 6 21.45393  <.0001
## M8     7 11 1376.850 1411.473 -677.4251 6 vs 7 22.28116  <.0001
## M9     8 13 1315.275 1356.192 -644.6374 7 vs 8 65.57524  <.0001
AIC(M1, M2, M3, M4, M5,M7, M8, M9)
##    df      AIC
## M1  9 1444.372
## M2 10 1440.669
## M3 10 1411.852
## M4 11 1384.357
## M5 11 1376.023
## M7 12 1356.569
## M8 11 1376.850
## M9 13 1315.275
#M9 is still the best AIC

#plot new residuals
plot(M9, col = 1) # looks good

summary(M9)
## Linear mixed-effects model fit by REML
##   Data: PFXcover 
##        AIC      BIC    logLik
##   1315.275 1356.192 -644.6374
## 
## Random effects:
##  Formula: ~1 | PlotID
##         (Intercept) Residual
## StdDev:    5.686884 11.72833
## 
## Combination of variance functions: 
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Yr 
##  Parameter estimates:
##     2021     2022 
## 1.000000 2.708524 
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Trt 
##  Parameter estimates:
##         C         T 
## 1.0000000 0.5672473 
##  Structure: Exponential of variance covariate
##  Formula: ~shrub_count 
##  Parameter estimates:
##       expon 
## -0.01119821 
## Fixed effects:  list(form) 
##                              Value Std.Error  DF   t-value p-value
## (Intercept)              16.471818  4.100006 143  4.017510  0.0001
## TrtT                     -9.205751  4.816449  29 -1.911315  0.0659
## Yr2022                   30.910386  5.733851 143  5.390859  0.0000
## shrub_count              -0.095173  0.052241  29 -1.821806  0.0788
## TrtT:Yr2022             -19.338587  6.314109 143 -3.062758  0.0026
## TrtT:shrub_count          0.049808  0.060140  29  0.828194  0.4143
## Yr2022:shrub_count       -0.139789  0.056731 143 -2.464060  0.0149
## TrtT:Yr2022:shrub_count   0.083034  0.060298 143  1.377063  0.1706
##  Correlation: 
##                         (Intr) TrtT   Yr2022 shrb_c TrT:Y2022 TrtT:_ Y2022:
## TrtT                    -0.851                                             
## Yr2022                  -0.269  0.229                                      
## shrub_count             -0.894  0.761  0.205                               
## TrtT:Yr2022              0.245 -0.243 -0.908 -0.187                        
## TrtT:shrub_count         0.777 -0.868 -0.178 -0.869  0.183                 
## Yr2022:shrub_count       0.246 -0.210 -0.924 -0.208  0.839     0.180       
## TrtT:Yr2022:shrub_count -0.232  0.223  0.869  0.195 -0.920    -0.187 -0.941
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.1113599 -0.7288874 -0.1214656  0.5662227  2.9186315 
## 
## Number of Observations: 180
## Number of Groups: 33

is this better with less df?

try without SH_GR + Yr, plan on including Year later for temporal autocorrelation

M1<-gls(AG_I~ Trt * shrub_count,data=PFXcover)
M2 <- lme(AG_I~Trt * shrub_count, data = PFXcover,
          random = ~1 | SH_GR)
M3 <- lme(AG_I~Trt * shrub_count, data = PFXcover,
          random = ~1 | PlotID)
anova(M1, M2, M3)
##    Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## M1     1  5 1497.823 1513.675 -743.9113                        
## M2     2  6 1495.882 1514.905 -741.9412 1 vs 2 3.940205  0.0471
## M3     3  6 1481.708 1500.730 -734.8538
plot(M3, col = 1)

form = AG_I ~ Trt * shrub_count


# try var indent for each categorical variance
M4 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varIdent(form = ~1 | Trt))

# from previous versions I know varExp(form =~ shrub_count) might be goog 
M8 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varExp(form =~ shrub_count))

#combination of all 
M9 <- lme(form, random = ~1 | PlotID,
          data = PFXcover, 
          weights = varComb(varIdent(form = ~1 | Trt),
                            varExp(form =~ shrub_count)))



anova(M1, M2, M3, M4, M8, M9)
##    Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## M1     1  5 1497.823 1513.675 -743.9113                        
## M2     2  6 1495.882 1514.905 -741.9412 1 vs 2  3.94020  0.0471
## M3     3  6 1481.708 1500.730 -734.8538                        
## M4     4  7 1432.048 1454.242 -709.0241 3 vs 4 51.65935  <.0001
## M8     5  7 1460.096 1482.289 -723.0478                        
## M9     6  8 1417.581 1442.945 -700.7904 5 vs 6 44.51490  <.0001
AIC(M1, M2, M3, M4, M8, M9)
##    df      AIC
## M1  5 1497.823
## M2  6 1495.882
## M3  6 1481.708
## M4  7 1432.048
## M8  7 1460.096
## M9  8 1417.581
#M9 is still the best AIC

#plot new residuals
plot(M9, col = 1) # looks good

M9
## Linear mixed-effects model fit by REML
##   Data: PFXcover 
##   Log-restricted-likelihood: -700.7904
##   Fixed: form 
##      (Intercept)             TrtT      shrub_count TrtT:shrub_count 
##      34.58174520     -20.18261393      -0.18690249       0.09960943 
## 
## Random effects:
##  Formula: ~1 | PlotID
##         (Intercept) Residual
## StdDev:    10.40072 23.80342
## 
## Combination of variance functions: 
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Trt 
##  Parameter estimates:
##         C         T 
## 1.0000000 0.4243784 
##  Structure: Exponential of variance covariate
##  Formula: ~shrub_count 
##  Parameter estimates:
##        expon 
## -0.006628385 
## Number of Observations: 180
## Number of Groups: 33
summary(M9)
## Linear mixed-effects model fit by REML
##   Data: PFXcover 
##        AIC      BIC    logLik
##   1417.581 1442.945 -700.7904
## 
## Random effects:
##  Formula: ~1 | PlotID
##         (Intercept) Residual
## StdDev:    10.40072 23.80342
## 
## Combination of variance functions: 
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Trt 
##  Parameter estimates:
##         C         T 
## 1.0000000 0.4243784 
##  Structure: Exponential of variance covariate
##  Formula: ~shrub_count 
##  Parameter estimates:
##        expon 
## -0.006628385 
## Fixed effects:  list(form) 
##                      Value Std.Error  DF   t-value p-value
## (Intercept)       34.58175  6.486396 147  5.331427  0.0000
## TrtT             -20.18261  7.690430  29 -2.624380  0.0137
## shrub_count       -0.18690  0.087729  29 -2.130462  0.0417
## TrtT:shrub_count   0.09961  0.101649  29  0.979936  0.3352
##  Correlation: 
##                  (Intr) TrtT   shrb_c
## TrtT             -0.843              
## shrub_count      -0.868  0.732       
## TrtT:shrub_count  0.749 -0.841 -0.863
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.9227494 -0.7017430 -0.1351015  0.4993967  2.9737045 
## 
## Number of Observations: 180
## Number of Groups: 33

add back in Yr for temporal autocorrelation