data_raw
## # A tibble: 48,895 × 16
## id name host_id host_name neighbourhood_g… neighbourhood latitude
## <dbl> <chr> <dbl> <chr> <chr> <chr> <dbl>
## 1 2539 clean & quie… 2787 john brooklyn kensington 40.6
## 2 2595 skylit midto… 2845 jennifer manhattan midtown 40.8
## 3 3647 the village … 4632 elisabeth manhattan harlem 40.8
## 4 3831 cozy entire … 4869 lisaroxa… brooklyn clinton hill 40.7
## 5 5022 entire apt: … 7192 laura manhattan east harlem 40.8
## 6 5099 large cozy 1… 7322 chris manhattan murray hill 40.7
## 7 5121 blissartsspa… 7356 garon brooklyn bedford-stuy… 40.7
## 8 5178 large furnis… 8967 shunichi manhattan hell's kitch… 40.8
## 9 5203 cozy clean g… 7490 maryellen manhattan upper west s… 40.8
## 10 5238 cute & cozy … 7549 ben manhattan chinatown 40.7
## # … with 48,885 more rows, and 9 more variables: longitude <dbl>,
## # room_type <chr>, price <dbl>, minimum_nights <dbl>,
## # number_of_reviews <dbl>, last_review <date>, reviews_per_month <dbl>,
## # calculated_host_listings_count <dbl>, availability_365 <dbl>
Our Data
Airbnb Data from Kaggle
| 2539 |
clean & quiet apt home by the park |
2787 |
john |
brooklyn |
kensington |
40.64749 |
-73.97237 |
private room |
149 |
1 |
9 |
2018-10-19 |
0.21 |
6 |
365 |
| 2595 |
skylit midtown castle |
2845 |
jennifer |
manhattan |
midtown |
40.75362 |
-73.98377 |
entire home/apt |
225 |
1 |
45 |
2019-05-21 |
0.38 |
2 |
355 |
| 3647 |
the village of harlem….new york ! |
4632 |
elisabeth |
manhattan |
harlem |
40.80902 |
-73.94190 |
private room |
150 |
3 |
0 |
NA |
NA |
1 |
365 |
| 3831 |
cozy entire floor of brownstone |
4869 |
lisaroxanne |
brooklyn |
clinton hill |
40.68514 |
-73.95976 |
entire home/apt |
89 |
1 |
270 |
2019-07-05 |
4.64 |
1 |
194 |
| 5022 |
entire apt: spacious studio/loft by central park |
7192 |
laura |
manhattan |
east harlem |
40.79851 |
-73.94399 |
entire home/apt |
80 |
10 |
9 |
2018-11-19 |
0.10 |
1 |
0 |
Visualizations
1.1 - Average Price of each Neighborhood Group

1.2 - Average Minimum Number of Nights for each Neighborhood Group

1.3 - Relationship Between Price and Minimum Nights
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## Warning: Removed 13 rows containing non-finite values (stat_smooth).
## Warning: Removed 13 rows containing missing values (geom_point).

1.4 - Average Price for Each Room Type

1.5 - Number of Room Types per Neighborhood


1.6 - Comparison of Mean Price of each Neighborhood Group according to Type of The Room

1.7 - Number of Reviews Across all Neighborhood Groups

1.8 - Most Popular Places

1.9 - Interactive Leaflet Map
# create leaflet map
# each marker has a specific color depending on its room type
data_raw$room_type <- factor(data_raw$room_type)
new <- c("red", "green","blue")[data_raw$room_type]
icons <- awesomeIcons(
icon = 'ios-close',
iconColor = 'black',
library = 'ion',
markerColor = new
)
airbnb_map <- leaflet(data_raw) %>%
addProviderTiles("CartoDB.Positron") %>%
addAwesomeMarkers(
clusterOptions = markerClusterOptions(),
icon = icons,
lng = ~longitude,
lat = ~latitude,
label = ~paste(name),
popup = ~paste(name,"|",
"Type Room :", room_type,"|",
"Min Nights :", minimum_nights, "|",
"Price :", price)
)
airbnb_map