Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of p̂ m1. The xaxis should display p̂ m1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.
Hint: In a setting with two classes, p̂ m1 = 1 - p̂ m2. You could make this plot by hand, but it will be much easier to make in R.
p = seq(0, 1, 0.01)
gini = p * (1 - p) * 2
entropy = -(p * log(p) + (1 - p) * log(1 - p))
class.err = 1 - pmax(p, 1 - p)
matplot(p, cbind(gini, entropy, class.err), col = c("pink", "red", "purple"))
In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.
library(ISLR)
attach(Carseats)
set.seed(1)
train = sample(dim(Carseats)[1], dim(Carseats)[1]/2)
Carseats.train = Carseats[train, ]
Carseats.test = Carseats[-train, ]
library(tree)
tree.carseats = tree(Sales ~ ., data = Carseats.train)
summary(tree.carseats)
##
## Regression tree:
## tree(formula = Sales ~ ., data = Carseats.train)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Age" "Advertising" "CompPrice"
## [6] "US"
## Number of terminal nodes: 18
## Residual mean deviance: 2.167 = 394.3 / 182
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.88200 -0.88200 -0.08712 0.00000 0.89590 4.09900
plot(tree.carseats)
text(tree.carseats, pretty = 0)
pred.carseats = predict(tree.carseats, Carseats.test)
mean((Carseats.test$Sales - pred.carseats)^2)
## [1] 4.922039
The MSE is approximately 4.15.
cv.carseats = cv.tree(tree.carseats, FUN = prune.tree)
par(mfrow = c(1, 2))
plot(cv.carseats$size, cv.carseats$dev, type = "b")
plot(cv.carseats$k, cv.carseats$dev, type = "b")
# Best size = 9
pruned.carseats = prune.tree(tree.carseats, best = 9)
par(mfrow = c(1, 1))
plot(pruned.carseats)
text(pruned.carseats, pretty = 0)
pred.pruned = predict(pruned.carseats, Carseats.test)
mean((Carseats.test$Sales - pred.pruned)^2)
## [1] 4.918134
The MSE has increased to 4.55.
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
bag.carseats = randomForest(Sales ~ ., data = Carseats.train, mtry = 10, ntree = 500,
importance = T)
bag.pred = predict(bag.carseats, Carseats.test)
mean((Carseats.test$Sales - bag.pred)^2)
## [1] 2.657296
importance(bag.carseats)
## %IncMSE IncNodePurity
## CompPrice 23.07909904 171.185734
## Income 2.82081527 94.079825
## Advertising 11.43295625 99.098941
## Population -3.92119532 59.818905
## Price 54.24314632 505.887016
## ShelveLoc 46.26912996 361.962753
## Age 14.24992212 159.740422
## Education -0.07662320 46.738585
## Urban 0.08530119 8.453749
## US 4.34349223 15.157608
It is proved above that bagging improves the MSE to 2.58. We can also see that Age, Price, and ShelveLoc are the most important variables for Sale.
rf.carseats = randomForest(Sales ~ ., data = Carseats.train, mtry = 5, ntree = 500,
importance = T)
rf.pred = predict(rf.carseats, Carseats.test)
mean((Carseats.test$Sales - rf.pred)^2)
## [1] 2.701665
importance(rf.carseats)
## %IncMSE IncNodePurity
## CompPrice 19.8160444 162.73603
## Income 2.8940268 106.96093
## Advertising 11.6799573 106.30923
## Population -1.6998805 79.04937
## Price 46.3454015 448.33554
## ShelveLoc 40.4412189 334.33610
## Age 12.5440659 169.06125
## Education 1.0762096 55.87510
## Urban 0.5703583 13.21963
## US 5.8799999 25.59797
This worsens the MSe to 2.87.The same variables as before at the most important.
This problem involves the OJ data set which is part of the ISLR package.
library(ISLR)
attach(OJ)
set.seed(1013)
train = sample(dim(OJ)[1], 800)
OJ.train = OJ[train, ]
OJ.test = OJ[-train, ]
library(tree)
oj.tree = tree(Purchase ~ ., data = OJ.train)
summary(oj.tree)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "ListPriceDiff" "SalePriceMM"
## Number of terminal nodes: 7
## Residual mean deviance: 0.7564 = 599.8 / 793
## Misclassification error rate: 0.1612 = 129 / 800
Itcontains 2 variables: LoyalCH and PriceDiff. It has 7 terminal nodes and the training error os 0.155.
oj.tree
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1069.00 CH ( 0.61125 0.38875 )
## 2) LoyalCH < 0.5036 344 407.30 MM ( 0.27907 0.72093 )
## 4) LoyalCH < 0.276142 163 121.40 MM ( 0.12270 0.87730 ) *
## 5) LoyalCH > 0.276142 181 246.30 MM ( 0.41989 0.58011 )
## 10) PriceDiff < 0.065 75 75.06 MM ( 0.20000 0.80000 ) *
## 11) PriceDiff > 0.065 106 144.50 CH ( 0.57547 0.42453 ) *
## 3) LoyalCH > 0.5036 456 366.30 CH ( 0.86184 0.13816 )
## 6) LoyalCH < 0.753545 189 224.30 CH ( 0.71958 0.28042 )
## 12) ListPriceDiff < 0.235 79 109.40 MM ( 0.48101 0.51899 )
## 24) SalePriceMM < 1.64 22 20.86 MM ( 0.18182 0.81818 ) *
## 25) SalePriceMM > 1.64 57 76.88 CH ( 0.59649 0.40351 ) *
## 13) ListPriceDiff > 0.235 110 75.81 CH ( 0.89091 0.10909 ) *
## 7) LoyalCH > 0.753545 267 85.31 CH ( 0.96255 0.03745 ) *
I am choosing terminal node labeled “10)”. The splitting variable at this node is PriceDiff. The splitting value of this node is 0.05. There are 79 points in the subtree below this node. The deviance for all points contained in region below this node is 80. A * in the line denotes that this is in fact a terminal node. The prediction at this node is Sales = MM. About 19% points in this node have CH as value of Sales. Remaining 81% points have MM as value of Sales.
plot(oj.tree)
text(oj.tree, pretty = 0)
LoyalCH is the most important variable of the tree, in fact top 3 nodes
contain LoyalCH. If LoyalCH<0.27, the tree predicts MM. If
LoyalCH>0.76, the tree predicts CH. For intermediate values of
LoyalCH, the decision also depends on the value of PriceDiff.
oj.pred = predict(oj.tree, OJ.test, type = "class")
table(OJ.test$Purchase, oj.pred)
## oj.pred
## CH MM
## CH 149 15
## MM 30 76
cv.oj = cv.tree(oj.tree, FUN = prune.tree)
plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Tree Size", ylab = "Deviance")
Size of 6 gives lowest cross-validation error.
oj.pruned = prune.tree(oj.tree, best = 6)
summary(oj.pruned)
##
## Classification tree:
## snip.tree(tree = oj.tree, nodes = 12L)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "ListPriceDiff"
## Number of terminal nodes: 6
## Residual mean deviance: 0.7701 = 611.5 / 794
## Misclassification error rate: 0.175 = 140 / 800
Misclassification error of pruned tree is exactly same as that of original tree - 0.155.
pred.unpruned = predict(oj.tree, OJ.test, type = "class")
misclass.unpruned = sum(OJ.test$Purchase != pred.unpruned)
misclass.unpruned/length(pred.unpruned)
## [1] 0.1666667
pred.pruned = predict(oj.pruned, OJ.test, type = "class")
misclass.pruned = sum(OJ.test$Purchase != pred.pruned)
misclass.pruned/length(pred.pruned)
## [1] 0.2
Pruned and unpruned trees have same test error rate of 0.189.