Subset 1

## train.data$number_impressions 
##       n missing  unique    Info    Mean     .05     .10     .25     .50 
##    1000       0      48    0.93   5.809     1.0     1.0     1.0     2.0 
##     .75     .90     .95 
##     4.0     8.1    17.0 
## 
## lowest :   1   2   3   4   5, highest: 112 144 181 198 896

Subset 2

## train.data$number_impressions 
##       n missing  unique    Info    Mean     .05     .10     .25     .50 
##    1000       0      40    0.91   4.314       1       1       1       2 
##     .75     .90     .95 
##       4       9      16 
## 
## lowest :   1   2   3   4   5, highest:  78  80  81 122 146

Subset 3

## train.data$number_impressions 
##       n missing  unique    Info    Mean     .05     .10     .25     .50 
##    1000       0      45    0.91   5.168       1       1       1       2 
##     .75     .90     .95 
##       4      11      17 
## 
## lowest :   1   2   3   4   5, highest:  81 107 121 168 365

Subset 4

## train.data$number_impressions 
##       n missing  unique    Info    Mean     .05     .10     .25     .50 
##    1000       0      52    0.93   6.531    1.00    1.00    1.00    2.00 
##     .75     .90     .95 
##    4.00   10.00   20.05 
## 
## lowest :    1    2    3    4    5, highest:  110  153  204  223 1110

Subset 5

## train.data$number_impressions 
##       n missing  unique    Info    Mean     .05     .10     .25     .50 
##    1000       0      35    0.92   4.383       1       1       1       2 
##     .75     .90     .95 
##       4       8      13 
## 
## lowest :   1   2   3   4   5, highest:  97 114 150 239 300