library(readxl)
#mpg data file
mpgdata <- read_excel("G:/Other computers/My Laptop/Documents/Richard 621/Week 11/mpg.xlsx")
# made data set a data frame
mpgdata <- as.data.frame(mpgdata)
#linear regression model
mpgmodel1 <- lm(mpg~., data = mpgdata)
summary(mpgmodel1)
##
## Call:
## lm(formula = mpg ~ ., data = mpgdata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.007 -5.636 -1.242 4.758 23.192
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9698 2.0432 2.432 0.0154 *
## acceleration 1.1912 0.1292 9.217 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.101 on 396 degrees of freedom
## Multiple R-squared: 0.1766, Adjusted R-squared: 0.1746
## F-statistic: 84.96 on 1 and 396 DF, p-value: < 2.2e-16
# Adjusted R-squared: 0.1746 for this model
#Based on the plot below a box cox transformation would be beneficial since the data does not stay linear and
#instead travels away from the horizontal line
plot(mpgmodel1$fitted.values, mpgmodel1$residuals)
abline(h = 0)
# The center line below is closest to zero which means a log of the data should improve the model
library(MASS)
boxcox(mpgmodel1)
mpgmodel2 <- lm(I(log(mpg)) ~ ., data = mpgdata)
summary(mpgmodel2)
##
## Call:
## lm(formula = I(log(mpg)) ~ ., data = mpgdata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.06515 -0.23641 -0.00943 0.23576 0.79343
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.24656 0.08759 25.648 <2e-16 ***
## acceleration 0.05491 0.00554 9.911 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3044 on 396 degrees of freedom
## Multiple R-squared: 0.1987, Adjusted R-squared: 0.1967
## F-statistic: 98.23 on 1 and 396 DF, p-value: < 2.2e-16
# Initial adjusted Adjusted R-squared: 0.1746
# After transformation Adjusted R-squared: 0.1967, the model was improved after applying the box-cox
#transformation
# The plots below do not show perfect linearity and that there is some non-linearity in the relationship
pairs(mpgdata)
mpgmodel3 <- lm(I(log(mpg)) ~ acceleration + I(acceleration^2), data = mpgdata)
summary(mpgmodel3)
##
## Call:
## lm(formula = I(log(mpg)) ~ acceleration + I(acceleration^2),
## data = mpgdata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.07126 -0.22527 -0.00066 0.21838 0.77803
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.023320 0.331575 3.086 0.002170 **
## acceleration 0.213095 0.041764 5.102 5.22e-07 ***
## I(acceleration^2) -0.004959 0.001298 -3.820 0.000155 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2993 on 395 degrees of freedom
## Multiple R-squared: 0.2273, Adjusted R-squared: 0.2234
## F-statistic: 58.1 on 2 and 395 DF, p-value: < 2.2e-16
#Adjusted R-squared: 0.2234
mpgmodel4 <- lm(I(log(mpg)) ~ acceleration + I(1/acceleration), data = mpgdata)
summary(mpgmodel4)
##
## Call:
## lm(formula = I(log(mpg)) ~ acceleration + I(1/acceleration),
## data = mpgdata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.05749 -0.22920 0.00108 0.22127 0.76895
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.26294 0.58605 7.274 1.89e-12 ***
## acceleration -0.01068 0.01963 -0.544 0.58682
## I(1/acceleration) -14.99800 4.31148 -3.479 0.00056 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3002 on 395 degrees of freedom
## Multiple R-squared: 0.2226, Adjusted R-squared: 0.2186
## F-statistic: 56.54 on 2 and 395 DF, p-value: < 2.2e-16
#Adjusted R-squared: 0.2186
mpgmodel5 <- lm(I(log(mpg)) ~ acceleration + (I(log(acceleration))), data = mpgdata)
summary(mpgmodel5)
##
## Call:
## lm(formula = I(log(mpg)) ~ acceleration + (I(log(acceleration))),
## data = mpgdata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.06111 -0.22515 0.00151 0.21794 0.77069
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.59298 1.04365 -1.526 0.127724
## acceleration -0.09011 0.03966 -2.272 0.023624 *
## I(log(acceleration)) 2.23400 0.60516 3.692 0.000254 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2997 on 395 degrees of freedom
## Multiple R-squared: 0.2255, Adjusted R-squared: 0.2215
## F-statistic: 57.49 on 2 and 395 DF, p-value: < 2.2e-16
#Adjusted R-squared: 0.2215
mpgmodel6 <- lm(I(log(mpg)) ~ acceleration + I(sqrt(acceleration)), data = mpgdata)
summary(mpgmodel6)
##
## Call:
## lm(formula = I(log(mpg)) ~ acceleration + I(sqrt(acceleration)),
## data = mpgdata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.06339 -0.22731 0.00077 0.21655 0.77214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.38791 1.23506 -1.933 0.053897 .
## acceleration -0.24561 0.08008 -3.067 0.002310 **
## I(sqrt(acceleration)) 2.36968 0.62997 3.762 0.000194 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2995 on 395 degrees of freedom
## Multiple R-squared: 0.2265, Adjusted R-squared: 0.2225
## F-statistic: 57.82 on 2 and 395 DF, p-value: < 2.2e-16
#Adjusted R-squared: 0.2225
#data frame
mpg_data1 <- data.frame(log_mpg=log(mpgdata$mpg), acceleration = mpgdata$acceleration, acceleration_sq = (mpgdata$acceleration)^2)
mpg_data1
## log_mpg acceleration acceleration_sq
## 1 2.890372 12.0 144.00
## 2 2.708050 11.5 132.25
## 3 2.890372 11.0 121.00
## 4 2.772589 12.0 144.00
## 5 2.833213 10.5 110.25
## 6 2.708050 10.0 100.00
## 7 2.639057 9.0 81.00
## 8 2.639057 8.5 72.25
## 9 2.639057 10.0 100.00
## 10 2.708050 8.5 72.25
## 11 2.708050 10.0 100.00
## 12 2.639057 8.0 64.00
## 13 2.708050 9.5 90.25
## 14 2.639057 10.0 100.00
## 15 3.178054 15.0 225.00
## 16 3.091042 15.5 240.25
## 17 2.890372 15.5 240.25
## 18 3.044522 16.0 256.00
## 19 3.295837 14.5 210.25
## 20 3.258097 20.5 420.25
## 21 3.218876 17.5 306.25
## 22 3.178054 14.5 210.25
## 23 3.218876 17.5 306.25
## 24 3.258097 12.5 156.25
## 25 3.044522 15.0 225.00
## 26 2.302585 14.0 196.00
## 27 2.302585 15.0 225.00
## 28 2.397895 13.5 182.25
## 29 2.197225 18.5 342.25
## 30 3.295837 14.5 210.25
## 31 3.332205 15.5 240.25
## 32 3.218876 14.0 196.00
## 33 3.218876 19.0 361.00
## 34 2.944439 13.0 169.00
## 35 2.772589 15.5 240.25
## 36 2.833213 15.5 240.25
## 37 2.944439 15.5 240.25
## 38 2.890372 15.5 240.25
## 39 2.639057 12.0 144.00
## 40 2.639057 11.5 132.25
## 41 2.639057 13.5 182.25
## 42 2.639057 13.0 169.00
## 43 2.484907 11.5 132.25
## 44 2.564949 12.0 144.00
## 45 2.564949 12.0 144.00
## 46 2.890372 13.5 182.25
## 47 3.091042 19.0 361.00
## 48 2.944439 15.0 225.00
## 49 2.890372 14.5 210.25
## 50 3.135494 14.0 196.00
## 51 3.332205 14.0 196.00
## 52 3.401197 19.5 380.25
## 53 3.401197 14.5 210.25
## 54 3.433987 19.0 361.00
## 55 3.555348 18.0 324.00
## 56 3.295837 19.0 361.00
## 57 3.258097 20.5 420.25
## 58 3.178054 15.5 240.25
## 59 3.218876 17.0 289.00
## 60 3.135494 23.5 552.25
## 61 2.995732 19.5 380.25
## 62 3.044522 16.5 272.25
## 63 2.564949 12.0 144.00
## 64 2.639057 12.0 144.00
## 65 2.708050 13.5 182.25
## 66 2.639057 13.0 169.00
## 67 2.833213 11.5 132.25
## 68 2.397895 11.0 121.00
## 69 2.564949 13.5 182.25
## 70 2.484907 13.5 182.25
## 71 2.564949 12.5 156.25
## 72 2.944439 13.5 182.25
## 73 2.708050 12.5 156.25
## 74 2.564949 14.0 196.00
## 75 2.564949 16.0 256.00
## 76 2.639057 14.0 196.00
## 77 2.890372 14.5 210.25
## 78 3.091042 18.0 324.00
## 79 3.044522 19.5 380.25
## 80 3.258097 18.0 324.00
## 81 3.091042 16.0 256.00
## 82 3.332205 17.0 289.00
## 83 3.135494 14.5 210.25
## 84 3.332205 15.0 225.00
## 85 3.295837 16.5 272.25
## 86 2.564949 13.0 169.00
## 87 2.639057 11.5 132.25
## 88 2.564949 13.0 169.00
## 89 2.639057 14.5 210.25
## 90 2.708050 12.5 156.25
## 91 2.484907 11.5 132.25
## 92 2.564949 12.0 144.00
## 93 2.564949 13.0 169.00
## 94 2.639057 14.5 210.25
## 95 2.564949 11.0 121.00
## 96 2.484907 11.0 121.00
## 97 2.564949 11.0 121.00
## 98 2.890372 16.5 272.25
## 99 2.772589 18.0 324.00
## 100 2.890372 16.0 256.00
## 101 2.890372 16.5 272.25
## 102 3.135494 16.0 256.00
## 103 3.258097 21.0 441.00
## 104 2.397895 14.0 196.00
## 105 2.484907 12.5 156.25
## 106 2.564949 13.0 169.00
## 107 2.484907 12.5 156.25
## 108 2.890372 15.0 225.00
## 109 2.995732 19.0 361.00
## 110 3.044522 19.5 380.25
## 111 3.091042 16.5 272.25
## 112 2.890372 13.5 182.25
## 113 2.944439 18.5 342.25
## 114 3.044522 14.0 196.00
## 115 3.258097 15.5 240.25
## 116 2.708050 13.0 169.00
## 117 2.772589 9.5 90.25
## 118 3.367296 19.5 380.25
## 119 3.178054 15.5 240.25
## 120 2.995732 14.0 196.00
## 121 2.944439 15.5 240.25
## 122 2.708050 11.0 121.00
## 123 3.178054 14.0 196.00
## 124 2.995732 13.5 182.25
## 125 2.397895 11.0 121.00
## 126 2.995732 16.5 272.25
## 127 3.044522 17.0 289.00
## 128 2.944439 16.0 256.00
## 129 2.708050 17.0 289.00
## 130 3.433987 19.0 361.00
## 131 3.258097 16.5 272.25
## 132 3.465736 21.0 441.00
## 133 3.218876 17.0 289.00
## 134 2.772589 17.0 289.00
## 135 2.772589 18.0 324.00
## 136 2.890372 16.5 272.25
## 137 2.772589 14.0 196.00
## 138 2.564949 14.5 210.25
## 139 2.639057 13.5 182.25
## 140 2.639057 16.0 256.00
## 141 2.639057 15.5 240.25
## 142 3.367296 16.5 272.25
## 143 3.258097 15.5 240.25
## 144 3.258097 14.5 210.25
## 145 3.433987 16.5 272.25
## 146 3.465736 19.0 361.00
## 147 3.332205 14.5 210.25
## 148 3.178054 15.5 240.25
## 149 3.258097 14.0 196.00
## 150 3.178054 15.0 225.00
## 151 3.258097 15.5 240.25
## 152 3.433987 16.0 256.00
## 153 2.944439 16.0 256.00
## 154 2.890372 16.0 256.00
## 155 2.708050 21.0 441.00
## 156 2.708050 19.5 380.25
## 157 2.772589 11.5 132.25
## 158 2.708050 14.0 196.00
## 159 2.772589 14.5 210.25
## 160 2.639057 13.5 182.25
## 161 2.833213 21.0 441.00
## 162 2.772589 18.5 342.25
## 163 2.708050 19.0 361.00
## 164 2.890372 19.0 361.00
## 165 3.044522 15.0 225.00
## 166 2.995732 13.5 182.25
## 167 2.564949 12.0 144.00
## 168 3.367296 16.0 256.00
## 169 3.135494 17.0 289.00
## 170 2.995732 16.0 256.00
## 171 3.135494 18.5 342.25
## 172 3.178054 13.5 182.25
## 173 3.218876 16.5 272.25
## 174 3.178054 17.0 289.00
## 175 2.890372 14.5 210.25
## 176 3.367296 14.0 196.00
## 177 2.944439 17.0 289.00
## 178 3.135494 15.0 225.00
## 179 3.135494 17.0 289.00
## 180 3.091042 14.5 210.25
## 181 3.218876 13.5 182.25
## 182 3.496508 17.5 306.25
## 183 3.332205 15.5 240.25
## 184 3.218876 16.9 285.61
## 185 3.218876 14.9 222.01
## 186 3.258097 17.7 313.29
## 187 3.295837 15.3 234.09
## 188 2.862201 13.0 169.00
## 189 2.772589 13.0 169.00
## 190 2.740840 13.9 193.21
## 191 2.674149 12.8 163.84
## 192 3.091042 15.4 237.16
## 193 3.091042 14.5 210.25
## 194 3.178054 17.6 309.76
## 195 3.113515 17.6 309.76
## 196 3.367296 22.2 492.84
## 197 3.198673 22.1 488.41
## 198 3.367296 14.2 201.64
## 199 3.496508 17.4 302.76
## 200 2.995732 17.7 313.29
## 201 2.890372 21.0 441.00
## 202 2.917771 16.2 262.44
## 203 2.862201 17.8 316.84
## 204 3.384390 12.2 148.84
## 205 3.465736 17.0 289.00
## 206 3.332205 16.4 268.96
## 207 3.277145 13.6 184.96
## 208 2.995732 15.7 246.49
## 209 2.564949 13.2 174.24
## 210 2.944439 21.9 479.61
## 211 2.944439 15.5 240.25
## 212 2.803360 16.7 278.89
## 213 2.803360 12.1 146.41
## 214 2.564949 12.0 144.00
## 215 2.564949 15.0 225.00
## 216 2.564949 14.0 196.00
## 217 3.449988 18.5 342.25
## 218 3.401197 14.8 219.04
## 219 3.583519 18.6 345.96
## 220 3.238678 15.5 240.25
## 221 3.511545 16.8 282.24
## 222 2.862201 12.5 156.25
## 223 2.833213 19.0 361.00
## 224 2.740840 13.7 187.69
## 225 2.708050 14.9 222.01
## 226 2.862201 16.4 268.96
## 227 3.020425 16.9 285.61
## 228 2.944439 17.7 313.29
## 229 2.917771 19.0 361.00
## 230 2.772589 11.1 123.21
## 231 2.740840 11.4 129.96
## 232 2.740840 12.2 148.84
## 233 2.772589 14.5 210.25
## 234 3.367296 14.5 210.25
## 235 3.198673 16.0 256.00
## 236 3.258097 18.2 331.24
## 237 3.238678 15.8 249.64
## 238 3.417727 17.0 289.00
## 239 3.511545 15.9 252.81
## 240 3.401197 16.4 268.96
## 241 3.417727 14.1 198.81
## 242 3.091042 14.5 210.25
## 243 3.068053 12.8 163.84
## 244 3.068053 13.5 182.25
## 245 3.763523 21.5 462.25
## 246 3.586293 14.4 207.36
## 247 3.490429 19.4 376.36
## 248 3.673766 18.6 345.96
## 249 3.586293 16.4 268.96
## 250 2.990720 15.5 240.25
## 251 2.965273 13.2 174.24
## 252 3.005683 12.8 163.84
## 253 2.954910 19.2 368.64
## 254 3.020425 18.2 331.24
## 255 3.005683 15.8 249.64
## 256 3.222868 15.4 237.16
## 257 3.020425 17.2 295.84
## 258 2.965273 17.2 295.84
## 259 3.025291 15.8 249.64
## 260 3.034953 16.7 278.89
## 261 2.923162 18.7 349.69
## 262 2.895912 15.1 228.01
## 263 2.954910 13.2 174.24
## 264 2.873565 13.4 179.56
## 265 2.895912 11.2 125.44
## 266 2.862201 13.7 187.69
## 267 3.401197 16.5 272.25
## 268 3.314186 14.2 201.64
## 269 3.303217 14.7 216.09
## 270 3.430756 14.5 210.25
## 271 3.049273 14.8 219.04
## 272 3.144152 16.7 278.89
## 273 3.169686 17.6 309.76
## 274 3.173878 14.9 222.01
## 275 3.010621 15.9 252.81
## 276 2.833213 13.6 184.96
## 277 3.072693 15.7 246.49
## 278 2.785011 15.8 249.64
## 279 3.449988 14.9 222.01
## 280 3.384390 16.6 275.56
## 281 3.068053 15.4 237.16
## 282 2.985682 18.2 331.24
## 283 3.104587 17.3 299.29
## 284 3.005683 18.2 331.24
## 285 3.025291 16.6 275.56
## 286 2.833213 15.4 237.16
## 287 2.867899 13.4 179.56
## 288 2.803360 13.2 174.24
## 289 2.901422 15.2 231.04
## 290 2.827314 14.9 222.01
## 291 2.740840 14.3 204.49
## 292 2.954910 15.0 225.00
## 293 2.917771 13.0 169.00
## 294 3.462606 14.0 196.00
## 295 3.529297 15.2 231.04
## 296 3.575151 14.4 207.36
## 297 3.310543 15.0 225.00
## 298 3.234749 20.1 404.01
## 299 3.135494 17.4 302.76
## 300 3.303217 24.8 615.04
## 301 3.173878 22.2 492.84
## 302 3.532226 13.2 174.24
## 303 3.540959 14.9 222.01
## 304 3.459466 19.2 368.64
## 305 3.618993 14.7 216.09
## 306 3.346389 16.0 256.00
## 307 3.360375 11.3 127.69
## 308 3.288402 12.9 166.41
## 309 3.511545 13.2 174.24
## 310 3.725693 14.7 216.09
## 311 3.640214 18.8 353.44
## 312 3.468856 15.5 240.25
## 313 3.616309 16.4 268.96
## 314 3.332205 16.5 272.25
## 315 3.273364 18.1 327.61
## 316 3.190476 20.1 404.01
## 317 2.949688 18.7 349.69
## 318 3.535145 15.8 249.64
## 319 3.394508 15.5 240.25
## 320 3.443618 17.5 306.25
## 321 3.610918 15.0 225.00
## 322 3.471966 15.2 231.04
## 323 3.841601 17.9 320.41
## 324 3.328627 14.4 207.36
## 325 3.708682 19.2 368.64
## 326 3.790985 21.7 470.89
## 327 3.770459 23.7 561.69
## 328 3.594569 19.9 396.01
## 329 3.401197 21.8 475.24
## 330 3.797734 13.8 190.44
## 331 3.711130 17.3 299.29
## 332 3.520461 18.0 324.00
## 333 3.394508 15.3 234.09
## 334 3.487375 11.4 129.96
## 335 3.165475 12.5 156.25
## 336 3.555348 15.1 228.01
## 337 3.161247 14.3 204.49
## 338 3.478158 17.0 289.00
## 339 3.303217 15.7 246.49
## 340 3.280911 16.4 268.96
## 341 3.250374 14.4 207.36
## 342 3.157000 12.6 158.76
## 343 3.401197 12.9 166.41
## 344 3.666122 16.9 285.61
## 345 3.663562 16.4 268.96
## 346 3.558201 16.1 259.21
## 347 3.475067 17.8 316.84
## 348 3.610918 19.4 376.36
## 349 3.629660 17.3 299.29
## 350 3.529297 16.0 256.00
## 351 3.546740 14.9 222.01
## 352 3.538057 16.2 262.44
## 353 3.397858 20.7 428.49
## 354 3.496508 14.2 201.64
## 355 3.540959 15.8 249.64
## 356 3.517498 14.4 207.36
## 357 3.478158 16.8 282.24
## 358 3.493473 14.8 219.04
## 359 3.453157 18.3 334.89
## 360 3.335770 20.4 416.16
## 361 3.424263 19.6 384.16
## 362 3.234749 12.6 158.76
## 363 3.186353 13.8 190.44
## 364 3.109061 15.8 249.64
## 365 3.280911 19.0 361.00
## 366 3.005683 17.1 292.41
## 367 2.867899 16.6 275.56
## 368 3.332205 19.6 384.16
## 369 3.295837 18.6 345.96
## 370 3.526361 18.0 324.00
## 371 3.433987 16.2 262.44
## 372 3.367296 16.0 256.00
## 373 3.295837 18.0 324.00
## 374 3.178054 16.4 268.96
## 375 3.135494 20.5 420.25
## 376 3.583519 15.3 234.09
## 377 3.610918 18.2 331.24
## 378 3.433987 17.6 309.76
## 379 3.637586 14.7 216.09
## 380 3.583519 17.3 299.29
## 381 3.583519 14.5 210.25
## 382 3.583519 14.5 210.25
## 383 3.526361 16.9 285.61
## 384 3.637586 15.0 225.00
## 385 3.465736 15.7 246.49
## 386 3.637586 16.2 262.44
## 387 3.218876 16.4 268.96
## 388 3.637586 17.0 289.00
## 389 3.258097 14.5 210.25
## 390 3.091042 14.7 216.09
## 391 3.465736 13.9 193.21
## 392 3.583519 13.0 169.00
## 393 3.295837 17.3 299.29
## 394 3.295837 15.6 243.36
## 395 3.784190 24.6 605.16
## 396 3.465736 11.6 134.56
## 397 3.332205 18.6 345.96
## 398 3.433987 19.4 376.36
#After performing unit normal scaling acceleration without it's transformation is more influential as
#it's estimate (1.730) is larger than the absolute value of the transformation of accelration (1.295)
mpgdata1_unit_normal = as.data.frame(apply(mpg_data1, 2, function(x){(x - mean(x))/sd(x)}))
modelmpg_unit_normal <- lm(log_mpg~., data = mpgdata1_unit_normal)
summary(modelmpg_unit_normal)
##
## Call:
## lm(formula = log_mpg ~ ., data = mpgdata1_unit_normal)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.15395 -0.66322 -0.00194 0.64295 2.29063
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.683e-16 4.417e-02 0.000 1.000000
## acceleration 1.730e+00 3.391e-01 5.102 5.22e-07 ***
## acceleration_sq -1.295e+00 3.391e-01 -3.820 0.000155 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8813 on 395 degrees of freedom
## Multiple R-squared: 0.2273, Adjusted R-squared: 0.2234
## F-statistic: 58.1 on 2 and 395 DF, p-value: < 2.2e-16