Q1:
\[f(x) = 1-x\]
The Taylor series \(f(x)\) at \(a\) is defined as:
\(f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x -a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...\)
With a center 0: 1-x
\(= 1 + \frac{f'(1-x)(0)}{1!}x + \frac{f''(1-x)(0)}{2!}x^2 + \frac{f'''(1-x)(0)}{3!}x^3 + ...\)
\(= 1 + \frac{-1}{1!}x + \frac{0}{2!}x^2 + \frac{0}{3!}x^3 + \frac{0}{4!}x^4 + \frac{0}{5!}x^5 + ...\)
\(= 1-x\)
= function(x){
f1 1-x
}taylor(f1, 0, 5)
## [1] -1.403922e-07 7.569318e-07 0.000000e+00 0.000000e+00 -1.000000e+00
## [6] 1.000000e+00
Q2:
\[f(x) = e^x\]
The derivative of \(e^x\) is always \(e^x\)
so,
\(= 1 + \frac{f'x(e^x)(0)}{1!}x + \frac{f''(e^x)(0)}{2!}x^2 + \frac{f'''(e^x)(0)}{3!}x^3 + ...\)
\(= 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + ...\)
The series sum representation is:
\(\sum^{\infty}_{n=0}\frac{x^n}{n!}\)
= function(x) {
f2 exp(x)
}
taylor(f2,0,4)
## [1] 0.04166657 0.16666673 0.50000000 1.00000000 1.00000000
Q3:
\[f(x) = ln(1 + x)\]
\(= 0 + \frac{f'x(ln(1+x))(0)}{1!}x + \frac{f''(ln(1+x))(0)}{2!}x^2 + \frac{f'''(ln(1+x))(0)}{3!}x^3 + ...\)
\(= 0 + \frac{1}{1!}x + \frac{-1}{2!}x^2 + \frac{2}{3!}x^3 + \frac{-6}{4!}x^4 + \frac{24}{5!}x^5 + ...\)
$= x - x^2 + x^3 - x^4 + x^5 + … $
The sum series representation is:
\(\sum^{\infty}_{n=1}(-1)^{n+1}\frac{x^n}{n}\)
= function(x) {
f3 log(1+x)
}
taylor(f3, 0, 5)
## [1] 0.2000413 -0.2500044 0.3333339 -0.5000000 1.0000000 0.0000000
Q4:
\[f(x) = x^{\frac{1}{2}}\]
\(= 1 + \frac{f'x(x^{\frac{1}{2}})(1)}{1!}(x - 1) + \frac{f''(x^{\frac{1}{2}})(1)}{2!}(x-1)^2 + \frac{f'''(x^{\frac{1}{2}})(1)}{3!}(x-1)^3 + ...\)
\(= 1 + \frac{{\frac{1}{2}}}{1!}(x - 1) + \frac{-{\frac{1}{4}}}{2!}(x-1)^2 + \frac{{\frac{3}{8}}}{3!}(x-1)^3 + \frac{-{\frac{15}{16}}}{4!}(x-1)^4 ...\)
\(= 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3 - \frac{5}{128}(x-1)^4 + ...\)
Thus, the Taylor series \(x^{\frac{1}{2}}\) with center 1 \(= 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3 - \frac{5}{128}(x-1)^4 + ...\)