# A tibble: 35 × 60
   Timestamp           Email …¹ Teacher   Age Gender Gadgets Years…² SC1.1 SC1.2
   <dttm>              <chr>    <chr>   <dbl> <chr>  <chr>   <chr>   <chr> <chr>
 1 2022-11-15 20:57:38 Respond… Faculty    30 Female Mobile… 9 mont… Stro… Agree
 2 2022-11-16 16:02:54 Respond… Faculty    32 Female Mobile… 1       Stro… Stro…
 3 2022-11-17 09:55:23 Respond… Faculty    33 Female Mobile… 11      Stro… Stro…
 4 2022-11-17 10:59:32 Respond… Faculty    36 Male   Mobile… 7 years Stro… Agree
 5 2022-11-17 11:04:48 Respond… Faculty    27 Female Mobile… 1 year  Stro… Agree
 6 2022-11-17 14:24:48 Respond… Faculty    30 Male   Mobile… 5 years Stro… Stro…
 7 2022-11-19 20:59:37 Respond… Faculty    38 Female Mobile… 6       Stro… Stro…
 8 2022-11-20 08:20:36 Respond… Faculty    31 Female Mobile… 9       Agree Agree
 9 2022-11-21 00:14:23 Respond… Faculty    34 Female Mobile… 10      Stro… Stro…
10 2022-11-22 15:10:45 Respond… Faculty    31 Female Mobile… 10      Stro… Stro…
# … with 25 more rows, 51 more variables: SC1.3 <chr>, SC1.4 <chr>,
#   SC1.5 <chr>, SC2.1 <chr>, SC2.2 <chr>, SC2.3 <chr>, SC2.4 <chr>,
#   SC2.5 <chr>, SC2.6 <chr>, SC2.7 <chr>, SC3.1 <chr>, SC3.2 <chr>,
#   SC3.3 <chr>, SC3.4 <chr>, SC3.5 <chr>, SC4.1 <chr>, SC4.2 <chr>,
#   SC4.3 <chr>, SC4.4 <chr>, FRSC1.1 <chr>, FRSC1.2 <chr>, FRSC1.3 <chr>,
#   FRSC1.4 <chr>, FRSC1.5 <chr>, FRSC1.6 <chr>, FRSC1.7 <chr>, FRSC1.8 <chr>,
#   FRSC1.9 <chr>, FRSC2.1 <chr>, FRSC2.2 <chr>, FRSC2.3 <chr>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Socio-Demographic Profile

#Gender


Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
# A tibble: 2 × 3
  Gender count Percentage
  <chr>  <int>      <dbl>
1 Female    26       74.3
2 Male       9       25.7

Age

Only with age responses

Mean Age for Complete Data

# A tibble: 1 × 2
  `Mean Age` `SD of Age`
       <dbl>       <dbl>
1       34.2        5.02

Gadgets for Complete Data

# A tibble: 6 × 3
  Gadgets                                      count Percentage
  <chr>                                        <int>      <dbl>
1 Computer                                         1       2.94
2 Mobile Phone, iPad/ Tablet                       1       2.94
3 Mobile Phone, iPad/ Tablet, Laptop               9      26.5 
4 Mobile Phone, iPad/ Tablet, Laptop, Computer     6      17.6 
5 Mobile Phone, Laptop                            16      47.1 
6 Mobile Phone, Laptop, Computer                   1       2.94

Years of Clinical Experience of the old data

# A tibble: 20 × 3
   `Years of Clinical Experience` count Percentage
   <chr>                          <int>      <dbl>
 1 <1 year                            1       2.86
 2 1                                  1       2.86
 3 1 year                             2       5.71
 4 10                                 5      14.3 
 5 11                                 1       2.86
 6 15                                 2       5.71
 7 16 years                           1       2.86
 8 2                                  2       5.71
 9 2.5 years                          2       5.71
10 3                                  3       8.57
11 4                                  1       2.86
12 5 years                            1       2.86
13 6                                  3       8.57
14 7 years                            2       5.71
15 8                                  1       2.86
16 8 mos                              1       2.86
17 9                                  1       2.86
18 9 months                           2       5.71
19 more than 10 years                 1       2.86
20 <NA>                               2       5.71
# A tibble: 35 × 61
   Timestamp           Email …¹ Teacher   Age Gender Gadgets Years…² SC1.1 SC1.2
   <dttm>              <chr>    <chr>   <dbl> <chr>  <chr>   <chr>   <chr> <chr>
 1 2022-11-15 20:57:38 Respond… Faculty    30 Female Mobile… 9 mont… Stro… Agree
 2 2022-11-16 16:02:54 Respond… Faculty    32 Female Mobile… 1       Stro… Stro…
 3 2022-11-17 09:55:23 Respond… Faculty    33 Female Mobile… 11      Stro… Stro…
 4 2022-11-17 10:59:32 Respond… Faculty    36 Male   Mobile… 7 years Stro… Agree
 5 2022-11-17 11:04:48 Respond… Faculty    27 Female Mobile… 1 year  Stro… Agree
 6 2022-11-17 14:24:48 Respond… Faculty    30 Male   Mobile… 5 years Stro… Stro…
 7 2022-11-19 20:59:37 Respond… Faculty    38 Female Mobile… 6       Stro… Stro…
 8 2022-11-20 08:20:36 Respond… Faculty    31 Female Mobile… 9       Agree Agree
 9 2022-11-21 00:14:23 Respond… Faculty    34 Female Mobile… 10      Stro… Stro…
10 2022-11-22 15:10:45 Respond… Faculty    31 Female Mobile… 10      Stro… Stro…
# … with 25 more rows, 52 more variables: SC1.3 <chr>, SC1.4 <chr>,
#   SC1.5 <chr>, SC2.1 <chr>, SC2.2 <chr>, SC2.3 <chr>, SC2.4 <chr>,
#   SC2.5 <chr>, SC2.6 <chr>, SC2.7 <chr>, SC3.1 <chr>, SC3.2 <chr>,
#   SC3.3 <chr>, SC3.4 <chr>, SC3.5 <chr>, SC4.1 <chr>, SC4.2 <chr>,
#   SC4.3 <chr>, SC4.4 <chr>, FRSC1.1 <chr>, FRSC1.2 <chr>, FRSC1.3 <chr>,
#   FRSC1.4 <chr>, FRSC1.5 <chr>, FRSC1.6 <chr>, FRSC1.7 <chr>, FRSC1.8 <chr>,
#   FRSC1.9 <chr>, FRSC2.1 <chr>, FRSC2.2 <chr>, FRSC2.3 <chr>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Years of Clinical Experience of Cleaned Data

# A tibble: 3 × 3
  Years              count Percentage
  <chr>              <int>      <dbl>
1 5 to 10 years         17       51.5
2 at most 4 years       11       33.3
3 more than 10 years     5       15.2

SCALE 1

# A tibble: 35 × 113
   Timestamp           Email …¹ Teacher   Age Gender Gadgets Years…² SC1.1 SC1.2
   <dttm>              <chr>    <chr>   <dbl> <chr>  <chr>   <chr>   <chr> <chr>
 1 2022-11-15 20:57:38 Respond… Faculty    30 Female Mobile… 9 mont… Stro… Agree
 2 2022-11-16 16:02:54 Respond… Faculty    32 Female Mobile… 1       Stro… Stro…
 3 2022-11-17 09:55:23 Respond… Faculty    33 Female Mobile… 11      Stro… Stro…
 4 2022-11-17 10:59:32 Respond… Faculty    36 Male   Mobile… 7 years Stro… Agree
 5 2022-11-17 11:04:48 Respond… Faculty    27 Female Mobile… 1 year  Stro… Agree
 6 2022-11-17 14:24:48 Respond… Faculty    30 Male   Mobile… 5 years Stro… Stro…
 7 2022-11-19 20:59:37 Respond… Faculty    38 Female Mobile… 6       Stro… Stro…
 8 2022-11-20 08:20:36 Respond… Faculty    31 Female Mobile… 9       Agree Agree
 9 2022-11-21 00:14:23 Respond… Faculty    34 Female Mobile… 10      Stro… Stro…
10 2022-11-22 15:10:45 Respond… Faculty    31 Female Mobile… 10      Stro… Stro…
# … with 25 more rows, 104 more variables: SC1.3 <chr>, SC1.4 <chr>,
#   SC1.5 <chr>, SC2.1 <chr>, SC2.2 <chr>, SC2.3 <chr>, SC2.4 <chr>,
#   SC2.5 <chr>, SC2.6 <chr>, SC2.7 <chr>, SC3.1 <chr>, SC3.2 <chr>,
#   SC3.3 <chr>, SC3.4 <chr>, SC3.5 <chr>, SC4.1 <chr>, SC4.2 <chr>,
#   SC4.3 <chr>, SC4.4 <chr>, FRSC1.1 <chr>, FRSC1.2 <chr>, FRSC1.3 <chr>,
#   FRSC1.4 <chr>, FRSC1.5 <chr>, FRSC1.6 <chr>, FRSC1.7 <chr>, FRSC1.8 <chr>,
#   FRSC1.9 <chr>, FRSC2.1 <chr>, FRSC2.2 <chr>, FRSC2.3 <chr>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Summary Statistics for Digital Competence and Faculty Readiness

Mean

  Group.1   DGSC11   DGSC12   DGSC13 DGSC14 DGSC15   DGSC21 DGSC22   DGSC23
1 Faculty 3.542857 3.457143 3.371429    3.2    3.4 3.628571    3.8 3.657143
    DGSC24   DGSC25 DGSC26   DGSC27   DGSC31   DGSC32   DGSC33   DGSC34
1 3.657143 3.657143    3.6 3.857143 3.514286 3.142857 3.714286 3.771429
    DGSC35   DGSC41   DGSC42   DGSC43   DGSC44   FRSC11   FRSC12   FRSC13
1 3.628571 3.714286 3.485714 3.514286 3.028571 3.514286 3.685714 3.514286
    FRSC14   FRSC15   FRSC16   FRSC17   FRSC18 FRSC19 FRSC21 FRSC22 FRSC23
1 3.485714 3.314286 3.628571 3.742857 3.771429    3.8    3.8    3.6    3.6
    FRSC24 FRSC25 FRSC26   FRSC27   FRSC28   FRSC29  FRSC210   FRSC31   FRSC32
1 3.457143    3.4    3.2 3.457143 3.485714 3.485714 3.485714 3.657143 3.628571
  FRSC33   FRSC34   FRSC35   FRSC36   FRSC41   FRSC42   FRSC43   FRSC44
1    3.6 3.314286 3.485714 3.428571 3.742857 3.371429 3.457143 3.685714
    FRSC45   FRSC46   FRSC47
1 2.971429 3.485714 3.371429

Standard Deviation

  Group.1    DGSC11    DGSC12    DGSC13    DGSC14    DGSC15    DGSC21    DGSC22
1 Faculty 0.8168396 0.6572159 0.8773528 0.7970534 0.6507914 0.4902409 0.4058397
     DGSC23    DGSC24    DGSC25    DGSC26    DGSC27    DGSC31    DGSC32
1 0.6390644 0.6390644 0.5392182 0.6039088 0.3550358 0.6584933 0.9121035
    DGSC33   DGSC34    DGSC35    DGSC41    DGSC42    DGSC43    DGSC44    FRSC11
1 0.518563 0.426043 0.4902409 0.4583492 0.5621089 0.5621089 0.8570028 0.7017385
     FRSC12    FRSC13    FRSC14    FRSC15   FRSC16    FRSC17    FRSC18
1 0.5826627 0.6584933 0.7017385 0.7959984 0.598317 0.5054327 0.4902409
     FRSC19    FRSC21    FRSC22    FRSC23    FRSC24    FRSC25    FRSC26
1 0.4058397 0.4058397 0.6039088 0.6039088 0.6108267 0.6507914 0.7194769
     FRSC27    FRSC28    FRSC29   FRSC210    FRSC31    FRSC32    FRSC33
1 0.6108267 0.5070926 0.6122009 0.6122009 0.5392182 0.5469549 0.4970501
     FRSC34    FRSC35    FRSC36    FRSC41    FRSC42    FRSC43    FRSC44
1 0.6761234 0.5621089 0.5576059 0.5054327 0.7310635 0.6572159 0.5297851
     FRSC45    FRSC46    FRSC47
1 0.7853704 0.6122009 0.6896595