# A tibble: 35 × 60
Timestamp Email …¹ Teacher Age Gender Gadgets Years…² SC1.1 SC1.2
<dttm> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 2022-11-15 20:57:38 Respond… Faculty 30 Female Mobile… 9 mont… Stro… Agree
2 2022-11-16 16:02:54 Respond… Faculty 32 Female Mobile… 1 Stro… Stro…
3 2022-11-17 09:55:23 Respond… Faculty 33 Female Mobile… 11 Stro… Stro…
4 2022-11-17 10:59:32 Respond… Faculty 36 Male Mobile… 7 years Stro… Agree
5 2022-11-17 11:04:48 Respond… Faculty 27 Female Mobile… 1 year Stro… Agree
6 2022-11-17 14:24:48 Respond… Faculty 30 Male Mobile… 5 years Stro… Stro…
7 2022-11-19 20:59:37 Respond… Faculty 38 Female Mobile… 6 Stro… Stro…
8 2022-11-20 08:20:36 Respond… Faculty 31 Female Mobile… 9 Agree Agree
9 2022-11-21 00:14:23 Respond… Faculty 34 Female Mobile… 10 Stro… Stro…
10 2022-11-22 15:10:45 Respond… Faculty 31 Female Mobile… 10 Stro… Stro…
# … with 25 more rows, 51 more variables: SC1.3 <chr>, SC1.4 <chr>,
# SC1.5 <chr>, SC2.1 <chr>, SC2.2 <chr>, SC2.3 <chr>, SC2.4 <chr>,
# SC2.5 <chr>, SC2.6 <chr>, SC2.7 <chr>, SC3.1 <chr>, SC3.2 <chr>,
# SC3.3 <chr>, SC3.4 <chr>, SC3.5 <chr>, SC4.1 <chr>, SC4.2 <chr>,
# SC4.3 <chr>, SC4.4 <chr>, FRSC1.1 <chr>, FRSC1.2 <chr>, FRSC1.3 <chr>,
# FRSC1.4 <chr>, FRSC1.5 <chr>, FRSC1.6 <chr>, FRSC1.7 <chr>, FRSC1.8 <chr>,
# FRSC1.9 <chr>, FRSC2.1 <chr>, FRSC2.2 <chr>, FRSC2.3 <chr>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
#Gender
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
# A tibble: 2 × 3
Gender count Percentage
<chr> <int> <dbl>
1 Female 26 74.3
2 Male 9 25.7
# A tibble: 1 × 2
`Mean Age` `SD of Age`
<dbl> <dbl>
1 34.2 5.02
# A tibble: 6 × 3
Gadgets count Percentage
<chr> <int> <dbl>
1 Computer 1 2.94
2 Mobile Phone, iPad/ Tablet 1 2.94
3 Mobile Phone, iPad/ Tablet, Laptop 9 26.5
4 Mobile Phone, iPad/ Tablet, Laptop, Computer 6 17.6
5 Mobile Phone, Laptop 16 47.1
6 Mobile Phone, Laptop, Computer 1 2.94
# A tibble: 20 × 3
`Years of Clinical Experience` count Percentage
<chr> <int> <dbl>
1 <1 year 1 2.86
2 1 1 2.86
3 1 year 2 5.71
4 10 5 14.3
5 11 1 2.86
6 15 2 5.71
7 16 years 1 2.86
8 2 2 5.71
9 2.5 years 2 5.71
10 3 3 8.57
11 4 1 2.86
12 5 years 1 2.86
13 6 3 8.57
14 7 years 2 5.71
15 8 1 2.86
16 8 mos 1 2.86
17 9 1 2.86
18 9 months 2 5.71
19 more than 10 years 1 2.86
20 <NA> 2 5.71
# A tibble: 35 × 61
Timestamp Email …¹ Teacher Age Gender Gadgets Years…² SC1.1 SC1.2
<dttm> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 2022-11-15 20:57:38 Respond… Faculty 30 Female Mobile… 9 mont… Stro… Agree
2 2022-11-16 16:02:54 Respond… Faculty 32 Female Mobile… 1 Stro… Stro…
3 2022-11-17 09:55:23 Respond… Faculty 33 Female Mobile… 11 Stro… Stro…
4 2022-11-17 10:59:32 Respond… Faculty 36 Male Mobile… 7 years Stro… Agree
5 2022-11-17 11:04:48 Respond… Faculty 27 Female Mobile… 1 year Stro… Agree
6 2022-11-17 14:24:48 Respond… Faculty 30 Male Mobile… 5 years Stro… Stro…
7 2022-11-19 20:59:37 Respond… Faculty 38 Female Mobile… 6 Stro… Stro…
8 2022-11-20 08:20:36 Respond… Faculty 31 Female Mobile… 9 Agree Agree
9 2022-11-21 00:14:23 Respond… Faculty 34 Female Mobile… 10 Stro… Stro…
10 2022-11-22 15:10:45 Respond… Faculty 31 Female Mobile… 10 Stro… Stro…
# … with 25 more rows, 52 more variables: SC1.3 <chr>, SC1.4 <chr>,
# SC1.5 <chr>, SC2.1 <chr>, SC2.2 <chr>, SC2.3 <chr>, SC2.4 <chr>,
# SC2.5 <chr>, SC2.6 <chr>, SC2.7 <chr>, SC3.1 <chr>, SC3.2 <chr>,
# SC3.3 <chr>, SC3.4 <chr>, SC3.5 <chr>, SC4.1 <chr>, SC4.2 <chr>,
# SC4.3 <chr>, SC4.4 <chr>, FRSC1.1 <chr>, FRSC1.2 <chr>, FRSC1.3 <chr>,
# FRSC1.4 <chr>, FRSC1.5 <chr>, FRSC1.6 <chr>, FRSC1.7 <chr>, FRSC1.8 <chr>,
# FRSC1.9 <chr>, FRSC2.1 <chr>, FRSC2.2 <chr>, FRSC2.3 <chr>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# A tibble: 3 × 3
Years count Percentage
<chr> <int> <dbl>
1 5 to 10 years 17 51.5
2 at most 4 years 11 33.3
3 more than 10 years 5 15.2
# A tibble: 35 × 113
Timestamp Email …¹ Teacher Age Gender Gadgets Years…² SC1.1 SC1.2
<dttm> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 2022-11-15 20:57:38 Respond… Faculty 30 Female Mobile… 9 mont… Stro… Agree
2 2022-11-16 16:02:54 Respond… Faculty 32 Female Mobile… 1 Stro… Stro…
3 2022-11-17 09:55:23 Respond… Faculty 33 Female Mobile… 11 Stro… Stro…
4 2022-11-17 10:59:32 Respond… Faculty 36 Male Mobile… 7 years Stro… Agree
5 2022-11-17 11:04:48 Respond… Faculty 27 Female Mobile… 1 year Stro… Agree
6 2022-11-17 14:24:48 Respond… Faculty 30 Male Mobile… 5 years Stro… Stro…
7 2022-11-19 20:59:37 Respond… Faculty 38 Female Mobile… 6 Stro… Stro…
8 2022-11-20 08:20:36 Respond… Faculty 31 Female Mobile… 9 Agree Agree
9 2022-11-21 00:14:23 Respond… Faculty 34 Female Mobile… 10 Stro… Stro…
10 2022-11-22 15:10:45 Respond… Faculty 31 Female Mobile… 10 Stro… Stro…
# … with 25 more rows, 104 more variables: SC1.3 <chr>, SC1.4 <chr>,
# SC1.5 <chr>, SC2.1 <chr>, SC2.2 <chr>, SC2.3 <chr>, SC2.4 <chr>,
# SC2.5 <chr>, SC2.6 <chr>, SC2.7 <chr>, SC3.1 <chr>, SC3.2 <chr>,
# SC3.3 <chr>, SC3.4 <chr>, SC3.5 <chr>, SC4.1 <chr>, SC4.2 <chr>,
# SC4.3 <chr>, SC4.4 <chr>, FRSC1.1 <chr>, FRSC1.2 <chr>, FRSC1.3 <chr>,
# FRSC1.4 <chr>, FRSC1.5 <chr>, FRSC1.6 <chr>, FRSC1.7 <chr>, FRSC1.8 <chr>,
# FRSC1.9 <chr>, FRSC2.1 <chr>, FRSC2.2 <chr>, FRSC2.3 <chr>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
Group.1 DGSC11 DGSC12 DGSC13 DGSC14 DGSC15 DGSC21 DGSC22 DGSC23
1 Faculty 3.542857 3.457143 3.371429 3.2 3.4 3.628571 3.8 3.657143
DGSC24 DGSC25 DGSC26 DGSC27 DGSC31 DGSC32 DGSC33 DGSC34
1 3.657143 3.657143 3.6 3.857143 3.514286 3.142857 3.714286 3.771429
DGSC35 DGSC41 DGSC42 DGSC43 DGSC44 FRSC11 FRSC12 FRSC13
1 3.628571 3.714286 3.485714 3.514286 3.028571 3.514286 3.685714 3.514286
FRSC14 FRSC15 FRSC16 FRSC17 FRSC18 FRSC19 FRSC21 FRSC22 FRSC23
1 3.485714 3.314286 3.628571 3.742857 3.771429 3.8 3.8 3.6 3.6
FRSC24 FRSC25 FRSC26 FRSC27 FRSC28 FRSC29 FRSC210 FRSC31 FRSC32
1 3.457143 3.4 3.2 3.457143 3.485714 3.485714 3.485714 3.657143 3.628571
FRSC33 FRSC34 FRSC35 FRSC36 FRSC41 FRSC42 FRSC43 FRSC44
1 3.6 3.314286 3.485714 3.428571 3.742857 3.371429 3.457143 3.685714
FRSC45 FRSC46 FRSC47
1 2.971429 3.485714 3.371429
Group.1 DGSC11 DGSC12 DGSC13 DGSC14 DGSC15 DGSC21 DGSC22
1 Faculty 0.8168396 0.6572159 0.8773528 0.7970534 0.6507914 0.4902409 0.4058397
DGSC23 DGSC24 DGSC25 DGSC26 DGSC27 DGSC31 DGSC32
1 0.6390644 0.6390644 0.5392182 0.6039088 0.3550358 0.6584933 0.9121035
DGSC33 DGSC34 DGSC35 DGSC41 DGSC42 DGSC43 DGSC44 FRSC11
1 0.518563 0.426043 0.4902409 0.4583492 0.5621089 0.5621089 0.8570028 0.7017385
FRSC12 FRSC13 FRSC14 FRSC15 FRSC16 FRSC17 FRSC18
1 0.5826627 0.6584933 0.7017385 0.7959984 0.598317 0.5054327 0.4902409
FRSC19 FRSC21 FRSC22 FRSC23 FRSC24 FRSC25 FRSC26
1 0.4058397 0.4058397 0.6039088 0.6039088 0.6108267 0.6507914 0.7194769
FRSC27 FRSC28 FRSC29 FRSC210 FRSC31 FRSC32 FRSC33
1 0.6108267 0.5070926 0.6122009 0.6122009 0.5392182 0.5469549 0.4970501
FRSC34 FRSC35 FRSC36 FRSC41 FRSC42 FRSC43 FRSC44
1 0.6761234 0.5621089 0.5576059 0.5054327 0.7310635 0.6572159 0.5297851
FRSC45 FRSC46 FRSC47
1 0.7853704 0.6122009 0.6896595