library(rmarkdown)
library(readxl)
Yield <- read_excel("D:/Stat 55/Yield.xlsx")
paged_table(Yield)

Ho: African tall=Co-11=FS-1=K-7=Co-24, Ha: Atleast one variety is different

Fitting of linear model

model <- lm(Yield$Yield~ Yield$Replication+Yield$Variety)
model

Call:
lm(formula = Yield$Yield ~ Yield$Replication + Yield$Variety)

Coefficients:
       (Intercept)   Yield$Replication  Yield$VarietyCo-11  Yield$VarietyCo-24  
            29.195               0.502               0.750              -4.900  
 Yield$VarietyFS-1    Yield$VarietyK-7  
            -1.975              10.250  

Obtain ANOVA

anova <-anova(model)
anova
Analysis of Variance Table

Response: Yield$Yield
                  Df Sum Sq Mean Sq F value  Pr(>F)  
Yield$Replication  1   6.30   6.300  0.2072 0.65592  
Yield$Variety      4 520.53 130.133  4.2806 0.01808 *
Residuals         14 425.61  30.401                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The replication was non-significant so the mean yield for all the four replications is same. The treatment was significant i.e. yield of at least on variety is different from the rest. As treatment is significant we should switch to multiple mean comparison test like LSD or DNMRT test.

Below codes are used to obtain plots of fitted vs Residuals and Normal QQ plots

par(mfrow=c(1,2))
plot(model, which=1)
plot(model, which=2)

The assumptions of ANOVA are not violated.

Load the agricolae package

library(agricolae)
Warning: package 'agricolae' was built under R version 4.2.2

Duncan test

DNMRT <-duncan.test(Yield$Yield,Yield$Variety,12,29.259)
DNMRT
$statistics
  MSerror Df   Mean       CV
   29.259 12 31.275 17.29547

$parameters
    test        name.t ntr alpha
  Duncan Yield$Variety   5  0.05

$duncan
     Table CriticalRange
2 3.081307      8.333639
3 3.225244      8.722927
4 3.312453      8.958792
5 3.370172      9.114897

$means
             Yield$Yield      std r  Min  Max    Q25   Q50    Q75
African tall      30.450 7.403378 4 22.9 39.1 25.150 29.90 35.200
Co-11             31.200 2.762849 4 29.5 35.3 29.575 30.00 31.625
Co-24             25.550 5.674798 4 20.4 31.8 20.925 25.00 29.625
FS-1              28.475 3.155287 4 24.4 32.1 27.550 28.70 29.625
K-7               40.700 6.274286 4 32.1 47.0 38.700 41.85 43.850

$comparison
NULL

$groups
             Yield$Yield groups
K-7               40.700      a
Co-11             31.200      b
African tall      30.450      b
FS-1              28.475      b
Co-24             25.550      b

attr(,"class")
[1] "group"

Same as the LSD test as both shows same set of sequence of letters.

LSD test

LSD <-LSD.test(Yield$Yield,Yield$Variety,12,29.259)
LSD
$statistics
  MSerror Df   Mean       CV  t.value      LSD
   29.259 12 31.275 17.29547 2.178813 8.333639

$parameters
        test p.ajusted        name.t ntr alpha
  Fisher-LSD      none Yield$Variety   5  0.05

$means
             Yield$Yield      std r      LCL      UCL  Min  Max    Q25   Q50
African tall      30.450 7.403378 4 24.55723 36.34277 22.9 39.1 25.150 29.90
Co-11             31.200 2.762849 4 25.30723 37.09277 29.5 35.3 29.575 30.00
Co-24             25.550 5.674798 4 19.65723 31.44277 20.4 31.8 20.925 25.00
FS-1              28.475 3.155287 4 22.58223 34.36777 24.4 32.1 27.550 28.70
K-7               40.700 6.274286 4 34.80723 46.59277 32.1 47.0 38.700 41.85
                Q75
African tall 35.200
Co-11        31.625
Co-24        29.625
FS-1         29.625
K-7          43.850

$comparison
NULL

$groups
             Yield$Yield groups
K-7               40.700      a
Co-11             31.200      b
African tall      30.450      b
FS-1              28.475      b
Co-24             25.550      b

attr(,"class")
[1] "group"

The variety K-7 gives highest yield with is significantly different from the rest of the varieties. The performance of variety Co-11 was statistically at par with African tall, FS-1 and Co-24.

Save the file in txt

sink("RBD.txt")
print(anova)
Analysis of Variance Table

Response: Yield$Yield
                  Df Sum Sq Mean Sq F value  Pr(>F)  
Yield$Replication  1   6.30   6.300  0.2072 0.65592  
Yield$Variety      4 520.53 130.133  4.2806 0.01808 *
Residuals         14 425.61  30.401                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print("DNMRT Result")
[1] "DNMRT Result"
print(DNMRT$statistics)
  MSerror Df   Mean       CV
   29.259 12 31.275 17.29547
print(DNMRT$groups)
             Yield$Yield groups
K-7               40.700      a
Co-11             31.200      b
African tall      30.450      b
FS-1              28.475      b
Co-24             25.550      b
print("LSD Result")
[1] "LSD Result"
print(LSD$statistics)
  MSerror Df   Mean       CV  t.value      LSD
   29.259 12 31.275 17.29547 2.178813 8.333639
print(LSD$groups)
             Yield$Yield groups
K-7               40.700      a
Co-11             31.200      b
African tall      30.450      b
FS-1              28.475      b
Co-24             25.550      b
sink()