1. Table of Contents


This document presents a non-exhaustive list of modelling techniques for predicting dichotomous categorical responses using various helpful packages in R.

1.1 Sample Data


The Solubility dataset from the AppliedPredictiveModeling package was used for this illustrated example. The original numeric response was transformed to simulate a dichotomous categorical variable.

Preliminary dataset assessment:

[A] 1267 rows (observations)
     [A.1] Train Set = 951 observations
     [A.2] Test Set = 316 observations

[B] 229 columns (variables)
     [B.1] 1/229 response = Log_Solubility_Class variable (factor)
            [B.1.1] Levels = Log_Solubility_Class=Low < Log_Solubility_Class=High
     [B.2] 228/229 predictors = All remaining variables (208/228 factor + 20/228 numeric)

##################################
# Loading R libraries
##################################
library(AppliedPredictiveModeling)
library(caret)
library(rpart)
library(lattice)
library(dplyr)
library(tidyr)
library(moments)
library(skimr)
library(RANN)
library(pls)
library(corrplot)
library(tidyverse)
library(lares)
library(DMwR)
library(gridExtra)
library(rattle)
library(rpart.plot)
library(RColorBrewer)
library(stats)
library(nnet)
library(elasticnet)
library(earth)
library(party)
library(kernlab)
library(randomForest)
library(Cubist)
library(pROC)
library(mda)
library(klaR)
library(pamr)

##################################
# Loading source and
# formulating the train set
##################################
data(solubility)
Solubility_Train <- as.data.frame(cbind(solTrainY,solTrainX))
Solubility_Test  <- as.data.frame(cbind(solTestY,solTestX))

##################################
# Applying dichotomization and
# defining the response variable
##################################
Solubility_Train$Log_Solubility_Class <- ifelse(Solubility_Train$solTrainY<mean(Solubility_Train$solTrainY),
                                                "Low","High")
Solubility_Train$Log_Solubility_Class <- factor(Solubility_Train$Log_Solubility_Class,
                                                levels = c("Low","High"))
Solubility_Test$Log_Solubility_Class <- ifelse(Solubility_Test$solTestY<mean(Solubility_Train$solTrainY),
                                                "Low","High")
Solubility_Test$Log_Solubility_Class <- factor(Solubility_Test$Log_Solubility_Class,
                                                levels = c("Low","High"))

Solubility_Train$solTrainY <- NULL
Solubility_Test$solTestY <- NULL

##################################
# Performing a general exploration of the train set
##################################
dim(Solubility_Train)
## [1] 951 229
str(Solubility_Train)
## 'data.frame':    951 obs. of  229 variables:
##  $ FP001               : int  0 0 1 0 0 1 0 1 1 1 ...
##  $ FP002               : int  1 1 1 0 0 0 1 0 0 1 ...
##  $ FP003               : int  0 0 1 1 1 1 0 1 1 1 ...
##  $ FP004               : int  0 1 1 0 1 1 1 1 1 1 ...
##  $ FP005               : int  1 1 1 0 1 0 1 0 0 1 ...
##  $ FP006               : int  0 1 0 0 1 0 0 0 1 1 ...
##  $ FP007               : int  0 1 0 1 0 0 0 1 1 1 ...
##  $ FP008               : int  1 1 1 0 0 0 1 0 0 0 ...
##  $ FP009               : int  0 0 0 0 1 1 1 0 1 0 ...
##  $ FP010               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP011               : int  0 1 0 0 0 0 0 0 1 0 ...
##  $ FP012               : int  0 0 0 0 0 1 0 1 0 0 ...
##  $ FP013               : int  0 0 0 0 1 0 1 0 0 0 ...
##  $ FP014               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP015               : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ FP016               : int  0 1 0 0 1 1 0 1 0 0 ...
##  $ FP017               : int  0 0 1 1 0 0 0 0 1 1 ...
##  $ FP018               : int  0 1 0 0 0 0 0 0 0 0 ...
##  $ FP019               : int  1 0 0 0 1 0 1 0 0 0 ...
##  $ FP020               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP021               : int  0 0 0 0 0 1 0 0 1 0 ...
##  $ FP022               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP023               : int  0 0 0 1 0 0 0 0 1 0 ...
##  $ FP024               : int  1 0 0 0 1 0 0 0 0 0 ...
##  $ FP025               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP026               : int  1 0 0 0 0 0 1 0 0 0 ...
##  $ FP027               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP028               : int  0 1 0 0 0 0 0 0 1 1 ...
##  $ FP029               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP030               : int  0 0 0 0 1 0 0 0 0 0 ...
##  $ FP031               : int  0 0 0 0 0 0 0 1 0 0 ...
##  $ FP032               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP033               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP034               : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ FP035               : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ FP036               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP037               : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ FP038               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP039               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP040               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP041               : int  0 0 0 1 0 0 0 0 1 0 ...
##  $ FP042               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP043               : int  0 1 0 0 0 0 0 0 0 0 ...
##  $ FP044               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP045               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP046               : int  0 1 0 0 0 0 1 0 0 1 ...
##  $ FP047               : int  0 1 1 0 0 0 1 0 0 0 ...
##  $ FP048               : int  0 0 0 0 0 0 0 1 0 0 ...
##  $ FP049               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP050               : int  0 0 0 0 0 0 0 1 0 1 ...
##  $ FP051               : int  0 1 0 0 0 0 0 0 0 0 ...
##  $ FP052               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP053               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP054               : int  0 0 0 1 0 0 0 0 1 1 ...
##  $ FP055               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP056               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP057               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP058               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP059               : int  0 0 0 0 0 0 0 1 0 0 ...
##  $ FP060               : int  0 1 1 0 0 0 0 1 1 0 ...
##  $ FP061               : int  0 0 1 0 0 0 0 1 1 0 ...
##  $ FP062               : int  0 0 1 0 0 1 0 1 1 1 ...
##  $ FP063               : int  1 1 0 0 1 1 1 0 0 1 ...
##  $ FP064               : int  0 1 1 0 1 1 0 1 0 0 ...
##  $ FP065               : int  1 1 0 0 1 0 1 0 1 1 ...
##  $ FP066               : int  1 0 1 1 1 1 1 1 1 1 ...
##  $ FP067               : int  1 1 0 0 1 1 1 0 0 1 ...
##  $ FP068               : int  0 1 0 0 1 1 1 0 0 1 ...
##  $ FP069               : int  1 0 1 1 1 1 0 1 1 0 ...
##  $ FP070               : int  1 1 0 1 0 0 1 0 1 0 ...
##  $ FP071               : int  0 0 0 0 0 0 1 0 1 1 ...
##  $ FP072               : int  0 1 1 0 0 1 0 1 1 1 ...
##  $ FP073               : int  0 1 1 0 0 0 0 0 1 0 ...
##  $ FP074               : int  0 1 0 0 0 0 0 0 1 0 ...
##  $ FP075               : int  0 1 0 0 1 1 1 0 0 1 ...
##  $ FP076               : int  1 1 0 0 0 0 1 0 1 1 ...
##  $ FP077               : int  0 1 0 1 0 0 0 1 1 1 ...
##  $ FP078               : int  0 1 0 0 0 0 0 0 1 0 ...
##  $ FP079               : int  1 1 1 1 1 0 1 0 1 1 ...
##  $ FP080               : int  0 1 0 0 1 1 1 1 0 0 ...
##  $ FP081               : int  0 0 1 1 0 0 0 1 1 1 ...
##  $ FP082               : int  1 1 1 0 1 1 1 0 1 1 ...
##  $ FP083               : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ FP084               : int  1 1 0 0 1 0 1 0 0 0 ...
##  $ FP085               : int  0 1 0 0 0 0 1 0 0 0 ...
##  $ FP086               : int  0 0 0 1 1 0 0 1 1 1 ...
##  $ FP087               : int  1 1 1 1 1 0 1 0 1 1 ...
##  $ FP088               : int  0 1 0 0 0 0 0 1 1 0 ...
##  $ FP089               : int  1 1 0 0 0 0 1 0 0 0 ...
##  $ FP090               : int  0 1 0 1 0 0 0 1 1 1 ...
##  $ FP091               : int  1 1 0 0 1 0 1 0 0 1 ...
##  $ FP092               : int  0 0 0 0 1 1 1 0 1 0 ...
##  $ FP093               : int  0 1 0 1 0 0 0 1 1 1 ...
##  $ FP094               : int  0 0 0 0 1 0 0 1 0 0 ...
##  $ FP095               : int  0 0 0 0 0 0 0 0 1 1 ...
##  $ FP096               : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ FP097               : int  1 1 0 0 0 0 1 0 1 0 ...
##  $ FP098               : int  0 0 1 0 0 0 0 1 0 0 ...
##  $ FP099               : int  0 0 0 0 0 0 0 0 1 0 ...
##   [list output truncated]
summary(Solubility_Train)
##      FP001            FP002            FP003            FP004       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.4932   Mean   :0.5394   Mean   :0.4364   Mean   :0.5846  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP005            FP006            FP007            FP008      
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :1.0000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.5794   Mean   :0.4006   Mean   :0.3638   Mean   :0.326  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##      FP009            FP010            FP011            FP012       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2797   Mean   :0.1788   Mean   :0.2145   Mean   :0.1767  
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP013            FP014            FP015            FP016       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.1661   Mean   :0.1609   Mean   :0.8601   Mean   :0.1462  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP017            FP018            FP019           FP020       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.1441   Mean   :0.1314   Mean   :0.122   Mean   :0.1199  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP021            FP022            FP023           FP024       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.1209   Mean   :0.1041   Mean   :0.123   Mean   :0.1125  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP025            FP026             FP027             FP028       
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.0000  
##  Mean   :0.1157   Mean   :0.08412   Mean   :0.09779   Mean   :0.1062  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000  
##      FP029           FP030             FP031             FP032        
##  Min.   :0.000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.102   Mean   :0.09359   Mean   :0.08938   Mean   :0.07361  
##  3rd Qu.:0.000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP033            FP034             FP035             FP036        
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.0694   Mean   :0.07992   Mean   :0.07256   Mean   :0.07571  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP037             FP038             FP039             FP040        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.07045   Mean   :0.08622   Mean   :0.07466   Mean   :0.06835  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP041             FP042             FP043             FP044        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06309   Mean   :0.05678   Mean   :0.06625   Mean   :0.05994  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP045             FP046            FP047           FP048       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.05573   Mean   :0.3155   Mean   :0.266   Mean   :0.1241  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP049           FP050            FP051            FP052        
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.000   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :0.122   Mean   :0.1125   Mean   :0.1094   Mean   :0.09148  
##  3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##      FP053             FP054             FP055             FP056        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.09359   Mean   :0.07571   Mean   :0.05363   Mean   :0.06519  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP057            FP058            FP059             FP060       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1199   Mean   :0.1136   Mean   :0.05468   Mean   :0.4816  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP061            FP062            FP063            FP064       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.4469   Mean   :0.4374   Mean   :0.4259   Mean   :0.4164  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP065            FP066            FP067            FP068       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.5931   Mean   :0.6099   Mean   :0.3796   Mean   :0.3617  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP069            FP070            FP071           FP072       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :1.0000  
##  Mean   :0.3617   Mean   :0.3554   Mean   :0.327   Mean   :0.6583  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP073            FP074            FP075            FP076       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.3102   Mean   :0.3249   Mean   :0.3386   Mean   :0.3281  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP077            FP078            FP079            FP080       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.3207   Mean   :0.3039   Mean   :0.6898   Mean   :0.3028  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP081            FP082           FP083            FP084      
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.0000   Median :1.000   Median :0.0000   Median :0.000  
##  Mean   :0.2787   Mean   :0.714   Mean   :0.2734   Mean   :0.286  
##  3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.000  
##      FP085            FP086            FP087            FP088       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.2555   Mean   :0.2692   Mean   :0.7266   Mean   :0.2629  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP089            FP090            FP091           FP092      
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.000  
##  Mean   :0.2471   Mean   :0.2492   Mean   :0.225   Mean   :0.244  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.000  
##      FP093           FP094            FP095            FP096       
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.244   Mean   :0.2313   Mean   :0.2198   Mean   :0.2177  
##  3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP097            FP098            FP099            FP100       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2355   Mean   :0.2376   Mean   :0.2271   Mean   :0.2313  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP101            FP102            FP103            FP104       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2366   Mean   :0.2019   Mean   :0.2187   Mean   :0.2229  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP105            FP106            FP107            FP108      
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.2156   Mean   :0.1914   Mean   :0.2114   Mean   :0.205  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##      FP109            FP110            FP111            FP112       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1767   Mean   :0.2061   Mean   :0.1966   Mean   :0.1945  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP113            FP114            FP115            FP116       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1956   Mean   :0.1556   Mean   :0.1788   Mean   :0.1924  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP117            FP118            FP119           FP120       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.1788   Mean   :0.1924   Mean   :0.163   Mean   :0.1661  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP121            FP122           FP123            FP124       
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :0.0000  
##  Mean   :0.1399   Mean   :0.164   Mean   :0.1672   Mean   :0.1619  
##  3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##      FP125            FP126            FP127            FP128       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1556   Mean   :0.1483   Mean   :0.1399   Mean   :0.1483  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP129            FP130            FP131            FP132       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1388   Mean   :0.1052   Mean   :0.1262   Mean   :0.1251  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP133            FP134            FP135            FP136       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1262   Mean   :0.1272   Mean   :0.1262   Mean   :0.1209  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP137            FP138            FP139             FP140       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1157   Mean   :0.1115   Mean   :0.08202   Mean   :0.1115  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP141            FP142            FP143             FP144       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1167   Mean   :0.1094   Mean   :0.08097   Mean   :0.1041  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP145            FP146           FP147            FP148        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :0.00000  
##  Mean   :0.1041   Mean   :0.103   Mean   :0.1052   Mean   :0.08728  
##  3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.00000  
##      FP149             FP150             FP151             FP152        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.09043   Mean   :0.07886   Mean   :0.05573   Mean   :0.08202  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP153             FP154             FP155            FP156        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.07781   Mean   :0.03785   Mean   :0.0694   Mean   :0.07045  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP157             FP158             FP159             FP160        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06204   Mean   :0.05363   Mean   :0.07045   Mean   :0.06835  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP161             FP162            FP163            FP164       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.06625   Mean   :0.4953   Mean   :0.4763   Mean   :0.6278  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP165            FP166            FP167            FP168       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.3491   Mean   :0.3312   Mean   :0.3281   Mean   :0.6656  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP169            FP170           FP171            FP172       
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :0.0000  
##  Mean   :0.1861   Mean   :0.184   Mean   :0.1693   Mean   :0.1514  
##  3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##      FP173           FP174            FP175            FP176      
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.142   Mean   :0.1304   Mean   :0.1346   Mean   :0.122  
##  3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##      FP177            FP178            FP179             FP180       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1209   Mean   :0.1209   Mean   :0.09779   Mean   :0.1073  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP181             FP182             FP183             FP184        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.09359   Mean   :0.09884   Mean   :0.07571   Mean   :0.08412  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP185             FP186             FP187             FP188        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.08517   Mean   :0.07676   Mean   :0.07256   Mean   :0.06835  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP189             FP190             FP191             FP192        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.07676   Mean   :0.07256   Mean   :0.07045   Mean   :0.06099  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP193             FP194             FP195             FP196        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06204   Mean   :0.05889   Mean   :0.06099   Mean   :0.05678  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP197             FP198             FP199             FP200        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.05258   Mean   :0.05678   Mean   :0.04732   Mean   :0.04942  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP201             FP202            FP203            FP204        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :0.05258   Mean   :0.2576   Mean   :0.1146   Mean   :0.09884  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##      FP205             FP206             FP207             FP208       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.0000  
##  Mean   :0.07781   Mean   :0.05994   Mean   :0.05678   Mean   :0.1125  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000  
##    MolWeight         NumAtoms      NumNonHAtoms      NumBonds    
##  Min.   : 46.09   Min.   : 5.00   Min.   : 2.00   Min.   : 4.00  
##  1st Qu.:122.61   1st Qu.:17.00   1st Qu.: 8.00   1st Qu.:17.00  
##  Median :179.23   Median :22.00   Median :12.00   Median :23.00  
##  Mean   :201.65   Mean   :25.51   Mean   :13.16   Mean   :25.91  
##  3rd Qu.:264.34   3rd Qu.:31.00   3rd Qu.:17.00   3rd Qu.:31.50  
##  Max.   :665.81   Max.   :94.00   Max.   :47.00   Max.   :97.00  
##   NumNonHBonds    NumMultBonds     NumRotBonds      NumDblBonds   
##  Min.   : 1.00   Min.   : 0.000   Min.   : 0.000   Min.   :0.000  
##  1st Qu.: 8.00   1st Qu.: 1.000   1st Qu.: 0.000   1st Qu.:0.000  
##  Median :12.00   Median : 6.000   Median : 2.000   Median :1.000  
##  Mean   :13.56   Mean   : 6.148   Mean   : 2.251   Mean   :1.006  
##  3rd Qu.:18.00   3rd Qu.:10.000   3rd Qu.: 3.500   3rd Qu.:2.000  
##  Max.   :50.00   Max.   :25.000   Max.   :16.000   Max.   :7.000  
##  NumAromaticBonds  NumHydrogen      NumCarbon       NumNitrogen    
##  Min.   : 0.000   Min.   : 0.00   Min.   : 1.000   Min.   :0.0000  
##  1st Qu.: 0.000   1st Qu.: 7.00   1st Qu.: 6.000   1st Qu.:0.0000  
##  Median : 6.000   Median :11.00   Median : 9.000   Median :0.0000  
##  Mean   : 5.121   Mean   :12.35   Mean   : 9.893   Mean   :0.8128  
##  3rd Qu.: 6.000   3rd Qu.:16.00   3rd Qu.:12.000   3rd Qu.:1.0000  
##  Max.   :25.000   Max.   :47.00   Max.   :33.000   Max.   :6.0000  
##    NumOxygen        NumSulfer      NumChlorine        NumHalogen     
##  Min.   : 0.000   Min.   :0.000   Min.   : 0.0000   Min.   : 0.0000  
##  1st Qu.: 0.000   1st Qu.:0.000   1st Qu.: 0.0000   1st Qu.: 0.0000  
##  Median : 1.000   Median :0.000   Median : 0.0000   Median : 0.0000  
##  Mean   : 1.574   Mean   :0.164   Mean   : 0.5563   Mean   : 0.6982  
##  3rd Qu.: 2.000   3rd Qu.:0.000   3rd Qu.: 0.0000   3rd Qu.: 1.0000  
##  Max.   :13.000   Max.   :4.000   Max.   :10.0000   Max.   :10.0000  
##     NumRings     HydrophilicFactor   SurfaceArea1     SurfaceArea2   
##  Min.   :0.000   Min.   :-0.98500   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:0.000   1st Qu.:-0.76300   1st Qu.:  9.23   1st Qu.: 10.63  
##  Median :1.000   Median :-0.31400   Median : 29.10   Median : 33.12  
##  Mean   :1.402   Mean   :-0.02059   Mean   : 36.46   Mean   : 40.23  
##  3rd Qu.:2.000   3rd Qu.: 0.31300   3rd Qu.: 53.28   3rd Qu.: 60.66  
##  Max.   :7.000   Max.   :13.48300   Max.   :331.94   Max.   :331.94  
##  Log_Solubility_Class
##  Low :427            
##  High:524            
##                      
##                      
##                      
## 
##################################
# Performing a general exploration of the test set
##################################
dim(Solubility_Test)
## [1] 316 229
str(Solubility_Test)
## 'data.frame':    316 obs. of  229 variables:
##  $ FP001               : int  1 1 0 0 1 1 1 0 1 0 ...
##  $ FP002               : int  0 0 1 0 1 0 0 0 0 1 ...
##  $ FP003               : int  0 1 0 1 0 0 0 0 1 0 ...
##  $ FP004               : int  1 1 0 0 1 1 1 1 1 0 ...
##  $ FP005               : int  0 0 1 0 1 0 0 0 0 1 ...
##  $ FP006               : int  0 1 0 1 1 0 0 0 0 0 ...
##  $ FP007               : int  0 0 0 0 0 0 0 1 1 0 ...
##  $ FP008               : int  0 0 0 0 1 0 0 0 0 0 ...
##  $ FP009               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP010               : int  1 0 1 0 0 0 0 0 0 0 ...
##  $ FP011               : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ FP012               : int  0 1 0 0 0 1 0 1 0 0 ...
##  $ FP013               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP014               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP015               : int  1 1 0 1 1 1 1 1 1 1 ...
##  $ FP016               : int  0 1 0 0 0 0 0 1 0 0 ...
##  $ FP017               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP018               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP019               : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ FP020               : int  0 0 0 0 0 1 0 0 0 0 ...
##  $ FP021               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP022               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP023               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP024               : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ FP025               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP026               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP027               : int  0 0 0 1 0 0 0 0 0 0 ...
##  $ FP028               : int  0 0 0 1 0 0 0 0 0 0 ...
##  $ FP029               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP030               : int  0 0 0 1 0 0 0 0 0 0 ...
##  $ FP031               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP032               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP033               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP034               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP035               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP036               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP037               : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ FP038               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP039               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP040               : int  0 0 0 0 1 0 0 0 0 0 ...
##  $ FP041               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP042               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP043               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP044               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP045               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP046               : int  0 0 1 0 0 0 0 0 0 1 ...
##  $ FP047               : int  0 0 0 0 1 0 0 0 0 0 ...
##  $ FP048               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP049               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP050               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP051               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP052               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP053               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP054               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP055               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP056               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP057               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP058               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP059               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP060               : int  1 1 1 0 0 1 0 1 0 0 ...
##  $ FP061               : int  1 1 1 0 0 1 0 0 0 0 ...
##  $ FP062               : int  1 1 0 0 1 1 1 0 1 0 ...
##  $ FP063               : int  0 1 0 1 1 0 0 0 0 1 ...
##  $ FP064               : int  1 1 0 0 0 0 0 0 1 0 ...
##  $ FP065               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP066               : int  0 1 0 1 0 1 0 0 1 1 ...
##  $ FP067               : int  0 1 0 1 1 0 0 0 0 1 ...
##  $ FP068               : int  0 1 0 1 1 0 0 0 0 0 ...
##  $ FP069               : int  0 0 0 0 0 0 0 0 1 1 ...
##  $ FP070               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP071               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP072               : int  1 1 1 0 1 1 1 1 1 0 ...
##  $ FP073               : int  1 0 1 0 0 0 0 0 0 0 ...
##  $ FP074               : int  0 0 1 0 0 0 0 0 1 0 ...
##  $ FP075               : int  0 1 0 1 0 0 0 1 0 0 ...
##  $ FP076               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP077               : int  0 0 0 1 0 0 0 1 0 0 ...
##  $ FP078               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP079               : int  0 0 1 1 1 0 0 0 0 1 ...
##  $ FP080               : int  1 1 0 1 0 0 0 1 0 0 ...
##  $ FP081               : int  0 0 0 1 0 0 0 0 1 0 ...
##  $ FP082               : int  0 0 1 0 1 0 0 0 0 1 ...
##  $ FP083               : int  0 1 0 1 1 0 0 0 0 0 ...
##  $ FP084               : int  0 0 0 1 1 0 0 1 0 1 ...
##  $ FP085               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP086               : int  0 0 0 1 0 0 0 0 0 0 ...
##  $ FP087               : int  0 0 1 1 1 0 0 1 0 1 ...
##  $ FP088               : int  1 0 0 0 0 0 0 1 1 0 ...
##  $ FP089               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP090               : int  0 0 0 1 0 0 0 1 0 0 ...
##  $ FP091               : int  0 0 0 1 1 0 0 0 0 0 ...
##  $ FP092               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP093               : int  0 0 0 1 0 0 0 1 0 0 ...
##  $ FP094               : int  0 1 0 0 0 0 0 0 1 0 ...
##  $ FP095               : int  0 0 1 1 0 0 0 0 0 0 ...
##  $ FP096               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP097               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP098               : int  1 1 0 0 0 1 0 0 0 0 ...
##  $ FP099               : int  0 0 0 0 0 0 0 0 0 0 ...
##   [list output truncated]
summary(Solubility_Test)
##      FP001            FP002            FP003           FP004       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :1.0000   Median :0.000   Median :1.0000  
##  Mean   :0.4684   Mean   :0.5854   Mean   :0.443   Mean   :0.5316  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP005            FP006            FP007            FP008       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.6171   Mean   :0.3513   Mean   :0.3544   Mean   :0.3608  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP009            FP010           FP011            FP012       
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :0.0000  
##  Mean   :0.2627   Mean   :0.193   Mean   :0.1741   Mean   :0.1677  
##  3rd Qu.:1.0000   3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##      FP013            FP014            FP015            FP016       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.1646   Mean   :0.1582   Mean   :0.8291   Mean   :0.1424  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP017            FP018             FP019            FP020       
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.1487   Mean   :0.08544   Mean   :0.1139   Mean   :0.1076  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
##      FP021            FP022            FP023             FP024       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1076   Mean   :0.1171   Mean   :0.08544   Mean   :0.0981  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP025             FP026            FP027             FP028        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.07911   Mean   :0.1171   Mean   :0.07911   Mean   :0.05696  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##      FP029             FP030             FP031            FP032       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.05063   Mean   :0.08228   Mean   :0.0981   Mean   :0.1297  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
##      FP033            FP034             FP035            FP036        
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.1203   Mean   :0.06646   Mean   :0.0981   Mean   :0.06013  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP037             FP038             FP039             FP040        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.09494   Mean   :0.03165   Mean   :0.06329   Mean   :0.05696  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP041             FP042             FP043            FP044        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.06013   Mean   :0.06013   Mean   :0.0443   Mean   :0.06013  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP045             FP046            FP047            FP048       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.06329   Mean   :0.3259   Mean   :0.2975   Mean   :0.1139  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP049            FP050            FP051             FP052       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1076   Mean   :0.1139   Mean   :0.05696   Mean   :0.1044  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP053             FP054            FP055             FP056        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.06013   Mean   :0.0981   Mean   :0.09177   Mean   :0.06329  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##      FP057            FP058            FP059            FP060       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1234   Mean   :0.1361   Mean   :0.0443   Mean   :0.4525  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP061            FP062            FP063            FP064       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.3924   Mean   :0.4272   Mean   :0.3576   Mean   :0.3892  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP065            FP066            FP067            FP068       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.5981   Mean   :0.6171   Mean   :0.3259   Mean   :0.2911  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP069            FP070            FP071            FP072       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.3734   Mean   :0.3323   Mean   :0.3449   Mean   :0.6456  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP073            FP074            FP075            FP076       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2911   Mean   :0.3259   Mean   :0.2563   Mean   :0.3165  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP077           FP078            FP079            FP080       
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.307   Mean   :0.3101   Mean   :0.7278   Mean   :0.2627  
##  3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP081           FP082            FP083            FP084       
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.000   Median :1.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.288   Mean   :0.7437   Mean   :0.2532   Mean   :0.2247  
##  3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP085           FP086            FP087            FP088       
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :0.000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.269   Mean   :0.2722   Mean   :0.7627   Mean   :0.2437  
##  3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP089            FP090            FP091           FP092       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.2532   Mean   :0.2278   Mean   :0.231   Mean   :0.2184  
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP093            FP094          FP095            FP096       
##  Min.   :0.0000   Min.   :0.00   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00   Median :0.0000   Median :0.0000  
##  Mean   :0.2152   Mean   :0.25   Mean   :0.2057   Mean   :0.1867  
##  3rd Qu.:0.0000   3rd Qu.:0.25   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00   Max.   :1.0000   Max.   :1.0000  
##      FP097            FP098            FP099           FP100       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.2089   Mean   :0.2025   Mean   :0.212   Mean   :0.1804  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP101            FP102            FP103            FP104       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1772   Mean   :0.1456   Mean   :0.2184   Mean   :0.1835  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP105            FP106            FP107            FP108       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2152   Mean   :0.1361   Mean   :0.1962   Mean   :0.1804  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP109            FP110            FP111            FP112       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1741   Mean   :0.1646   Mean   :0.1804   Mean   :0.1772  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP113            FP114            FP115            FP116       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1646   Mean   :0.1772   Mean   :0.1582   Mean   :0.1487  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP117            FP118            FP119            FP120       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1709   Mean   :0.1171   Mean   :0.1677   Mean   :0.1551  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP121            FP122            FP123            FP124       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1076   Mean   :0.1361   Mean   :0.1456   Mean   :0.1329  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP125            FP126            FP127            FP128       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1203   Mean   :0.1139   Mean   :0.1487   Mean   :0.1076  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP129            FP130             FP131            FP132       
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.1392   Mean   :0.08228   Mean   :0.1076   Mean   :0.1266  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
##      FP133            FP134             FP135             FP136       
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.0000  
##  Mean   :0.1361   Mean   :0.08544   Mean   :0.06329   Mean   :0.1013  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000  
##      FP137             FP138             FP139             FP140        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.08861   Mean   :0.08228   Mean   :0.06329   Mean   :0.08861  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP141             FP142             FP143            FP144        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.06962   Mean   :0.09494   Mean   :0.0538   Mean   :0.09177  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP145             FP146             FP147             FP148        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06329   Mean   :0.09177   Mean   :0.06962   Mean   :0.07911  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP149             FP150             FP151             FP152       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.0000  
##  Mean   :0.08228   Mean   :0.06646   Mean   :0.03165   Mean   :0.0538  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000  
##      FP153             FP154             FP155             FP156        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.03481   Mean   :0.03165   Mean   :0.06646   Mean   :0.04747  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP157             FP158             FP159             FP160        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.05696   Mean   :0.07911   Mean   :0.03481   Mean   :0.03481  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP161             FP162            FP163            FP164       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.03481   Mean   :0.5316   Mean   :0.4525   Mean   :0.6551  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP165            FP166            FP167            FP168       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.3196   Mean   :0.3386   Mean   :0.3006   Mean   :0.7152  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP169            FP170            FP171            FP172       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1867   Mean   :0.1551   Mean   :0.1297   Mean   :0.1487  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP173            FP174            FP175            FP176       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1361   Mean   :0.1551   Mean   :0.1329   Mean   :0.1076  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP177            FP178            FP179            FP180        
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :0.1013   Mean   :0.1076   Mean   :0.1392   Mean   :0.06962  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##      FP181            FP182             FP183            FP184        
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.1044   Mean   :0.07595   Mean   :0.1329   Mean   :0.09494  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP185            FP186             FP187             FP188        
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.0981   Mean   :0.06013   Mean   :0.06646   Mean   :0.06962  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP189             FP190            FP191             FP192        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.04114   Mean   :0.0538   Mean   :0.05696   Mean   :0.06962  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##      FP193             FP194             FP195             FP196        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06962   Mean   :0.06646   Mean   :0.05063   Mean   :0.06962  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP197             FP198            FP199             FP200        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.06329   Mean   :0.0443   Mean   :0.07278   Mean   :0.06329  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##      FP201             FP202            FP203            FP204        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :0.04114   Mean   :0.2658   Mean   :0.1361   Mean   :0.09494  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##      FP205             FP206             FP207            FP208       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.07911   Mean   :0.05063   Mean   :0.0443   Mean   :0.1361  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
##    MolWeight         NumAtoms     NumNonHAtoms      NumBonds   NumNonHBonds 
##  Min.   : 56.07   Min.   : 5.0   Min.   : 3.00   Min.   : 4   Min.   : 2.0  
##  1st Qu.:121.91   1st Qu.:17.0   1st Qu.: 8.00   1st Qu.:16   1st Qu.: 8.0  
##  Median :170.11   Median :22.0   Median :11.00   Median :23   Median :12.0  
##  Mean   :194.12   Mean   :24.6   Mean   :12.71   Mean   :25   Mean   :13.1  
##  3rd Qu.:253.82   3rd Qu.:29.0   3rd Qu.:16.00   3rd Qu.:30   3rd Qu.:17.0  
##  Max.   :478.92   Max.   :68.0   Max.   :33.00   Max.   :71   Max.   :36.0  
##   NumMultBonds     NumRotBonds      NumDblBonds     NumAromaticBonds
##  Min.   : 0.000   Min.   : 0.000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.: 1.000   1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.: 0.000  
##  Median : 6.000   Median : 1.000   Median :1.0000   Median : 6.000  
##  Mean   : 6.313   Mean   : 1.949   Mean   :0.8892   Mean   : 5.399  
##  3rd Qu.:10.000   3rd Qu.: 3.000   3rd Qu.:1.0000   3rd Qu.:10.000  
##  Max.   :27.000   Max.   :16.000   Max.   :6.0000   Max.   :27.000  
##   NumHydrogen     NumCarbon       NumNitrogen       NumOxygen    
##  Min.   : 0.0   Min.   : 1.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.: 7.0   1st Qu.: 6.000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :11.0   Median : 8.000   Median :0.0000   Median :1.000  
##  Mean   :11.9   Mean   : 9.785   Mean   :0.7089   Mean   :1.389  
##  3rd Qu.:15.0   3rd Qu.:12.000   3rd Qu.:1.0000   3rd Qu.:2.000  
##  Max.   :40.0   Max.   :24.000   Max.   :6.0000   Max.   :9.000  
##    NumSulfer       NumChlorine      NumHalogen        NumRings    
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:1.000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :1.000  
##  Mean   :0.1013   Mean   :0.557   Mean   :0.7089   Mean   :1.399  
##  3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:1.0000   3rd Qu.:2.000  
##  Max.   :3.0000   Max.   :9.000   Max.   :9.0000   Max.   :6.000  
##  HydrophilicFactor  SurfaceArea1     SurfaceArea2    Log_Solubility_Class
##  Min.   :-0.9860   Min.   :  0.00   Min.   :  0.00   Low :143            
##  1st Qu.:-0.7670   1st Qu.:  9.23   1st Qu.:  9.23   High:173            
##  Median :-0.3970   Median : 26.30   Median : 26.30                       
##  Mean   :-0.1022   Mean   : 32.76   Mean   : 35.04                       
##  3rd Qu.: 0.2140   3rd Qu.: 49.55   3rd Qu.: 52.32                       
##  Max.   : 5.0000   Max.   :201.85   Max.   :201.85
##################################
# Formulating a data type assessment summary
##################################
PDA <- Solubility_Train
(PDA.Summary <- data.frame(
  Column.Index=c(1:length(names(PDA))),
  Column.Name= names(PDA), 
  Column.Type=sapply(PDA, function(x) class(x)), 
  row.names=NULL)
)
##     Column.Index          Column.Name Column.Type
## 1              1                FP001     integer
## 2              2                FP002     integer
## 3              3                FP003     integer
## 4              4                FP004     integer
## 5              5                FP005     integer
## 6              6                FP006     integer
## 7              7                FP007     integer
## 8              8                FP008     integer
## 9              9                FP009     integer
## 10            10                FP010     integer
## 11            11                FP011     integer
## 12            12                FP012     integer
## 13            13                FP013     integer
## 14            14                FP014     integer
## 15            15                FP015     integer
## 16            16                FP016     integer
## 17            17                FP017     integer
## 18            18                FP018     integer
## 19            19                FP019     integer
## 20            20                FP020     integer
## 21            21                FP021     integer
## 22            22                FP022     integer
## 23            23                FP023     integer
## 24            24                FP024     integer
## 25            25                FP025     integer
## 26            26                FP026     integer
## 27            27                FP027     integer
## 28            28                FP028     integer
## 29            29                FP029     integer
## 30            30                FP030     integer
## 31            31                FP031     integer
## 32            32                FP032     integer
## 33            33                FP033     integer
## 34            34                FP034     integer
## 35            35                FP035     integer
## 36            36                FP036     integer
## 37            37                FP037     integer
## 38            38                FP038     integer
## 39            39                FP039     integer
## 40            40                FP040     integer
## 41            41                FP041     integer
## 42            42                FP042     integer
## 43            43                FP043     integer
## 44            44                FP044     integer
## 45            45                FP045     integer
## 46            46                FP046     integer
## 47            47                FP047     integer
## 48            48                FP048     integer
## 49            49                FP049     integer
## 50            50                FP050     integer
## 51            51                FP051     integer
## 52            52                FP052     integer
## 53            53                FP053     integer
## 54            54                FP054     integer
## 55            55                FP055     integer
## 56            56                FP056     integer
## 57            57                FP057     integer
## 58            58                FP058     integer
## 59            59                FP059     integer
## 60            60                FP060     integer
## 61            61                FP061     integer
## 62            62                FP062     integer
## 63            63                FP063     integer
## 64            64                FP064     integer
## 65            65                FP065     integer
## 66            66                FP066     integer
## 67            67                FP067     integer
## 68            68                FP068     integer
## 69            69                FP069     integer
## 70            70                FP070     integer
## 71            71                FP071     integer
## 72            72                FP072     integer
## 73            73                FP073     integer
## 74            74                FP074     integer
## 75            75                FP075     integer
## 76            76                FP076     integer
## 77            77                FP077     integer
## 78            78                FP078     integer
## 79            79                FP079     integer
## 80            80                FP080     integer
## 81            81                FP081     integer
## 82            82                FP082     integer
## 83            83                FP083     integer
## 84            84                FP084     integer
## 85            85                FP085     integer
## 86            86                FP086     integer
## 87            87                FP087     integer
## 88            88                FP088     integer
## 89            89                FP089     integer
## 90            90                FP090     integer
## 91            91                FP091     integer
## 92            92                FP092     integer
## 93            93                FP093     integer
## 94            94                FP094     integer
## 95            95                FP095     integer
## 96            96                FP096     integer
## 97            97                FP097     integer
## 98            98                FP098     integer
## 99            99                FP099     integer
## 100          100                FP100     integer
## 101          101                FP101     integer
## 102          102                FP102     integer
## 103          103                FP103     integer
## 104          104                FP104     integer
## 105          105                FP105     integer
## 106          106                FP106     integer
## 107          107                FP107     integer
## 108          108                FP108     integer
## 109          109                FP109     integer
## 110          110                FP110     integer
## 111          111                FP111     integer
## 112          112                FP112     integer
## 113          113                FP113     integer
## 114          114                FP114     integer
## 115          115                FP115     integer
## 116          116                FP116     integer
## 117          117                FP117     integer
## 118          118                FP118     integer
## 119          119                FP119     integer
## 120          120                FP120     integer
## 121          121                FP121     integer
## 122          122                FP122     integer
## 123          123                FP123     integer
## 124          124                FP124     integer
## 125          125                FP125     integer
## 126          126                FP126     integer
## 127          127                FP127     integer
## 128          128                FP128     integer
## 129          129                FP129     integer
## 130          130                FP130     integer
## 131          131                FP131     integer
## 132          132                FP132     integer
## 133          133                FP133     integer
## 134          134                FP134     integer
## 135          135                FP135     integer
## 136          136                FP136     integer
## 137          137                FP137     integer
## 138          138                FP138     integer
## 139          139                FP139     integer
## 140          140                FP140     integer
## 141          141                FP141     integer
## 142          142                FP142     integer
## 143          143                FP143     integer
## 144          144                FP144     integer
## 145          145                FP145     integer
## 146          146                FP146     integer
## 147          147                FP147     integer
## 148          148                FP148     integer
## 149          149                FP149     integer
## 150          150                FP150     integer
## 151          151                FP151     integer
## 152          152                FP152     integer
## 153          153                FP153     integer
## 154          154                FP154     integer
## 155          155                FP155     integer
## 156          156                FP156     integer
## 157          157                FP157     integer
## 158          158                FP158     integer
## 159          159                FP159     integer
## 160          160                FP160     integer
## 161          161                FP161     integer
## 162          162                FP162     integer
## 163          163                FP163     integer
## 164          164                FP164     integer
## 165          165                FP165     integer
## 166          166                FP166     integer
## 167          167                FP167     integer
## 168          168                FP168     integer
## 169          169                FP169     integer
## 170          170                FP170     integer
## 171          171                FP171     integer
## 172          172                FP172     integer
## 173          173                FP173     integer
## 174          174                FP174     integer
## 175          175                FP175     integer
## 176          176                FP176     integer
## 177          177                FP177     integer
## 178          178                FP178     integer
## 179          179                FP179     integer
## 180          180                FP180     integer
## 181          181                FP181     integer
## 182          182                FP182     integer
## 183          183                FP183     integer
## 184          184                FP184     integer
## 185          185                FP185     integer
## 186          186                FP186     integer
## 187          187                FP187     integer
## 188          188                FP188     integer
## 189          189                FP189     integer
## 190          190                FP190     integer
## 191          191                FP191     integer
## 192          192                FP192     integer
## 193          193                FP193     integer
## 194          194                FP194     integer
## 195          195                FP195     integer
## 196          196                FP196     integer
## 197          197                FP197     integer
## 198          198                FP198     integer
## 199          199                FP199     integer
## 200          200                FP200     integer
## 201          201                FP201     integer
## 202          202                FP202     integer
## 203          203                FP203     integer
## 204          204                FP204     integer
## 205          205                FP205     integer
## 206          206                FP206     integer
## 207          207                FP207     integer
## 208          208                FP208     integer
## 209          209            MolWeight     numeric
## 210          210             NumAtoms     integer
## 211          211         NumNonHAtoms     integer
## 212          212             NumBonds     integer
## 213          213         NumNonHBonds     integer
## 214          214         NumMultBonds     integer
## 215          215          NumRotBonds     integer
## 216          216          NumDblBonds     integer
## 217          217     NumAromaticBonds     integer
## 218          218          NumHydrogen     integer
## 219          219            NumCarbon     integer
## 220          220          NumNitrogen     integer
## 221          221            NumOxygen     integer
## 222          222            NumSulfer     integer
## 223          223          NumChlorine     integer
## 224          224           NumHalogen     integer
## 225          225             NumRings     integer
## 226          226    HydrophilicFactor     numeric
## 227          227         SurfaceArea1     numeric
## 228          228         SurfaceArea2     numeric
## 229          229 Log_Solubility_Class      factor

1.2 Data Quality Assessment


Data quality assessment:

[A] No missing observations noted for any variable.

[B] Low variance observed for 127 variables with First.Second.Mode.Ratio>5.
     [B.1]-[B.33] FP013 to FP045 variables (factor)
     [B.34]-[B.45] FP048 to FP059 variables (factor)
     [B.46] FP114 variable (factor)
     [B.47]-[B.50] FP119 to FP122 variable (factor)
     [B.51]-[B.88] FP124 to FP161 variables (factor)
     [B.89]-[B.118] FP172 to FP201 variables (factor)
     [B.119]-[B.124] FP203 to FP208 variables (factor)
     [B.125] NumSulfer variable (numeric)
     [B.126] NumChlorine variable (numeric)
     [B.127] NumHalogen variable (numeric)

[C] Low variance observed for 4 variables with Unique.Count.Ratio<0.01.
     [C.1] NumDblBonds variable (numeric)
     [C.2] NumNitrogen variable (numeric)
     [C.3] NumSulfer variable (numeric)
     [C.4] NumRings variable (numeric)

[D] High skewness observed for 3 variables with Skewness>3 or Skewness<(-3).
     [D.1] NumSulfer variable (numeric)
     [D.2] NumChlorine variable (numeric)
     [D.3] HydrophilicFactor variable (numeric)
##################################
# Loading dataset
##################################
DQA <- Solubility_Train

##################################
# Formulating an overall data quality assessment summary
##################################
(DQA.Summary <- data.frame(
  Column.Index=c(1:length(names(DQA))),
  Column.Name= names(DQA), 
  Column.Type=sapply(DQA, function(x) class(x)), 
  Row.Count=sapply(DQA, function(x) nrow(DQA)),
  NA.Count=sapply(DQA,function(x)sum(is.na(x))),
  Fill.Rate=sapply(DQA,function(x)format(round((sum(!is.na(x))/nrow(DQA)),3),nsmall=3)),
  row.names=NULL)
)
##     Column.Index          Column.Name Column.Type Row.Count NA.Count Fill.Rate
## 1              1                FP001     integer       951        0     1.000
## 2              2                FP002     integer       951        0     1.000
## 3              3                FP003     integer       951        0     1.000
## 4              4                FP004     integer       951        0     1.000
## 5              5                FP005     integer       951        0     1.000
## 6              6                FP006     integer       951        0     1.000
## 7              7                FP007     integer       951        0     1.000
## 8              8                FP008     integer       951        0     1.000
## 9              9                FP009     integer       951        0     1.000
## 10            10                FP010     integer       951        0     1.000
## 11            11                FP011     integer       951        0     1.000
## 12            12                FP012     integer       951        0     1.000
## 13            13                FP013     integer       951        0     1.000
## 14            14                FP014     integer       951        0     1.000
## 15            15                FP015     integer       951        0     1.000
## 16            16                FP016     integer       951        0     1.000
## 17            17                FP017     integer       951        0     1.000
## 18            18                FP018     integer       951        0     1.000
## 19            19                FP019     integer       951        0     1.000
## 20            20                FP020     integer       951        0     1.000
## 21            21                FP021     integer       951        0     1.000
## 22            22                FP022     integer       951        0     1.000
## 23            23                FP023     integer       951        0     1.000
## 24            24                FP024     integer       951        0     1.000
## 25            25                FP025     integer       951        0     1.000
## 26            26                FP026     integer       951        0     1.000
## 27            27                FP027     integer       951        0     1.000
## 28            28                FP028     integer       951        0     1.000
## 29            29                FP029     integer       951        0     1.000
## 30            30                FP030     integer       951        0     1.000
## 31            31                FP031     integer       951        0     1.000
## 32            32                FP032     integer       951        0     1.000
## 33            33                FP033     integer       951        0     1.000
## 34            34                FP034     integer       951        0     1.000
## 35            35                FP035     integer       951        0     1.000
## 36            36                FP036     integer       951        0     1.000
## 37            37                FP037     integer       951        0     1.000
## 38            38                FP038     integer       951        0     1.000
## 39            39                FP039     integer       951        0     1.000
## 40            40                FP040     integer       951        0     1.000
## 41            41                FP041     integer       951        0     1.000
## 42            42                FP042     integer       951        0     1.000
## 43            43                FP043     integer       951        0     1.000
## 44            44                FP044     integer       951        0     1.000
## 45            45                FP045     integer       951        0     1.000
## 46            46                FP046     integer       951        0     1.000
## 47            47                FP047     integer       951        0     1.000
## 48            48                FP048     integer       951        0     1.000
## 49            49                FP049     integer       951        0     1.000
## 50            50                FP050     integer       951        0     1.000
## 51            51                FP051     integer       951        0     1.000
## 52            52                FP052     integer       951        0     1.000
## 53            53                FP053     integer       951        0     1.000
## 54            54                FP054     integer       951        0     1.000
## 55            55                FP055     integer       951        0     1.000
## 56            56                FP056     integer       951        0     1.000
## 57            57                FP057     integer       951        0     1.000
## 58            58                FP058     integer       951        0     1.000
## 59            59                FP059     integer       951        0     1.000
## 60            60                FP060     integer       951        0     1.000
## 61            61                FP061     integer       951        0     1.000
## 62            62                FP062     integer       951        0     1.000
## 63            63                FP063     integer       951        0     1.000
## 64            64                FP064     integer       951        0     1.000
## 65            65                FP065     integer       951        0     1.000
## 66            66                FP066     integer       951        0     1.000
## 67            67                FP067     integer       951        0     1.000
## 68            68                FP068     integer       951        0     1.000
## 69            69                FP069     integer       951        0     1.000
## 70            70                FP070     integer       951        0     1.000
## 71            71                FP071     integer       951        0     1.000
## 72            72                FP072     integer       951        0     1.000
## 73            73                FP073     integer       951        0     1.000
## 74            74                FP074     integer       951        0     1.000
## 75            75                FP075     integer       951        0     1.000
## 76            76                FP076     integer       951        0     1.000
## 77            77                FP077     integer       951        0     1.000
## 78            78                FP078     integer       951        0     1.000
## 79            79                FP079     integer       951        0     1.000
## 80            80                FP080     integer       951        0     1.000
## 81            81                FP081     integer       951        0     1.000
## 82            82                FP082     integer       951        0     1.000
## 83            83                FP083     integer       951        0     1.000
## 84            84                FP084     integer       951        0     1.000
## 85            85                FP085     integer       951        0     1.000
## 86            86                FP086     integer       951        0     1.000
## 87            87                FP087     integer       951        0     1.000
## 88            88                FP088     integer       951        0     1.000
## 89            89                FP089     integer       951        0     1.000
## 90            90                FP090     integer       951        0     1.000
## 91            91                FP091     integer       951        0     1.000
## 92            92                FP092     integer       951        0     1.000
## 93            93                FP093     integer       951        0     1.000
## 94            94                FP094     integer       951        0     1.000
## 95            95                FP095     integer       951        0     1.000
## 96            96                FP096     integer       951        0     1.000
## 97            97                FP097     integer       951        0     1.000
## 98            98                FP098     integer       951        0     1.000
## 99            99                FP099     integer       951        0     1.000
## 100          100                FP100     integer       951        0     1.000
## 101          101                FP101     integer       951        0     1.000
## 102          102                FP102     integer       951        0     1.000
## 103          103                FP103     integer       951        0     1.000
## 104          104                FP104     integer       951        0     1.000
## 105          105                FP105     integer       951        0     1.000
## 106          106                FP106     integer       951        0     1.000
## 107          107                FP107     integer       951        0     1.000
## 108          108                FP108     integer       951        0     1.000
## 109          109                FP109     integer       951        0     1.000
## 110          110                FP110     integer       951        0     1.000
## 111          111                FP111     integer       951        0     1.000
## 112          112                FP112     integer       951        0     1.000
## 113          113                FP113     integer       951        0     1.000
## 114          114                FP114     integer       951        0     1.000
## 115          115                FP115     integer       951        0     1.000
## 116          116                FP116     integer       951        0     1.000
## 117          117                FP117     integer       951        0     1.000
## 118          118                FP118     integer       951        0     1.000
## 119          119                FP119     integer       951        0     1.000
## 120          120                FP120     integer       951        0     1.000
## 121          121                FP121     integer       951        0     1.000
## 122          122                FP122     integer       951        0     1.000
## 123          123                FP123     integer       951        0     1.000
## 124          124                FP124     integer       951        0     1.000
## 125          125                FP125     integer       951        0     1.000
## 126          126                FP126     integer       951        0     1.000
## 127          127                FP127     integer       951        0     1.000
## 128          128                FP128     integer       951        0     1.000
## 129          129                FP129     integer       951        0     1.000
## 130          130                FP130     integer       951        0     1.000
## 131          131                FP131     integer       951        0     1.000
## 132          132                FP132     integer       951        0     1.000
## 133          133                FP133     integer       951        0     1.000
## 134          134                FP134     integer       951        0     1.000
## 135          135                FP135     integer       951        0     1.000
## 136          136                FP136     integer       951        0     1.000
## 137          137                FP137     integer       951        0     1.000
## 138          138                FP138     integer       951        0     1.000
## 139          139                FP139     integer       951        0     1.000
## 140          140                FP140     integer       951        0     1.000
## 141          141                FP141     integer       951        0     1.000
## 142          142                FP142     integer       951        0     1.000
## 143          143                FP143     integer       951        0     1.000
## 144          144                FP144     integer       951        0     1.000
## 145          145                FP145     integer       951        0     1.000
## 146          146                FP146     integer       951        0     1.000
## 147          147                FP147     integer       951        0     1.000
## 148          148                FP148     integer       951        0     1.000
## 149          149                FP149     integer       951        0     1.000
## 150          150                FP150     integer       951        0     1.000
## 151          151                FP151     integer       951        0     1.000
## 152          152                FP152     integer       951        0     1.000
## 153          153                FP153     integer       951        0     1.000
## 154          154                FP154     integer       951        0     1.000
## 155          155                FP155     integer       951        0     1.000
## 156          156                FP156     integer       951        0     1.000
## 157          157                FP157     integer       951        0     1.000
## 158          158                FP158     integer       951        0     1.000
## 159          159                FP159     integer       951        0     1.000
## 160          160                FP160     integer       951        0     1.000
## 161          161                FP161     integer       951        0     1.000
## 162          162                FP162     integer       951        0     1.000
## 163          163                FP163     integer       951        0     1.000
## 164          164                FP164     integer       951        0     1.000
## 165          165                FP165     integer       951        0     1.000
## 166          166                FP166     integer       951        0     1.000
## 167          167                FP167     integer       951        0     1.000
## 168          168                FP168     integer       951        0     1.000
## 169          169                FP169     integer       951        0     1.000
## 170          170                FP170     integer       951        0     1.000
## 171          171                FP171     integer       951        0     1.000
## 172          172                FP172     integer       951        0     1.000
## 173          173                FP173     integer       951        0     1.000
## 174          174                FP174     integer       951        0     1.000
## 175          175                FP175     integer       951        0     1.000
## 176          176                FP176     integer       951        0     1.000
## 177          177                FP177     integer       951        0     1.000
## 178          178                FP178     integer       951        0     1.000
## 179          179                FP179     integer       951        0     1.000
## 180          180                FP180     integer       951        0     1.000
## 181          181                FP181     integer       951        0     1.000
## 182          182                FP182     integer       951        0     1.000
## 183          183                FP183     integer       951        0     1.000
## 184          184                FP184     integer       951        0     1.000
## 185          185                FP185     integer       951        0     1.000
## 186          186                FP186     integer       951        0     1.000
## 187          187                FP187     integer       951        0     1.000
## 188          188                FP188     integer       951        0     1.000
## 189          189                FP189     integer       951        0     1.000
## 190          190                FP190     integer       951        0     1.000
## 191          191                FP191     integer       951        0     1.000
## 192          192                FP192     integer       951        0     1.000
## 193          193                FP193     integer       951        0     1.000
## 194          194                FP194     integer       951        0     1.000
## 195          195                FP195     integer       951        0     1.000
## 196          196                FP196     integer       951        0     1.000
## 197          197                FP197     integer       951        0     1.000
## 198          198                FP198     integer       951        0     1.000
## 199          199                FP199     integer       951        0     1.000
## 200          200                FP200     integer       951        0     1.000
## 201          201                FP201     integer       951        0     1.000
## 202          202                FP202     integer       951        0     1.000
## 203          203                FP203     integer       951        0     1.000
## 204          204                FP204     integer       951        0     1.000
## 205          205                FP205     integer       951        0     1.000
## 206          206                FP206     integer       951        0     1.000
## 207          207                FP207     integer       951        0     1.000
## 208          208                FP208     integer       951        0     1.000
## 209          209            MolWeight     numeric       951        0     1.000
## 210          210             NumAtoms     integer       951        0     1.000
## 211          211         NumNonHAtoms     integer       951        0     1.000
## 212          212             NumBonds     integer       951        0     1.000
## 213          213         NumNonHBonds     integer       951        0     1.000
## 214          214         NumMultBonds     integer       951        0     1.000
## 215          215          NumRotBonds     integer       951        0     1.000
## 216          216          NumDblBonds     integer       951        0     1.000
## 217          217     NumAromaticBonds     integer       951        0     1.000
## 218          218          NumHydrogen     integer       951        0     1.000
## 219          219            NumCarbon     integer       951        0     1.000
## 220          220          NumNitrogen     integer       951        0     1.000
## 221          221            NumOxygen     integer       951        0     1.000
## 222          222            NumSulfer     integer       951        0     1.000
## 223          223          NumChlorine     integer       951        0     1.000
## 224          224           NumHalogen     integer       951        0     1.000
## 225          225             NumRings     integer       951        0     1.000
## 226          226    HydrophilicFactor     numeric       951        0     1.000
## 227          227         SurfaceArea1     numeric       951        0     1.000
## 228          228         SurfaceArea2     numeric       951        0     1.000
## 229          229 Log_Solubility_Class      factor       951        0     1.000
##################################
# Listing all predictors
##################################
DQA.Predictors <- DQA[,!names(DQA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DQA.Predictors.Numeric <- DQA.Predictors[,-(grep("FP", names(DQA.Predictors)))]

if (length(names(DQA.Predictors.Numeric))>0) {
    print(paste0("There are ",
               (length(names(DQA.Predictors.Numeric))),
               " numeric predictor variable(s)."))
} else {
  print("There are no numeric predictor variables.")
}
## [1] "There are 20 numeric predictor variable(s)."
##################################
# Listing all factor predictors
##################################
DQA.Predictors.Factor <-as.data.frame(lapply(DQA.Predictors[(grep("FP", names(DQA.Predictors)))],factor))

if (length(names(DQA.Predictors.Factor))>0) {
    print(paste0("There are ",
               (length(names(DQA.Predictors.Factor))),
               " factor predictor variable(s)."))
} else {
  print("There are no factor predictor variables.")
}
## [1] "There are 208 factor predictor variable(s)."
##################################
# Formulating a data quality assessment summary for factor predictors
##################################
if (length(names(DQA.Predictors.Factor))>0) {
  
  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = x[!(x %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return("x"),
           return(usm[tabsm == max(tabsm)]))
  }
  
  (DQA.Predictors.Factor.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Factor), 
  Column.Type=sapply(DQA.Predictors.Factor, function(x) class(x)), 
  Unique.Count=sapply(DQA.Predictors.Factor, function(x) length(unique(x))),
  First.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(FirstModes(x)[1])),
  Second.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(SecondModes(x)[1])),
  First.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  Unique.Count.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Factor)),3), nsmall=3)),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  row.names=NULL)
  )
  
} 
##     Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 1         FP001      factor            2                0                 1
## 2         FP002      factor            2                1                 0
## 3         FP003      factor            2                0                 1
## 4         FP004      factor            2                1                 0
## 5         FP005      factor            2                1                 0
## 6         FP006      factor            2                0                 1
## 7         FP007      factor            2                0                 1
## 8         FP008      factor            2                0                 1
## 9         FP009      factor            2                0                 1
## 10        FP010      factor            2                0                 1
## 11        FP011      factor            2                0                 1
## 12        FP012      factor            2                0                 1
## 13        FP013      factor            2                0                 1
## 14        FP014      factor            2                0                 1
## 15        FP015      factor            2                1                 0
## 16        FP016      factor            2                0                 1
## 17        FP017      factor            2                0                 1
## 18        FP018      factor            2                0                 1
## 19        FP019      factor            2                0                 1
## 20        FP020      factor            2                0                 1
## 21        FP021      factor            2                0                 1
## 22        FP022      factor            2                0                 1
## 23        FP023      factor            2                0                 1
## 24        FP024      factor            2                0                 1
## 25        FP025      factor            2                0                 1
## 26        FP026      factor            2                0                 1
## 27        FP027      factor            2                0                 1
## 28        FP028      factor            2                0                 1
## 29        FP029      factor            2                0                 1
## 30        FP030      factor            2                0                 1
## 31        FP031      factor            2                0                 1
## 32        FP032      factor            2                0                 1
## 33        FP033      factor            2                0                 1
## 34        FP034      factor            2                0                 1
## 35        FP035      factor            2                0                 1
## 36        FP036      factor            2                0                 1
## 37        FP037      factor            2                0                 1
## 38        FP038      factor            2                0                 1
## 39        FP039      factor            2                0                 1
## 40        FP040      factor            2                0                 1
## 41        FP041      factor            2                0                 1
## 42        FP042      factor            2                0                 1
## 43        FP043      factor            2                0                 1
## 44        FP044      factor            2                0                 1
## 45        FP045      factor            2                0                 1
## 46        FP046      factor            2                0                 1
## 47        FP047      factor            2                0                 1
## 48        FP048      factor            2                0                 1
## 49        FP049      factor            2                0                 1
## 50        FP050      factor            2                0                 1
## 51        FP051      factor            2                0                 1
## 52        FP052      factor            2                0                 1
## 53        FP053      factor            2                0                 1
## 54        FP054      factor            2                0                 1
## 55        FP055      factor            2                0                 1
## 56        FP056      factor            2                0                 1
## 57        FP057      factor            2                0                 1
## 58        FP058      factor            2                0                 1
## 59        FP059      factor            2                0                 1
## 60        FP060      factor            2                0                 1
## 61        FP061      factor            2                0                 1
## 62        FP062      factor            2                0                 1
## 63        FP063      factor            2                0                 1
## 64        FP064      factor            2                0                 1
## 65        FP065      factor            2                1                 0
## 66        FP066      factor            2                1                 0
## 67        FP067      factor            2                0                 1
## 68        FP068      factor            2                0                 1
## 69        FP069      factor            2                0                 1
## 70        FP070      factor            2                0                 1
## 71        FP071      factor            2                0                 1
## 72        FP072      factor            2                1                 0
## 73        FP073      factor            2                0                 1
## 74        FP074      factor            2                0                 1
## 75        FP075      factor            2                0                 1
## 76        FP076      factor            2                0                 1
## 77        FP077      factor            2                0                 1
## 78        FP078      factor            2                0                 1
## 79        FP079      factor            2                1                 0
## 80        FP080      factor            2                0                 1
## 81        FP081      factor            2                0                 1
## 82        FP082      factor            2                1                 0
## 83        FP083      factor            2                0                 1
## 84        FP084      factor            2                0                 1
## 85        FP085      factor            2                0                 1
## 86        FP086      factor            2                0                 1
## 87        FP087      factor            2                1                 0
## 88        FP088      factor            2                0                 1
## 89        FP089      factor            2                0                 1
## 90        FP090      factor            2                0                 1
## 91        FP091      factor            2                0                 1
## 92        FP092      factor            2                0                 1
## 93        FP093      factor            2                0                 1
## 94        FP094      factor            2                0                 1
## 95        FP095      factor            2                0                 1
## 96        FP096      factor            2                0                 1
## 97        FP097      factor            2                0                 1
## 98        FP098      factor            2                0                 1
## 99        FP099      factor            2                0                 1
## 100       FP100      factor            2                0                 1
## 101       FP101      factor            2                0                 1
## 102       FP102      factor            2                0                 1
## 103       FP103      factor            2                0                 1
## 104       FP104      factor            2                0                 1
## 105       FP105      factor            2                0                 1
## 106       FP106      factor            2                0                 1
## 107       FP107      factor            2                0                 1
## 108       FP108      factor            2                0                 1
## 109       FP109      factor            2                0                 1
## 110       FP110      factor            2                0                 1
## 111       FP111      factor            2                0                 1
## 112       FP112      factor            2                0                 1
## 113       FP113      factor            2                0                 1
## 114       FP114      factor            2                0                 1
## 115       FP115      factor            2                0                 1
## 116       FP116      factor            2                0                 1
## 117       FP117      factor            2                0                 1
## 118       FP118      factor            2                0                 1
## 119       FP119      factor            2                0                 1
## 120       FP120      factor            2                0                 1
## 121       FP121      factor            2                0                 1
## 122       FP122      factor            2                0                 1
## 123       FP123      factor            2                0                 1
## 124       FP124      factor            2                0                 1
## 125       FP125      factor            2                0                 1
## 126       FP126      factor            2                0                 1
## 127       FP127      factor            2                0                 1
## 128       FP128      factor            2                0                 1
## 129       FP129      factor            2                0                 1
## 130       FP130      factor            2                0                 1
## 131       FP131      factor            2                0                 1
## 132       FP132      factor            2                0                 1
## 133       FP133      factor            2                0                 1
## 134       FP134      factor            2                0                 1
## 135       FP135      factor            2                0                 1
## 136       FP136      factor            2                0                 1
## 137       FP137      factor            2                0                 1
## 138       FP138      factor            2                0                 1
## 139       FP139      factor            2                0                 1
## 140       FP140      factor            2                0                 1
## 141       FP141      factor            2                0                 1
## 142       FP142      factor            2                0                 1
## 143       FP143      factor            2                0                 1
## 144       FP144      factor            2                0                 1
## 145       FP145      factor            2                0                 1
## 146       FP146      factor            2                0                 1
## 147       FP147      factor            2                0                 1
## 148       FP148      factor            2                0                 1
## 149       FP149      factor            2                0                 1
## 150       FP150      factor            2                0                 1
## 151       FP151      factor            2                0                 1
## 152       FP152      factor            2                0                 1
## 153       FP153      factor            2                0                 1
## 154       FP154      factor            2                0                 1
## 155       FP155      factor            2                0                 1
## 156       FP156      factor            2                0                 1
## 157       FP157      factor            2                0                 1
## 158       FP158      factor            2                0                 1
## 159       FP159      factor            2                0                 1
## 160       FP160      factor            2                0                 1
## 161       FP161      factor            2                0                 1
## 162       FP162      factor            2                0                 1
## 163       FP163      factor            2                0                 1
## 164       FP164      factor            2                1                 0
## 165       FP165      factor            2                0                 1
## 166       FP166      factor            2                0                 1
## 167       FP167      factor            2                0                 1
## 168       FP168      factor            2                1                 0
## 169       FP169      factor            2                0                 1
## 170       FP170      factor            2                0                 1
## 171       FP171      factor            2                0                 1
## 172       FP172      factor            2                0                 1
## 173       FP173      factor            2                0                 1
## 174       FP174      factor            2                0                 1
## 175       FP175      factor            2                0                 1
## 176       FP176      factor            2                0                 1
## 177       FP177      factor            2                0                 1
## 178       FP178      factor            2                0                 1
## 179       FP179      factor            2                0                 1
## 180       FP180      factor            2                0                 1
## 181       FP181      factor            2                0                 1
## 182       FP182      factor            2                0                 1
## 183       FP183      factor            2                0                 1
## 184       FP184      factor            2                0                 1
## 185       FP185      factor            2                0                 1
## 186       FP186      factor            2                0                 1
## 187       FP187      factor            2                0                 1
## 188       FP188      factor            2                0                 1
## 189       FP189      factor            2                0                 1
## 190       FP190      factor            2                0                 1
## 191       FP191      factor            2                0                 1
## 192       FP192      factor            2                0                 1
## 193       FP193      factor            2                0                 1
## 194       FP194      factor            2                0                 1
## 195       FP195      factor            2                0                 1
## 196       FP196      factor            2                0                 1
## 197       FP197      factor            2                0                 1
## 198       FP198      factor            2                0                 1
## 199       FP199      factor            2                0                 1
## 200       FP200      factor            2                0                 1
## 201       FP201      factor            2                0                 1
## 202       FP202      factor            2                0                 1
## 203       FP203      factor            2                0                 1
## 204       FP204      factor            2                0                 1
## 205       FP205      factor            2                0                 1
## 206       FP206      factor            2                0                 1
## 207       FP207      factor            2                0                 1
## 208       FP208      factor            2                0                 1
##     First.Mode.Count Second.Mode.Count Unique.Count.Ratio
## 1                482               469              0.002
## 2                513               438              0.002
## 3                536               415              0.002
## 4                556               395              0.002
## 5                551               400              0.002
## 6                570               381              0.002
## 7                605               346              0.002
## 8                641               310              0.002
## 9                685               266              0.002
## 10               781               170              0.002
## 11               747               204              0.002
## 12               783               168              0.002
## 13               793               158              0.002
## 14               798               153              0.002
## 15               818               133              0.002
## 16               812               139              0.002
## 17               814               137              0.002
## 18               826               125              0.002
## 19               835               116              0.002
## 20               837               114              0.002
## 21               836               115              0.002
## 22               852                99              0.002
## 23               834               117              0.002
## 24               844               107              0.002
## 25               841               110              0.002
## 26               871                80              0.002
## 27               858                93              0.002
## 28               850               101              0.002
## 29               854                97              0.002
## 30               862                89              0.002
## 31               866                85              0.002
## 32               881                70              0.002
## 33               885                66              0.002
## 34               875                76              0.002
## 35               882                69              0.002
## 36               879                72              0.002
## 37               884                67              0.002
## 38               869                82              0.002
## 39               880                71              0.002
## 40               886                65              0.002
## 41               891                60              0.002
## 42               897                54              0.002
## 43               888                63              0.002
## 44               894                57              0.002
## 45               898                53              0.002
## 46               651               300              0.002
## 47               698               253              0.002
## 48               833               118              0.002
## 49               835               116              0.002
## 50               844               107              0.002
## 51               847               104              0.002
## 52               864                87              0.002
## 53               862                89              0.002
## 54               879                72              0.002
## 55               900                51              0.002
## 56               889                62              0.002
## 57               837               114              0.002
## 58               843               108              0.002
## 59               899                52              0.002
## 60               493               458              0.002
## 61               526               425              0.002
## 62               535               416              0.002
## 63               546               405              0.002
## 64               555               396              0.002
## 65               564               387              0.002
## 66               580               371              0.002
## 67               590               361              0.002
## 68               607               344              0.002
## 69               607               344              0.002
## 70               613               338              0.002
## 71               640               311              0.002
## 72               626               325              0.002
## 73               656               295              0.002
## 74               642               309              0.002
## 75               629               322              0.002
## 76               639               312              0.002
## 77               646               305              0.002
## 78               662               289              0.002
## 79               656               295              0.002
## 80               663               288              0.002
## 81               686               265              0.002
## 82               679               272              0.002
## 83               691               260              0.002
## 84               679               272              0.002
## 85               708               243              0.002
## 86               695               256              0.002
## 87               691               260              0.002
## 88               701               250              0.002
## 89               716               235              0.002
## 90               714               237              0.002
## 91               737               214              0.002
## 92               719               232              0.002
## 93               719               232              0.002
## 94               731               220              0.002
## 95               742               209              0.002
## 96               744               207              0.002
## 97               727               224              0.002
## 98               725               226              0.002
## 99               735               216              0.002
## 100              731               220              0.002
## 101              726               225              0.002
## 102              759               192              0.002
## 103              743               208              0.002
## 104              739               212              0.002
## 105              746               205              0.002
## 106              769               182              0.002
## 107              750               201              0.002
## 108              756               195              0.002
## 109              783               168              0.002
## 110              755               196              0.002
## 111              764               187              0.002
## 112              766               185              0.002
## 113              765               186              0.002
## 114              803               148              0.002
## 115              781               170              0.002
## 116              768               183              0.002
## 117              781               170              0.002
## 118              768               183              0.002
## 119              796               155              0.002
## 120              793               158              0.002
## 121              818               133              0.002
## 122              795               156              0.002
## 123              792               159              0.002
## 124              797               154              0.002
## 125              803               148              0.002
## 126              810               141              0.002
## 127              818               133              0.002
## 128              810               141              0.002
## 129              819               132              0.002
## 130              851               100              0.002
## 131              831               120              0.002
## 132              832               119              0.002
## 133              831               120              0.002
## 134              830               121              0.002
## 135              831               120              0.002
## 136              836               115              0.002
## 137              841               110              0.002
## 138              845               106              0.002
## 139              873                78              0.002
## 140              845               106              0.002
## 141              840               111              0.002
## 142              847               104              0.002
## 143              874                77              0.002
## 144              852                99              0.002
## 145              852                99              0.002
## 146              853                98              0.002
## 147              851               100              0.002
## 148              868                83              0.002
## 149              865                86              0.002
## 150              876                75              0.002
## 151              898                53              0.002
## 152              873                78              0.002
## 153              877                74              0.002
## 154              915                36              0.002
## 155              885                66              0.002
## 156              884                67              0.002
## 157              892                59              0.002
## 158              900                51              0.002
## 159              884                67              0.002
## 160              886                65              0.002
## 161              888                63              0.002
## 162              480               471              0.002
## 163              498               453              0.002
## 164              597               354              0.002
## 165              619               332              0.002
## 166              636               315              0.002
## 167              639               312              0.002
## 168              633               318              0.002
## 169              774               177              0.002
## 170              776               175              0.002
## 171              790               161              0.002
## 172              807               144              0.002
## 173              816               135              0.002
## 174              827               124              0.002
## 175              823               128              0.002
## 176              835               116              0.002
## 177              836               115              0.002
## 178              836               115              0.002
## 179              858                93              0.002
## 180              849               102              0.002
## 181              862                89              0.002
## 182              857                94              0.002
## 183              879                72              0.002
## 184              871                80              0.002
## 185              870                81              0.002
## 186              878                73              0.002
## 187              882                69              0.002
## 188              886                65              0.002
## 189              878                73              0.002
## 190              882                69              0.002
## 191              884                67              0.002
## 192              893                58              0.002
## 193              892                59              0.002
## 194              895                56              0.002
## 195              893                58              0.002
## 196              897                54              0.002
## 197              901                50              0.002
## 198              897                54              0.002
## 199              906                45              0.002
## 200              904                47              0.002
## 201              901                50              0.002
## 202              706               245              0.002
## 203              842               109              0.002
## 204              857                94              0.002
## 205              877                74              0.002
## 206              894                57              0.002
## 207              897                54              0.002
## 208              844               107              0.002
##     First.Second.Mode.Ratio
## 1                     1.028
## 2                     1.171
## 3                     1.292
## 4                     1.408
## 5                     1.377
## 6                     1.496
## 7                     1.749
## 8                     2.068
## 9                     2.575
## 10                    4.594
## 11                    3.662
## 12                    4.661
## 13                    5.019
## 14                    5.216
## 15                    6.150
## 16                    5.842
## 17                    5.942
## 18                    6.608
## 19                    7.198
## 20                    7.342
## 21                    7.270
## 22                    8.606
## 23                    7.128
## 24                    7.888
## 25                    7.645
## 26                   10.887
## 27                    9.226
## 28                    8.416
## 29                    8.804
## 30                    9.685
## 31                   10.188
## 32                   12.586
## 33                   13.409
## 34                   11.513
## 35                   12.783
## 36                   12.208
## 37                   13.194
## 38                   10.598
## 39                   12.394
## 40                   13.631
## 41                   14.850
## 42                   16.611
## 43                   14.095
## 44                   15.684
## 45                   16.943
## 46                    2.170
## 47                    2.759
## 48                    7.059
## 49                    7.198
## 50                    7.888
## 51                    8.144
## 52                    9.931
## 53                    9.685
## 54                   12.208
## 55                   17.647
## 56                   14.339
## 57                    7.342
## 58                    7.806
## 59                   17.288
## 60                    1.076
## 61                    1.238
## 62                    1.286
## 63                    1.348
## 64                    1.402
## 65                    1.457
## 66                    1.563
## 67                    1.634
## 68                    1.765
## 69                    1.765
## 70                    1.814
## 71                    2.058
## 72                    1.926
## 73                    2.224
## 74                    2.078
## 75                    1.953
## 76                    2.048
## 77                    2.118
## 78                    2.291
## 79                    2.224
## 80                    2.302
## 81                    2.589
## 82                    2.496
## 83                    2.658
## 84                    2.496
## 85                    2.914
## 86                    2.715
## 87                    2.658
## 88                    2.804
## 89                    3.047
## 90                    3.013
## 91                    3.444
## 92                    3.099
## 93                    3.099
## 94                    3.323
## 95                    3.550
## 96                    3.594
## 97                    3.246
## 98                    3.208
## 99                    3.403
## 100                   3.323
## 101                   3.227
## 102                   3.953
## 103                   3.572
## 104                   3.486
## 105                   3.639
## 106                   4.225
## 107                   3.731
## 108                   3.877
## 109                   4.661
## 110                   3.852
## 111                   4.086
## 112                   4.141
## 113                   4.113
## 114                   5.426
## 115                   4.594
## 116                   4.197
## 117                   4.594
## 118                   4.197
## 119                   5.135
## 120                   5.019
## 121                   6.150
## 122                   5.096
## 123                   4.981
## 124                   5.175
## 125                   5.426
## 126                   5.745
## 127                   6.150
## 128                   5.745
## 129                   6.205
## 130                   8.510
## 131                   6.925
## 132                   6.992
## 133                   6.925
## 134                   6.860
## 135                   6.925
## 136                   7.270
## 137                   7.645
## 138                   7.972
## 139                  11.192
## 140                   7.972
## 141                   7.568
## 142                   8.144
## 143                  11.351
## 144                   8.606
## 145                   8.606
## 146                   8.704
## 147                   8.510
## 148                  10.458
## 149                  10.058
## 150                  11.680
## 151                  16.943
## 152                  11.192
## 153                  11.851
## 154                  25.417
## 155                  13.409
## 156                  13.194
## 157                  15.119
## 158                  17.647
## 159                  13.194
## 160                  13.631
## 161                  14.095
## 162                   1.019
## 163                   1.099
## 164                   1.686
## 165                   1.864
## 166                   2.019
## 167                   2.048
## 168                   1.991
## 169                   4.373
## 170                   4.434
## 171                   4.907
## 172                   5.604
## 173                   6.044
## 174                   6.669
## 175                   6.430
## 176                   7.198
## 177                   7.270
## 178                   7.270
## 179                   9.226
## 180                   8.324
## 181                   9.685
## 182                   9.117
## 183                  12.208
## 184                  10.887
## 185                  10.741
## 186                  12.027
## 187                  12.783
## 188                  13.631
## 189                  12.027
## 190                  12.783
## 191                  13.194
## 192                  15.397
## 193                  15.119
## 194                  15.982
## 195                  15.397
## 196                  16.611
## 197                  18.020
## 198                  16.611
## 199                  20.133
## 200                  19.234
## 201                  18.020
## 202                   2.882
## 203                   7.725
## 204                   9.117
## 205                  11.851
## 206                  15.684
## 207                  16.611
## 208                   7.888
##################################
# Formulating a data quality assessment summary for numeric predictors
##################################
if (length(names(DQA.Predictors.Numeric))>0) {
  
  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = na.omit(x)[!(na.omit(x) %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return(0.00001),
           return(usm[tabsm == max(tabsm)]))
  }
  
  (DQA.Predictors.Numeric.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Numeric), 
  Column.Type=sapply(DQA.Predictors.Numeric, function(x) class(x)), 
  Unique.Count=sapply(DQA.Predictors.Numeric, function(x) length(unique(x))),
  Unique.Count.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Numeric)),3), nsmall=3)),
  First.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((FirstModes(x)[1]),3),nsmall=3)),
  Second.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((SecondModes(x)[1]),3),nsmall=3)),
  First.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  Minimum=sapply(DQA.Predictors.Numeric, function(x) format(round(min(x,na.rm = TRUE),3), nsmall=3)),
  Mean=sapply(DQA.Predictors.Numeric, function(x) format(round(mean(x,na.rm = TRUE),3), nsmall=3)),
  Median=sapply(DQA.Predictors.Numeric, function(x) format(round(median(x,na.rm = TRUE),3), nsmall=3)),
  Maximum=sapply(DQA.Predictors.Numeric, function(x) format(round(max(x,na.rm = TRUE),3), nsmall=3)),
  Skewness=sapply(DQA.Predictors.Numeric, function(x) format(round(skewness(x,na.rm = TRUE),3), nsmall=3)),
  Kurtosis=sapply(DQA.Predictors.Numeric, function(x) format(round(kurtosis(x,na.rm = TRUE),3), nsmall=3)),
  Percentile25th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.25,na.rm = TRUE),3), nsmall=3)),
  Percentile75th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.75,na.rm = TRUE),3), nsmall=3)),
  row.names=NULL)
  )  
  
}
##          Column.Name Column.Type Unique.Count Unique.Count.Ratio
## 1          MolWeight     numeric          646              0.679
## 2           NumAtoms     integer           66              0.069
## 3       NumNonHAtoms     integer           36              0.038
## 4           NumBonds     integer           72              0.076
## 5       NumNonHBonds     integer           39              0.041
## 6       NumMultBonds     integer           25              0.026
## 7        NumRotBonds     integer           15              0.016
## 8        NumDblBonds     integer            8              0.008
## 9   NumAromaticBonds     integer           16              0.017
## 10       NumHydrogen     integer           41              0.043
## 11         NumCarbon     integer           28              0.029
## 12       NumNitrogen     integer            7              0.007
## 13         NumOxygen     integer           11              0.012
## 14         NumSulfer     integer            5              0.005
## 15       NumChlorine     integer           11              0.012
## 16        NumHalogen     integer           11              0.012
## 17          NumRings     integer            8              0.008
## 18 HydrophilicFactor     numeric          369              0.388
## 19      SurfaceArea1     numeric          252              0.265
## 20      SurfaceArea2     numeric          287              0.302
##    First.Mode.Value Second.Mode.Value First.Mode.Count Second.Mode.Count
## 1           102.200           116.230               16                14
## 2            22.000            24.000               73                51
## 3             8.000            11.000              104                73
## 4            23.000            19.000               69                56
## 5             8.000             7.000               82                66
## 6             0.000             7.000              158               122
## 7             0.000             1.000              272               186
## 8             0.000             1.000              427               268
## 9             0.000             6.000              400               302
## 10           12.000             8.000               83                79
## 11            6.000             7.000              105                97
## 12            0.000             1.000              546               191
## 13            0.000             2.000              325               218
## 14            0.000             1.000              830                96
## 15            0.000             1.000              750                81
## 16            0.000             1.000              685               107
## 17            1.000             0.000              323               260
## 18           -0.828            -0.158               21                20
## 19            0.000            20.230              218                76
## 20            0.000            20.230              211                75
##    First.Second.Mode.Ratio Minimum    Mean  Median Maximum Skewness Kurtosis
## 1                    1.143  46.090 201.654 179.230 665.810    0.988    3.945
## 2                    1.431   5.000  25.507  22.000  94.000    1.364    5.523
## 3                    1.425   2.000  13.161  12.000  47.000    0.993    4.129
## 4                    1.232   4.000  25.909  23.000  97.000    1.360    5.408
## 5                    1.242   1.000  13.563  12.000  50.000    0.969    3.842
## 6                    1.295   0.000   6.148   6.000  25.000    0.670    3.053
## 7                    1.462   0.000   2.251   2.000  16.000    1.577    6.437
## 8                    1.593   0.000   1.006   1.000   7.000    1.360    4.760
## 9                    1.325   0.000   5.121   6.000  25.000    0.796    3.241
## 10                   1.051   0.000  12.346  11.000  47.000    1.262    5.261
## 11                   1.082   1.000   9.893   9.000  33.000    0.927    3.616
## 12                   2.859   0.000   0.813   0.000   6.000    1.554    4.831
## 13                   1.491   0.000   1.574   1.000  13.000    1.772    8.494
## 14                   8.646   0.000   0.164   0.000   4.000    3.842   21.526
## 15                   9.259   0.000   0.556   0.000  10.000    3.178   13.780
## 16                   6.402   0.000   0.698   0.000  10.000    2.691   10.808
## 17                   1.242   0.000   1.402   1.000   7.000    1.034    3.875
## 18                   1.050  -0.985  -0.021  -0.314  13.483    3.404   27.504
## 19                   2.868   0.000  36.459  29.100 331.940    1.714    9.714
## 20                   2.813   0.000  40.234  33.120 331.940    1.475    7.485
##    Percentile25th Percentile75th
## 1         122.605        264.340
## 2          17.000         31.000
## 3           8.000         17.000
## 4          17.000         31.500
## 5           8.000         18.000
## 6           1.000         10.000
## 7           0.000          3.500
## 8           0.000          2.000
## 9           0.000          6.000
## 10          7.000         16.000
## 11          6.000         12.000
## 12          0.000          1.000
## 13          0.000          2.000
## 14          0.000          0.000
## 15          0.000          0.000
## 16          0.000          1.000
## 17          0.000          2.000
## 18         -0.763          0.313
## 19          9.230         53.280
## 20         10.630         60.660
##################################
# Identifying potential data quality issues
##################################

##################################
# Checking for missing observations
##################################
if ((nrow(DQA.Summary[DQA.Summary$NA.Count>0,]))>0){
  print(paste0("Missing observations noted for ",
               (nrow(DQA.Summary[DQA.Summary$NA.Count>0,])),
               " variable(s) with NA.Count>0 and Fill.Rate<1.0."))
  DQA.Summary[DQA.Summary$NA.Count>0,]
} else {
  print("No missing observations noted.")
}
## [1] "No missing observations noted."
##################################
# Checking for zero or near-zero variance predictors
##################################
if (length(names(DQA.Predictors.Factor))==0) {
  print("No factor predictors noted.")
} else if (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])),
               " factor variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance factor predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 124 factor variable(s) with First.Second.Mode.Ratio>5."
##     Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 13        FP013      factor            2                0                 1
## 14        FP014      factor            2                0                 1
## 15        FP015      factor            2                1                 0
## 16        FP016      factor            2                0                 1
## 17        FP017      factor            2                0                 1
## 18        FP018      factor            2                0                 1
## 19        FP019      factor            2                0                 1
## 20        FP020      factor            2                0                 1
## 21        FP021      factor            2                0                 1
## 22        FP022      factor            2                0                 1
## 23        FP023      factor            2                0                 1
## 24        FP024      factor            2                0                 1
## 25        FP025      factor            2                0                 1
## 26        FP026      factor            2                0                 1
## 27        FP027      factor            2                0                 1
## 28        FP028      factor            2                0                 1
## 29        FP029      factor            2                0                 1
## 30        FP030      factor            2                0                 1
## 31        FP031      factor            2                0                 1
## 32        FP032      factor            2                0                 1
## 33        FP033      factor            2                0                 1
## 34        FP034      factor            2                0                 1
## 35        FP035      factor            2                0                 1
## 36        FP036      factor            2                0                 1
## 37        FP037      factor            2                0                 1
## 38        FP038      factor            2                0                 1
## 39        FP039      factor            2                0                 1
## 40        FP040      factor            2                0                 1
## 41        FP041      factor            2                0                 1
## 42        FP042      factor            2                0                 1
## 43        FP043      factor            2                0                 1
## 44        FP044      factor            2                0                 1
## 45        FP045      factor            2                0                 1
## 48        FP048      factor            2                0                 1
## 49        FP049      factor            2                0                 1
## 50        FP050      factor            2                0                 1
## 51        FP051      factor            2                0                 1
## 52        FP052      factor            2                0                 1
## 53        FP053      factor            2                0                 1
## 54        FP054      factor            2                0                 1
## 55        FP055      factor            2                0                 1
## 56        FP056      factor            2                0                 1
## 57        FP057      factor            2                0                 1
## 58        FP058      factor            2                0                 1
## 59        FP059      factor            2                0                 1
## 114       FP114      factor            2                0                 1
## 119       FP119      factor            2                0                 1
## 120       FP120      factor            2                0                 1
## 121       FP121      factor            2                0                 1
## 122       FP122      factor            2                0                 1
## 124       FP124      factor            2                0                 1
## 125       FP125      factor            2                0                 1
## 126       FP126      factor            2                0                 1
## 127       FP127      factor            2                0                 1
## 128       FP128      factor            2                0                 1
## 129       FP129      factor            2                0                 1
## 130       FP130      factor            2                0                 1
## 131       FP131      factor            2                0                 1
## 132       FP132      factor            2                0                 1
## 133       FP133      factor            2                0                 1
## 134       FP134      factor            2                0                 1
## 135       FP135      factor            2                0                 1
## 136       FP136      factor            2                0                 1
## 137       FP137      factor            2                0                 1
## 138       FP138      factor            2                0                 1
## 139       FP139      factor            2                0                 1
## 140       FP140      factor            2                0                 1
## 141       FP141      factor            2                0                 1
## 142       FP142      factor            2                0                 1
## 143       FP143      factor            2                0                 1
## 144       FP144      factor            2                0                 1
## 145       FP145      factor            2                0                 1
## 146       FP146      factor            2                0                 1
## 147       FP147      factor            2                0                 1
## 148       FP148      factor            2                0                 1
## 149       FP149      factor            2                0                 1
## 150       FP150      factor            2                0                 1
## 151       FP151      factor            2                0                 1
## 152       FP152      factor            2                0                 1
## 153       FP153      factor            2                0                 1
## 154       FP154      factor            2                0                 1
## 155       FP155      factor            2                0                 1
## 156       FP156      factor            2                0                 1
## 157       FP157      factor            2                0                 1
## 158       FP158      factor            2                0                 1
## 159       FP159      factor            2                0                 1
## 160       FP160      factor            2                0                 1
## 161       FP161      factor            2                0                 1
## 172       FP172      factor            2                0                 1
## 173       FP173      factor            2                0                 1
## 174       FP174      factor            2                0                 1
## 175       FP175      factor            2                0                 1
## 176       FP176      factor            2                0                 1
## 177       FP177      factor            2                0                 1
## 178       FP178      factor            2                0                 1
## 179       FP179      factor            2                0                 1
## 180       FP180      factor            2                0                 1
## 181       FP181      factor            2                0                 1
## 182       FP182      factor            2                0                 1
## 183       FP183      factor            2                0                 1
## 184       FP184      factor            2                0                 1
## 185       FP185      factor            2                0                 1
## 186       FP186      factor            2                0                 1
## 187       FP187      factor            2                0                 1
## 188       FP188      factor            2                0                 1
## 189       FP189      factor            2                0                 1
## 190       FP190      factor            2                0                 1
## 191       FP191      factor            2                0                 1
## 192       FP192      factor            2                0                 1
## 193       FP193      factor            2                0                 1
## 194       FP194      factor            2                0                 1
## 195       FP195      factor            2                0                 1
## 196       FP196      factor            2                0                 1
## 197       FP197      factor            2                0                 1
## 198       FP198      factor            2                0                 1
## 199       FP199      factor            2                0                 1
## 200       FP200      factor            2                0                 1
## 201       FP201      factor            2                0                 1
## 203       FP203      factor            2                0                 1
## 204       FP204      factor            2                0                 1
## 205       FP205      factor            2                0                 1
## 206       FP206      factor            2                0                 1
## 207       FP207      factor            2                0                 1
## 208       FP208      factor            2                0                 1
##     First.Mode.Count Second.Mode.Count Unique.Count.Ratio
## 13               793               158              0.002
## 14               798               153              0.002
## 15               818               133              0.002
## 16               812               139              0.002
## 17               814               137              0.002
## 18               826               125              0.002
## 19               835               116              0.002
## 20               837               114              0.002
## 21               836               115              0.002
## 22               852                99              0.002
## 23               834               117              0.002
## 24               844               107              0.002
## 25               841               110              0.002
## 26               871                80              0.002
## 27               858                93              0.002
## 28               850               101              0.002
## 29               854                97              0.002
## 30               862                89              0.002
## 31               866                85              0.002
## 32               881                70              0.002
## 33               885                66              0.002
## 34               875                76              0.002
## 35               882                69              0.002
## 36               879                72              0.002
## 37               884                67              0.002
## 38               869                82              0.002
## 39               880                71              0.002
## 40               886                65              0.002
## 41               891                60              0.002
## 42               897                54              0.002
## 43               888                63              0.002
## 44               894                57              0.002
## 45               898                53              0.002
## 48               833               118              0.002
## 49               835               116              0.002
## 50               844               107              0.002
## 51               847               104              0.002
## 52               864                87              0.002
## 53               862                89              0.002
## 54               879                72              0.002
## 55               900                51              0.002
## 56               889                62              0.002
## 57               837               114              0.002
## 58               843               108              0.002
## 59               899                52              0.002
## 114              803               148              0.002
## 119              796               155              0.002
## 120              793               158              0.002
## 121              818               133              0.002
## 122              795               156              0.002
## 124              797               154              0.002
## 125              803               148              0.002
## 126              810               141              0.002
## 127              818               133              0.002
## 128              810               141              0.002
## 129              819               132              0.002
## 130              851               100              0.002
## 131              831               120              0.002
## 132              832               119              0.002
## 133              831               120              0.002
## 134              830               121              0.002
## 135              831               120              0.002
## 136              836               115              0.002
## 137              841               110              0.002
## 138              845               106              0.002
## 139              873                78              0.002
## 140              845               106              0.002
## 141              840               111              0.002
## 142              847               104              0.002
## 143              874                77              0.002
## 144              852                99              0.002
## 145              852                99              0.002
## 146              853                98              0.002
## 147              851               100              0.002
## 148              868                83              0.002
## 149              865                86              0.002
## 150              876                75              0.002
## 151              898                53              0.002
## 152              873                78              0.002
## 153              877                74              0.002
## 154              915                36              0.002
## 155              885                66              0.002
## 156              884                67              0.002
## 157              892                59              0.002
## 158              900                51              0.002
## 159              884                67              0.002
## 160              886                65              0.002
## 161              888                63              0.002
## 172              807               144              0.002
## 173              816               135              0.002
## 174              827               124              0.002
## 175              823               128              0.002
## 176              835               116              0.002
## 177              836               115              0.002
## 178              836               115              0.002
## 179              858                93              0.002
## 180              849               102              0.002
## 181              862                89              0.002
## 182              857                94              0.002
## 183              879                72              0.002
## 184              871                80              0.002
## 185              870                81              0.002
## 186              878                73              0.002
## 187              882                69              0.002
## 188              886                65              0.002
## 189              878                73              0.002
## 190              882                69              0.002
## 191              884                67              0.002
## 192              893                58              0.002
## 193              892                59              0.002
## 194              895                56              0.002
## 195              893                58              0.002
## 196              897                54              0.002
## 197              901                50              0.002
## 198              897                54              0.002
## 199              906                45              0.002
## 200              904                47              0.002
## 201              901                50              0.002
## 203              842               109              0.002
## 204              857                94              0.002
## 205              877                74              0.002
## 206              894                57              0.002
## 207              897                54              0.002
## 208              844               107              0.002
##     First.Second.Mode.Ratio
## 13                    5.019
## 14                    5.216
## 15                    6.150
## 16                    5.842
## 17                    5.942
## 18                    6.608
## 19                    7.198
## 20                    7.342
## 21                    7.270
## 22                    8.606
## 23                    7.128
## 24                    7.888
## 25                    7.645
## 26                   10.887
## 27                    9.226
## 28                    8.416
## 29                    8.804
## 30                    9.685
## 31                   10.188
## 32                   12.586
## 33                   13.409
## 34                   11.513
## 35                   12.783
## 36                   12.208
## 37                   13.194
## 38                   10.598
## 39                   12.394
## 40                   13.631
## 41                   14.850
## 42                   16.611
## 43                   14.095
## 44                   15.684
## 45                   16.943
## 48                    7.059
## 49                    7.198
## 50                    7.888
## 51                    8.144
## 52                    9.931
## 53                    9.685
## 54                   12.208
## 55                   17.647
## 56                   14.339
## 57                    7.342
## 58                    7.806
## 59                   17.288
## 114                   5.426
## 119                   5.135
## 120                   5.019
## 121                   6.150
## 122                   5.096
## 124                   5.175
## 125                   5.426
## 126                   5.745
## 127                   6.150
## 128                   5.745
## 129                   6.205
## 130                   8.510
## 131                   6.925
## 132                   6.992
## 133                   6.925
## 134                   6.860
## 135                   6.925
## 136                   7.270
## 137                   7.645
## 138                   7.972
## 139                  11.192
## 140                   7.972
## 141                   7.568
## 142                   8.144
## 143                  11.351
## 144                   8.606
## 145                   8.606
## 146                   8.704
## 147                   8.510
## 148                  10.458
## 149                  10.058
## 150                  11.680
## 151                  16.943
## 152                  11.192
## 153                  11.851
## 154                  25.417
## 155                  13.409
## 156                  13.194
## 157                  15.119
## 158                  17.647
## 159                  13.194
## 160                  13.631
## 161                  14.095
## 172                   5.604
## 173                   6.044
## 174                   6.669
## 175                   6.430
## 176                   7.198
## 177                   7.270
## 178                   7.270
## 179                   9.226
## 180                   8.324
## 181                   9.685
## 182                   9.117
## 183                  12.208
## 184                  10.887
## 185                  10.741
## 186                  12.027
## 187                  12.783
## 188                  13.631
## 189                  12.027
## 190                  12.783
## 191                  13.194
## 192                  15.397
## 193                  15.119
## 194                  15.982
## 195                  15.397
## 196                  16.611
## 197                  18.020
## 198                  16.611
## 199                  20.133
## 200                  19.234
## 201                  18.020
## 203                   7.725
## 204                   9.117
## 205                  11.851
## 206                  15.684
## 207                  16.611
## 208                   7.888
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])),
               " numeric variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance numeric predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 3 numeric variable(s) with First.Second.Mode.Ratio>5."
##    Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 14   NumSulfer     integer            5              0.005            0.000
## 15 NumChlorine     integer           11              0.012            0.000
## 16  NumHalogen     integer           11              0.012            0.000
##    Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 14             1.000              830                96                   8.646
## 15             1.000              750                81                   9.259
## 16             1.000              685               107                   6.402
##    Minimum  Mean Median Maximum Skewness Kurtosis Percentile25th Percentile75th
## 14   0.000 0.164  0.000   4.000    3.842   21.526          0.000          0.000
## 15   0.000 0.556  0.000  10.000    3.178   13.780          0.000          0.000
## 16   0.000 0.698  0.000  10.000    2.691   10.808          0.000          1.000
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])),
               " numeric variable(s) with Unique.Count.Ratio<0.01."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,]
} else {
  print("No low variance numeric predictors due to low unique count ratio noted.")
}
## [1] "Low variance observed for 4 numeric variable(s) with Unique.Count.Ratio<0.01."
##    Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 8  NumDblBonds     integer            8              0.008            0.000
## 12 NumNitrogen     integer            7              0.007            0.000
## 14   NumSulfer     integer            5              0.005            0.000
## 17    NumRings     integer            8              0.008            1.000
##    Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 8              1.000              427               268                   1.593
## 12             1.000              546               191                   2.859
## 14             1.000              830                96                   8.646
## 17             0.000              323               260                   1.242
##    Minimum  Mean Median Maximum Skewness Kurtosis Percentile25th Percentile75th
## 8    0.000 1.006  1.000   7.000    1.360    4.760          0.000          2.000
## 12   0.000 0.813  0.000   6.000    1.554    4.831          0.000          1.000
## 14   0.000 0.164  0.000   4.000    3.842   21.526          0.000          0.000
## 17   0.000 1.402  1.000   7.000    1.034    3.875          0.000          2.000
##################################
# Checking for skewed predictors
##################################
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])>0){
  print(paste0("High skewness observed for ",
  (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])),
  " numeric variable(s) with Skewness>3 or Skewness<(-3)."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                 as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),]
} else {
  print("No skewed numeric predictors noted.")
}
## [1] "High skewness observed for 3 numeric variable(s) with Skewness>3 or Skewness<(-3)."
##          Column.Name Column.Type Unique.Count Unique.Count.Ratio
## 14         NumSulfer     integer            5              0.005
## 15       NumChlorine     integer           11              0.012
## 18 HydrophilicFactor     numeric          369              0.388
##    First.Mode.Value Second.Mode.Value First.Mode.Count Second.Mode.Count
## 14            0.000             1.000              830                96
## 15            0.000             1.000              750                81
## 18           -0.828            -0.158               21                20
##    First.Second.Mode.Ratio Minimum   Mean Median Maximum Skewness Kurtosis
## 14                   8.646   0.000  0.164  0.000   4.000    3.842   21.526
## 15                   9.259   0.000  0.556  0.000  10.000    3.178   13.780
## 18                   1.050  -0.985 -0.021 -0.314  13.483    3.404   27.504
##    Percentile25th Percentile75th
## 14          0.000          0.000
## 15          0.000          0.000
## 18         -0.763          0.313

1.3 Data Preprocessing

1.3.1 Outlier


Outlier data assessment:

[A] Outliers noted for 20 variables with the numeric data visualized through a boxplot including observations classified as suspected outliers using the IQR criterion. The IQR criterion means that all observations above the (75th percentile + 1.5 x IQR) or below the (25th percentile - 1.5 x IQR) are suspected outliers, where IQR is the difference between the third quartile (75th percentile) and first quartile (25th percentile). Outlier treatment for numerical stability remains optional depending on potential model requirements for the subsequent steps.
     [A.1] MolWeight variable (8 outliers detected)
     [A.2] NumAtoms variable (44 outliers detected)
     [A.3] NumNonHAtoms variable (15 outliers detected)
     [A.4] NumBonds variable (51 outliers detected)
     [A.5] NumNonHBonds variable (18 outliers detected)
     [A.6] NumMultBonds variable (6 outliers detected)
     [A.7] NumRotBonds variable (23 outliers detected)
     [A.8] NumDblBonds variable (3 outliers detected)
     [A.9] NumAromaticBonds variable (35 outliers detected)
     [A.10] NumHydrogen variable (32 outliers detected)
     [A.11] NumCarbon variable (35 outliers detected)
     [A.12] NumNitrogen variable (91 outliers detected)
     [A.13] NumOxygen variable (36 outliers detected)
     [A.14] NumSulfer variable (121 outliers detected)
     [A.15] NumChlorine variable (201 outliers detected)
     [A.16] NumHalogen variable (99 outliers detected)
     [A.17] NumRings variable (4 outliers detected)
     [A.18] HydrophilicFactor variable (53 outliers detected)
     [A.19] SurfaceArea1 variable (19 outliers detected)
     [A.20] SurfaceArea2 variable (12 outliers detected)
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,-(grep("FP", names(DPA.Predictors)))]

##################################
# Identifying outliers for the numeric predictors
##################################
OutlierCountList <- c()

for (i in 1:ncol(DPA.Predictors.Numeric)) {
  Outliers <- boxplot.stats(DPA.Predictors.Numeric[,i])$out
  OutlierCount <- length(Outliers)
  OutlierCountList <- append(OutlierCountList,OutlierCount)
  OutlierIndices <- which(DPA.Predictors.Numeric[,i] %in% c(Outliers))
  boxplot(DPA.Predictors.Numeric[,i], 
          ylab = names(DPA.Predictors.Numeric)[i], 
          main = names(DPA.Predictors.Numeric)[i],
          horizontal=TRUE)
  mtext(paste0(OutlierCount, " Outlier(s) Detected"))
}

OutlierCountSummary <- as.data.frame(cbind(names(DPA.Predictors.Numeric),(OutlierCountList)))
names(OutlierCountSummary) <- c("NumericPredictors","OutlierCount")
OutlierCountSummary$OutlierCount <- as.numeric(as.character(OutlierCountSummary$OutlierCount))
NumericPredictorWithOutlierCount <- nrow(OutlierCountSummary[OutlierCountSummary$OutlierCount>0,])
print(paste0(NumericPredictorWithOutlierCount, " numeric variable(s) were noted with outlier(s)." ))
## [1] "20 numeric variable(s) were noted with outlier(s)."
##################################
# Gathering descriptive statistics
##################################
(DPA_Skimmed <- skim(DPA.Predictors.Numeric))
Data summary
Name DPA.Predictors.Numeric
Number of rows 951
Number of columns 20
_______________________
Column type frequency:
numeric 20
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumNonHBonds 0 1 13.56 7.57 1.00 8.00 12.00 18.00 50.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA.Predictors.Numeric)
## [1] 951  20

1.3.2 Zero and Near-Zero Variance


Zero and near-zero variance data assessment:

[A] Low variance noted for 127 variables from the previous data quality assessment using a lower threshold.

[B] Low variance noted for 3 variables using a preprocessing summary from the caret package. The nearZeroVar method using both the freqCut and uniqueCut criteria set at 95/5 and 10, respectively, were applied on the dataset.
     [B.1] FP154 variable (factor)
     [B.2] FP199 variable (factor)
     [B.3] FP200 variable (factor)
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Gathering descriptive statistics
##################################
(DPA_Skimmed <- skim(DPA))
Data summary
Name DPA
Number of rows 951
Number of columns 229
_______________________
Column type frequency:
factor 1
numeric 228
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 2 Hig: 524, Low: 427

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
FP001 0 1 0.49 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP002 0 1 0.54 0.50 0.00 0.00 1.00 1.00 1.00 ▇▁▁▁▇
FP003 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP004 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP005 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP006 0 1 0.40 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP007 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP008 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP009 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP010 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP011 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP012 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP013 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP014 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP015 0 1 0.86 0.35 0.00 1.00 1.00 1.00 1.00 ▁▁▁▁▇
FP016 0 1 0.15 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP017 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP018 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP019 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP020 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP021 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP022 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP023 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP024 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP025 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP026 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP027 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP028 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP029 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP030 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP031 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP032 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP033 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP034 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP035 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP036 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP037 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP038 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP039 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP040 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP041 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP042 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP043 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP044 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP045 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP046 0 1 0.32 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP047 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP048 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP049 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP050 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP051 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP052 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP053 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP054 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP055 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP056 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP057 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP058 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP059 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP060 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP061 0 1 0.45 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP062 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP063 0 1 0.43 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP064 0 1 0.42 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP065 0 1 0.59 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP066 0 1 0.61 0.49 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP067 0 1 0.38 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP068 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP069 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP070 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP071 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP072 0 1 0.66 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP073 0 1 0.31 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP074 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP075 0 1 0.34 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP076 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP077 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP078 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP079 0 1 0.69 0.46 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP080 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP081 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP082 0 1 0.71 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP083 0 1 0.27 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP084 0 1 0.29 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP085 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP086 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP087 0 1 0.73 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP088 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP089 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP090 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP091 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP092 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP093 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP094 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP095 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP096 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP097 0 1 0.24 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP098 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP099 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP100 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP101 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP102 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP103 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP104 0 1 0.22 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP105 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP106 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP107 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP108 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP109 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP110 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP111 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP112 0 1 0.19 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP113 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP114 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP115 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP116 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP117 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP118 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP119 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP120 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP121 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP122 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP123 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP124 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP125 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP126 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP127 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP128 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP129 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP130 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP131 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP132 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP133 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP134 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP135 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP136 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP137 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP138 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP139 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP140 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP141 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP142 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP143 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP144 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP145 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP146 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP147 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP148 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP149 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP150 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP151 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP152 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP153 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP154 0 1 0.04 0.19 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP155 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP156 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP157 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP158 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP159 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP160 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP161 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP162 0 1 0.50 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP163 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP164 0 1 0.63 0.48 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP165 0 1 0.35 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP166 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP167 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP168 0 1 0.67 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP169 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP170 0 1 0.18 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP171 0 1 0.17 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP172 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP173 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP174 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP175 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP176 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP177 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP178 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP179 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP180 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP181 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP182 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP183 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP184 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP185 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP186 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP187 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP188 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP189 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP190 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP191 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP192 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP193 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP194 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP195 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP196 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP197 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP198 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP199 0 1 0.05 0.21 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP200 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP201 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP202 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP203 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP204 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP205 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP206 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP207 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP208 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumNonHBonds 0 1 13.56 7.57 1.00 8.00 12.00 18.00 50.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
##################################
# Identifying columns with low variance
###################################
DPA_LowVariance <- nearZeroVar(DPA,
                               freqCut = 95/5,
                               uniqueCut = 10,
                               saveMetrics= TRUE)
(DPA_LowVariance[DPA_LowVariance$nzv,])
##       freqRatio percentUnique zeroVar  nzv
## FP154  25.41667     0.2103049   FALSE TRUE
## FP199  20.13333     0.2103049   FALSE TRUE
## FP200  19.23404     0.2103049   FALSE TRUE
if ((nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))==0){
  
  print("No low variance predictors noted.")
  
} else {

  print(paste0("Low variance observed for ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."))
  
  DPA_LowVarianceForRemoval <- (nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))
  
  print(paste0("Low variance can be resolved by removing ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LowVarianceForRemoval) {
  DPA_LowVarianceRemovedVariable <- rownames(DPA_LowVariance[DPA_LowVariance$nzv,])[j]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LowVarianceRemovedVariable))
  }
  
  DPA %>%
  skim() %>%
  dplyr::filter(skim_variable %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,]))

  ##################################
  # Filtering out columns with low variance
  #################################
  DPA_ExcludedLowVariance <- DPA[,!names(DPA) %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,])]
  
  ##################################
  # Gathering descriptive statistics
  ##################################
  (DPA_ExcludedLowVariance_Skimmed <- skim(DPA_ExcludedLowVariance))
}
## [1] "Low variance observed for 3 numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."
## [1] "Low variance can be resolved by removing 3 numeric variable(s)."
## [1] "Variable 1 for removal: FP154"
## [1] "Variable 2 for removal: FP199"
## [1] "Variable 3 for removal: FP200"
Data summary
Name DPA_ExcludedLowVariance
Number of rows 951
Number of columns 226
_______________________
Column type frequency:
factor 1
numeric 225
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 2 Hig: 524, Low: 427

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
FP001 0 1 0.49 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP002 0 1 0.54 0.50 0.00 0.00 1.00 1.00 1.00 ▇▁▁▁▇
FP003 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP004 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP005 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP006 0 1 0.40 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP007 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP008 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP009 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP010 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP011 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP012 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP013 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP014 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP015 0 1 0.86 0.35 0.00 1.00 1.00 1.00 1.00 ▁▁▁▁▇
FP016 0 1 0.15 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP017 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP018 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP019 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP020 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP021 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP022 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP023 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP024 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP025 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP026 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP027 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP028 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP029 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP030 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP031 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP032 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP033 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP034 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP035 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP036 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP037 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP038 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP039 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP040 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP041 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP042 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP043 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP044 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP045 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP046 0 1 0.32 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP047 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP048 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP049 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP050 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP051 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP052 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP053 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP054 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP055 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP056 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP057 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP058 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP059 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP060 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP061 0 1 0.45 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP062 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP063 0 1 0.43 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP064 0 1 0.42 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP065 0 1 0.59 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP066 0 1 0.61 0.49 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP067 0 1 0.38 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP068 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP069 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP070 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP071 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP072 0 1 0.66 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP073 0 1 0.31 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP074 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP075 0 1 0.34 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP076 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP077 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP078 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP079 0 1 0.69 0.46 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP080 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP081 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP082 0 1 0.71 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP083 0 1 0.27 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP084 0 1 0.29 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP085 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP086 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP087 0 1 0.73 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP088 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP089 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP090 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP091 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP092 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP093 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP094 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP095 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP096 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP097 0 1 0.24 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP098 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP099 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP100 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP101 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP102 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP103 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP104 0 1 0.22 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP105 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP106 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP107 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP108 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP109 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP110 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP111 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP112 0 1 0.19 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP113 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP114 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP115 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP116 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP117 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP118 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP119 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP120 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP121 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP122 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP123 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP124 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP125 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP126 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP127 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP128 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP129 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP130 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP131 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP132 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP133 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP134 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP135 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP136 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP137 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP138 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP139 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP140 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP141 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP142 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP143 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP144 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP145 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP146 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP147 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP148 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP149 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP150 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP151 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP152 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP153 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP155 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP156 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP157 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP158 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP159 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP160 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP161 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP162 0 1 0.50 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP163 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP164 0 1 0.63 0.48 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP165 0 1 0.35 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP166 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP167 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP168 0 1 0.67 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP169 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP170 0 1 0.18 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP171 0 1 0.17 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP172 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP173 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP174 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP175 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP176 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP177 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP178 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP179 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP180 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP181 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP182 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP183 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP184 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP185 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP186 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP187 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP188 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP189 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP190 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP191 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP192 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP193 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP194 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP195 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP196 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP197 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP198 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP201 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP202 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP203 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP204 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP205 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP206 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP207 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP208 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumNonHBonds 0 1 13.56 7.57 1.00 8.00 12.00 18.00 50.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA_ExcludedLowVariance)
## [1] 951 226

1.3.3 Collinearity


High collinearity data assessment:

[A] High correlation > 95% were noted for 2 variable pairs as confirmed using the preprocessing summaries from the caret and lares packages.
     [A.1] NumNonHAtoms and NumNonHBonds variables (numeric)
     [A.2] NumMultBonds and NumAromaticBonds variables (numeric)
     [A.3] NumAtoms and NumBonds variables (numeric)
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,-(grep("FP", names(DPA.Predictors)))]

##################################
# Visualizing pairwise correlation between predictors
##################################
DPA_CorrelationTest <- cor.mtest(DPA.Predictors.Numeric,
                       method = "pearson",
                       conf.level = .95)

corrplot(cor(DPA.Predictors.Numeric,
             method = "pearson",
             use="pairwise.complete.obs"), 
         method = "circle",
         type = "upper", 
         order = "original", 
         tl.col = "black", 
         tl.cex = 0.75,
         tl.srt = 90, 
         sig.level = 0.05, 
         p.mat = DPA_CorrelationTest$p,
         insig = "blank")

##################################
# Identifying the highly correlated variables
##################################
DPA_Correlation <-  cor(DPA.Predictors.Numeric, 
                        method = "pearson",
                        use="pairwise.complete.obs")
(DPA_HighlyCorrelatedCount <- sum(abs(DPA_Correlation[upper.tri(DPA_Correlation)]) > 0.95))
## [1] 3
if (DPA_HighlyCorrelatedCount == 0) {
  print("No highly correlated predictors noted.")
} else {
  print(paste0("High correlation observed for ",
               (DPA_HighlyCorrelatedCount),
               " pairs of numeric variable(s) with Correlation.Coefficient>0.95."))
  
  (DPA_HighlyCorrelatedPairs <- corr_cross(DPA.Predictors.Numeric,
  max_pvalue = 0.05, 
  top = DPA_HighlyCorrelatedCount,
  rm.na = TRUE,
  grid = FALSE
))
  
}
## [1] "High correlation observed for 3 pairs of numeric variable(s) with Correlation.Coefficient>0.95."

if (DPA_HighlyCorrelatedCount > 0) {
  DPA_HighlyCorrelated <- findCorrelation(DPA_Correlation, cutoff = 0.95)
  
  (DPA_HighlyCorrelatedForRemoval <- length(DPA_HighlyCorrelated))
  
  print(paste0("High correlation can be resolved by removing ",
               (DPA_HighlyCorrelatedForRemoval),
               " numeric variable(s)."))
  
  for (j in 1:DPA_HighlyCorrelatedForRemoval) {
  DPA_HighlyCorrelatedRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_HighlyCorrelated[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_HighlyCorrelatedRemovedVariable))
  }
  
  ##################################
  # Filtering out columns with high correlation
  #################################
  DPA_ExcludedHighCorrelation <- DPA[,-DPA_HighlyCorrelated]
  
  ##################################
  # Gathering descriptive statistics
  ##################################
  (DPA_ExcludedHighCorrelation_Skimmed <- skim(DPA_ExcludedHighCorrelation))

}
## [1] "High correlation can be resolved by removing 3 numeric variable(s)."
## [1] "Variable 1 for removal: NumNonHAtoms"
## [1] "Variable 2 for removal: NumBonds"
## [1] "Variable 3 for removal: NumAromaticBonds"
Data summary
Name DPA_ExcludedHighCorrelati…
Number of rows 951
Number of columns 226
_______________________
Column type frequency:
factor 1
numeric 225
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 2 Hig: 524, Low: 427

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
FP001 0 1 0.49 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP002 0 1 0.54 0.50 0.00 0.00 1.00 1.00 1.00 ▇▁▁▁▇
FP005 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP006 0 1 0.40 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP007 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP008 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP010 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP011 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP012 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP013 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP014 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP015 0 1 0.86 0.35 0.00 1.00 1.00 1.00 1.00 ▁▁▁▁▇
FP016 0 1 0.15 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP017 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP018 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP019 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP020 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP021 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP022 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP023 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP024 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP025 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP026 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP027 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP028 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP029 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP030 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP031 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP032 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP033 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP034 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP035 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP036 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP037 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP038 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP039 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP040 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP041 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP042 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP043 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP044 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP045 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP046 0 1 0.32 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP047 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP048 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP049 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP050 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP051 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP052 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP053 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP054 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP055 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP056 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP057 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP058 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP059 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP060 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP061 0 1 0.45 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP062 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP063 0 1 0.43 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP064 0 1 0.42 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP065 0 1 0.59 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP066 0 1 0.61 0.49 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP067 0 1 0.38 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP068 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP069 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP070 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP071 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP072 0 1 0.66 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP073 0 1 0.31 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP074 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP075 0 1 0.34 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP076 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP077 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP078 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP079 0 1 0.69 0.46 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP080 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP081 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP082 0 1 0.71 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP083 0 1 0.27 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP084 0 1 0.29 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP085 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP086 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP087 0 1 0.73 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP088 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP089 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP090 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP091 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP092 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP093 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP094 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP095 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP096 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP097 0 1 0.24 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP098 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP099 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP100 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP101 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP102 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP103 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP104 0 1 0.22 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP105 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP106 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP107 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP108 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP109 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP110 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP111 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP112 0 1 0.19 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP113 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP114 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP115 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP116 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP117 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP118 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP119 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP120 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP121 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP122 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP123 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP124 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP125 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP126 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP127 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP128 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP129 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP130 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP131 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP132 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP133 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP134 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP135 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP136 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP137 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP138 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP139 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP140 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP141 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP142 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP143 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP144 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP145 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP146 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP147 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP148 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP149 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP150 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP151 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP152 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP153 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP154 0 1 0.04 0.19 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP155 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP156 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP157 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP158 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP159 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP160 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP161 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP162 0 1 0.50 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP163 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP164 0 1 0.63 0.48 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP165 0 1 0.35 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP166 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP167 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP168 0 1 0.67 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP169 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP170 0 1 0.18 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP171 0 1 0.17 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP172 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP173 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP174 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP175 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP176 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP177 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP178 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP179 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP180 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP181 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP182 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP183 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP184 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP185 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP186 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP187 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP188 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP189 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP190 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP191 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP192 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP193 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP194 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP195 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP196 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP197 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP198 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP199 0 1 0.05 0.21 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP200 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP201 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP202 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP203 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP204 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP205 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP206 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP207 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP208 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumNonHBonds 0 1 13.56 7.57 1.00 8.00 12.00 18.00 50.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA_ExcludedHighCorrelation)
## [1] 951 226

1.3.4 Linear Dependencies


Linear dependency data assessment:

[A] Linear dependencies noted for 2 subsets of variables using the preprocessing summary from the caret package applying the findLinearCombos method which utilizes the QR decomposition of a matrix to enumerate sets of linear combinations (if they exist).

[B] Subset 1
     [B.1] NumNonHBonds variable (numeric)
     [B.2] NumAtoms variable (numeric)
     [B.3] NumNonHAtoms variable (numeric)
     [B.3] NumBonds variable (numeric)

[C] Subset 2
     [C.1] NumHydrogen variable (numeric)
     [C.2] NumAtoms variable (numeric)
     [C.3] NumNonHAtoms variable (numeric)
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)]

##################################
# Identifying the linearly dependent variables
##################################
DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)

(DPA_LinearlyDependentCount <- length(DPA_LinearlyDependent$linearCombos))
## [1] 2
if (DPA_LinearlyDependentCount == 0) {
  print("No linearly dependent predictors noted.")
} else {
  print(paste0("Linear dependency observed for ",
               (DPA_LinearlyDependentCount),
               " subset(s) of numeric variable(s)."))
  
  for (i in 1:DPA_LinearlyDependentCount) {
    DPA_LinearlyDependentSubset <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$linearCombos[[i]]]
    print(paste0("Linear dependent variable(s) for subset ",
                 i,
                 " include: ",
                 DPA_LinearlyDependentSubset))
  }
  
}
## [1] "Linear dependency observed for 2 subset(s) of numeric variable(s)."
## [1] "Linear dependent variable(s) for subset 1 include: NumNonHBonds"
## [2] "Linear dependent variable(s) for subset 1 include: NumAtoms"    
## [3] "Linear dependent variable(s) for subset 1 include: NumNonHAtoms"
## [4] "Linear dependent variable(s) for subset 1 include: NumBonds"    
## [1] "Linear dependent variable(s) for subset 2 include: NumHydrogen" 
## [2] "Linear dependent variable(s) for subset 2 include: NumAtoms"    
## [3] "Linear dependent variable(s) for subset 2 include: NumNonHAtoms"
##################################
# Identifying the linearly dependent variables for removal
##################################

if (DPA_LinearlyDependentCount > 0) {
  DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)
  
  DPA_LinearlyDependentForRemoval <- length(DPA_LinearlyDependent$remove)
  
  print(paste0("Linear dependency can be resolved by removing ",
               (DPA_LinearlyDependentForRemoval),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LinearlyDependentForRemoval) {
  DPA_LinearlyDependentRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$remove[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LinearlyDependentRemovedVariable))
  }
  
  ##################################
  # Filtering out columns with linear dependency
  #################################
  DPA_ExcludedLinearlyDependent <- DPA[,-DPA_LinearlyDependent$remove]
  
  ##################################
  # Gathering descriptive statistics
  ##################################
  (DPA_ExcludedLinearlyDependent_Skimmed <- skim(DPA_ExcludedLinearlyDependent))

}
## [1] "Linear dependency can be resolved by removing 2 numeric variable(s)."
## [1] "Variable 1 for removal: NumNonHBonds"
## [1] "Variable 2 for removal: NumHydrogen"
Data summary
Name DPA_ExcludedLinearlyDepen…
Number of rows 951
Number of columns 227
_______________________
Column type frequency:
factor 1
numeric 226
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 2 Hig: 524, Low: 427

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
FP001 0 1 0.49 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP002 0 1 0.54 0.50 0.00 0.00 1.00 1.00 1.00 ▇▁▁▁▇
FP003 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP004 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP005 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP006 0 1 0.40 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP007 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP008 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP009 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP010 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP011 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP012 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP013 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP014 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP015 0 1 0.86 0.35 0.00 1.00 1.00 1.00 1.00 ▁▁▁▁▇
FP016 0 1 0.15 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP017 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP018 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP019 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP020 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP021 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP022 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP023 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP024 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP025 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP026 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP027 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP028 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP029 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP030 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP031 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP032 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP033 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP034 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP035 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP036 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP037 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP038 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP039 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP040 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP041 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP042 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP043 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP044 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP045 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP046 0 1 0.32 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP047 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP048 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP049 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP050 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP051 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP052 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP053 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP054 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP055 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP056 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP057 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP058 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP059 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP060 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP061 0 1 0.45 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP062 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP063 0 1 0.43 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP064 0 1 0.42 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP065 0 1 0.59 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP066 0 1 0.61 0.49 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP067 0 1 0.38 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP068 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP069 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP070 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP071 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP072 0 1 0.66 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP073 0 1 0.31 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP074 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP075 0 1 0.34 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP076 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP077 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP078 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP079 0 1 0.69 0.46 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP080 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP081 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP082 0 1 0.71 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP083 0 1 0.27 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP084 0 1 0.29 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP085 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP086 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP087 0 1 0.73 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP088 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP089 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP090 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP091 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP092 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP093 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP094 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP095 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP096 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP097 0 1 0.24 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP098 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP099 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP100 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP101 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP102 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP103 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP104 0 1 0.22 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP105 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP106 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP107 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP108 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP109 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP110 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP111 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP112 0 1 0.19 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP113 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP114 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP115 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP116 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP117 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP118 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP119 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP120 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP121 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP122 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP123 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP124 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP125 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP126 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP127 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP128 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP129 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP130 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP131 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP132 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP133 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP134 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP135 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP136 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP137 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP138 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP139 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP140 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP141 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP142 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP143 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP144 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP145 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP146 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP147 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP148 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP149 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP150 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP151 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP152 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP153 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP154 0 1 0.04 0.19 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP155 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP156 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP157 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP158 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP159 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP160 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP161 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP162 0 1 0.50 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP163 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP164 0 1 0.63 0.48 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP165 0 1 0.35 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP166 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP167 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP168 0 1 0.67 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP169 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP170 0 1 0.18 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP171 0 1 0.17 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP172 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP173 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP174 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP175 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP176 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP177 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP178 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP179 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP180 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP181 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP182 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP183 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP184 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP185 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP186 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP187 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP188 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP189 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP190 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP191 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP192 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP193 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP194 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP195 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP196 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP197 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP198 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP199 0 1 0.05 0.21 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP200 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP201 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP202 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP203 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP204 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP205 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP206 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP207 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP208 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA_ExcludedLinearlyDependent)
## [1] 951 227

1.3.5 Shape Transformation


Data transformation assessment:

[A] A number of numeric variables in the dataset were observed to be right-skewed which required shape transformation for data distribution stability. Considering that all numeric variables were strictly positive values, the BoxCox method from the caret package was used to transform their distributional shapes.
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,-(grep("FP", names(DPA.Predictors)))]

##################################
# Applying a Box-Cox transformation
##################################
DPA_BoxCox <- preProcess(DPA.Predictors.Numeric, method = c("BoxCox"))
DPA_BoxCoxTransformed <- predict(DPA_BoxCox, DPA.Predictors.Numeric)

##################################
# Gathering descriptive statistics
##################################
(DPA_BoxCoxTransformedSkimmed <- skim(DPA_BoxCoxTransformed))
Data summary
Name DPA_BoxCoxTransformed
Number of rows 951
Number of columns 20
_______________________
Column type frequency:
numeric 20
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 5.19 0.48 3.83 4.81 5.19 5.58 6.50 ▁▆▇▆▁
NumAtoms 0 1 3.13 0.48 1.61 2.83 3.09 3.43 4.54 ▁▃▇▃▁
NumNonHAtoms 0 1 2.46 0.50 0.69 2.08 2.48 2.83 3.85 ▁▃▇▇▁
NumBonds 0 1 4.39 0.96 1.60 3.81 4.36 4.97 7.48 ▁▅▇▃▁
NumNonHBonds 0 1 3.21 0.95 0.00 2.58 3.22 3.91 5.93 ▁▃▇▆▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 3.54 1.34 0.00 2.62 3.52 4.25 7.62 ▂▇▇▃▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA_BoxCoxTransformed)
## [1] 951  20

1.3.6 Centering and Scaling


Centering and scaling data assessment:

[A] To maintain numerical stability during modelling, centering and scaling transformations were applied on the transformed numeric variables. The center method from the caret package was implemented which subtracts the average value of a numeric variable to all the values. As a result of centering, the variables had zero mean values. In addition, the scale method, also from the caret package, was applied which performs a center transformation with each value of the variable divided by its standard deviation. Scaling the data coerced the values to have a common standard deviation of one.
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,-(grep("FP", names(DPA.Predictors)))]

##################################
# Applying a Box-Cox transformation
##################################
DPA_BoxCox <- preProcess(DPA.Predictors.Numeric, method = c("BoxCox"))
DPA_BoxCoxTransformed <- predict(DPA_BoxCox, DPA.Predictors.Numeric)

##################################
# Applying a center and scale data transformation
##################################
DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaled <- preProcess(DPA_BoxCoxTransformed, method = c("center","scale"))
DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed <- predict(DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaled, DPA_BoxCoxTransformed)

##################################
# Gathering descriptive statistics
##################################
(DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformedSkimmed <- skim(DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed))
Data summary
Name DPA.Predictors.Numeric_Bo…
Number of rows 951
Number of columns 20
_______________________
Column type frequency:
numeric 20
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 0 1 -2.84 -0.80 -0.01 0.80 2.72 ▁▆▇▆▁
NumAtoms 0 1 0 1 -3.16 -0.61 -0.07 0.64 2.95 ▁▃▇▃▁
NumNonHAtoms 0 1 0 1 -3.53 -0.76 0.06 0.75 2.79 ▁▃▇▇▁
NumBonds 0 1 0 1 -2.92 -0.61 -0.04 0.60 3.23 ▁▅▇▃▁
NumNonHBonds 0 1 0 1 -3.38 -0.67 0.01 0.74 2.86 ▁▃▇▆▁
NumMultBonds 0 1 0 1 -1.19 -1.00 -0.03 0.74 3.65 ▇▇▃▁▁
NumRotBonds 0 1 0 1 -0.93 -0.93 -0.10 0.52 5.71 ▇▂▁▁▁
NumDblBonds 0 1 0 1 -0.83 -0.83 -0.01 0.82 4.95 ▇▂▁▁▁
NumAromaticBonds 0 1 0 1 -0.97 -0.97 0.17 0.17 3.78 ▇▆▃▁▁
NumHydrogen 0 1 0 1 -1.69 -0.73 -0.18 0.50 4.74 ▇▇▂▁▁
NumCarbon 0 1 0 1 -2.64 -0.69 -0.01 0.54 3.06 ▂▇▇▃▁
NumNitrogen 0 1 0 1 -0.69 -0.69 -0.69 0.16 4.37 ▇▂▁▁▁
NumOxygen 0 1 0 1 -0.91 -0.91 -0.33 0.25 6.61 ▇▂▁▁▁
NumSulfer 0 1 0 1 -0.34 -0.34 -0.34 -0.34 7.86 ▇▁▁▁▁
NumChlorine 0 1 0 1 -0.40 -0.40 -0.40 -0.40 6.74 ▇▁▁▁▁
NumHalogen 0 1 0 1 -0.47 -0.47 -0.47 0.20 6.32 ▇▁▁▁▁
NumRings 0 1 0 1 -1.08 -1.08 -0.31 0.46 4.31 ▇▃▂▁▁
HydrophilicFactor 0 1 0 1 -0.86 -0.66 -0.26 0.30 11.99 ▇▁▁▁▁
SurfaceArea1 0 1 0 1 -1.03 -0.77 -0.21 0.48 8.37 ▇▂▁▁▁
SurfaceArea2 0 1 0 1 -1.06 -0.78 -0.19 0.54 7.65 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed)
## [1] 951  20

1.3.7 Pre-Processed Dataset


Preliminary dataset assessment:

[A] 1267 rows (observations)
     [A.1] Train Set = 951 observations
     [A.2] Test Set = 316 observations

[B] 221 columns (variables)
     [B.1] 1/221 response = Class variable (factor)
            [B.1.1] Levels = Log_Solubility_Class=Low < Log_Solubility_Class=High
     [B.2] 220/221 predictors = All remaining variables (205/220 factor + 15/220 numeric)

[C] Pre-processing actions applied:
     [C.1] Centering, scaling and shape transformation applied to improve data quality
     [C.2] No outlier treatment applied since the high values noted were contextually valid and sensible
     [C.3] 3 predictors removed due to zero or near-zero variance
     [C.4] 3 predictors removed due to high correlation
     [C.5] 2 predictors removed due to linear dependencies
##################################
# Creating the pre-modelling
# train set
##################################
Log_Solubility_Class <- DPA$Log_Solubility_Class 
PMA.Predictors.Factor   <- DPA.Predictors[,(grep("FP", names(DPA.Predictors)))]
PMA.Predictors.Factor   <- as.data.frame(lapply(PMA.Predictors.Factor,factor))
PMA.Predictors.Numeric  <- DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed
PMA_BoxCoxTransformed_CenteredScaledTransformed <- cbind(Log_Solubility_Class,PMA.Predictors.Factor,PMA.Predictors.Numeric)

##################################
# Filtering out columns noted with data quality issues including
# zero and near-zero variance,
# high correlation and linear dependencies
# to create the pre-modelling dataset
##################################
PMA_BoxCoxTransformed_CenteredScaledTransformed_ExcludedLowVariance_ExcludedLinearlyDependent_ExcludedHighCorrelation <- PMA_BoxCoxTransformed_CenteredScaledTransformed[,!names(PMA_BoxCoxTransformed_CenteredScaledTransformed) %in% c("FP154","FP199","FP200","NumNonHBonds","NumHydrogen","NumNonHAtoms","NumAromaticBonds","NumAtoms")]

PMA_PreModelling_Train <- PMA_BoxCoxTransformed_CenteredScaledTransformed_ExcludedLowVariance_ExcludedLinearlyDependent_ExcludedHighCorrelation

##################################
# Gathering descriptive statistics
##################################
(PMA_PreModelling_Train_Skimmed <- skim(PMA_PreModelling_Train))
Data summary
Name PMA_PreModelling_Train
Number of rows 951
Number of columns 221
_______________________
Column type frequency:
factor 206
numeric 15
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 2 Hig: 524, Low: 427
FP001 0 1 FALSE 2 0: 482, 1: 469
FP002 0 1 FALSE 2 1: 513, 0: 438
FP003 0 1 FALSE 2 0: 536, 1: 415
FP004 0 1 FALSE 2 1: 556, 0: 395
FP005 0 1 FALSE 2 1: 551, 0: 400
FP006 0 1 FALSE 2 0: 570, 1: 381
FP007 0 1 FALSE 2 0: 605, 1: 346
FP008 0 1 FALSE 2 0: 641, 1: 310
FP009 0 1 FALSE 2 0: 685, 1: 266
FP010 0 1 FALSE 2 0: 781, 1: 170
FP011 0 1 FALSE 2 0: 747, 1: 204
FP012 0 1 FALSE 2 0: 783, 1: 168
FP013 0 1 FALSE 2 0: 793, 1: 158
FP014 0 1 FALSE 2 0: 798, 1: 153
FP015 0 1 FALSE 2 1: 818, 0: 133
FP016 0 1 FALSE 2 0: 812, 1: 139
FP017 0 1 FALSE 2 0: 814, 1: 137
FP018 0 1 FALSE 2 0: 826, 1: 125
FP019 0 1 FALSE 2 0: 835, 1: 116
FP020 0 1 FALSE 2 0: 837, 1: 114
FP021 0 1 FALSE 2 0: 836, 1: 115
FP022 0 1 FALSE 2 0: 852, 1: 99
FP023 0 1 FALSE 2 0: 834, 1: 117
FP024 0 1 FALSE 2 0: 844, 1: 107
FP025 0 1 FALSE 2 0: 841, 1: 110
FP026 0 1 FALSE 2 0: 871, 1: 80
FP027 0 1 FALSE 2 0: 858, 1: 93
FP028 0 1 FALSE 2 0: 850, 1: 101
FP029 0 1 FALSE 2 0: 854, 1: 97
FP030 0 1 FALSE 2 0: 862, 1: 89
FP031 0 1 FALSE 2 0: 866, 1: 85
FP032 0 1 FALSE 2 0: 881, 1: 70
FP033 0 1 FALSE 2 0: 885, 1: 66
FP034 0 1 FALSE 2 0: 875, 1: 76
FP035 0 1 FALSE 2 0: 882, 1: 69
FP036 0 1 FALSE 2 0: 879, 1: 72
FP037 0 1 FALSE 2 0: 884, 1: 67
FP038 0 1 FALSE 2 0: 869, 1: 82
FP039 0 1 FALSE 2 0: 880, 1: 71
FP040 0 1 FALSE 2 0: 886, 1: 65
FP041 0 1 FALSE 2 0: 891, 1: 60
FP042 0 1 FALSE 2 0: 897, 1: 54
FP043 0 1 FALSE 2 0: 888, 1: 63
FP044 0 1 FALSE 2 0: 894, 1: 57
FP045 0 1 FALSE 2 0: 898, 1: 53
FP046 0 1 FALSE 2 0: 651, 1: 300
FP047 0 1 FALSE 2 0: 698, 1: 253
FP048 0 1 FALSE 2 0: 833, 1: 118
FP049 0 1 FALSE 2 0: 835, 1: 116
FP050 0 1 FALSE 2 0: 844, 1: 107
FP051 0 1 FALSE 2 0: 847, 1: 104
FP052 0 1 FALSE 2 0: 864, 1: 87
FP053 0 1 FALSE 2 0: 862, 1: 89
FP054 0 1 FALSE 2 0: 879, 1: 72
FP055 0 1 FALSE 2 0: 900, 1: 51
FP056 0 1 FALSE 2 0: 889, 1: 62
FP057 0 1 FALSE 2 0: 837, 1: 114
FP058 0 1 FALSE 2 0: 843, 1: 108
FP059 0 1 FALSE 2 0: 899, 1: 52
FP060 0 1 FALSE 2 0: 493, 1: 458
FP061 0 1 FALSE 2 0: 526, 1: 425
FP062 0 1 FALSE 2 0: 535, 1: 416
FP063 0 1 FALSE 2 0: 546, 1: 405
FP064 0 1 FALSE 2 0: 555, 1: 396
FP065 0 1 FALSE 2 1: 564, 0: 387
FP066 0 1 FALSE 2 1: 580, 0: 371
FP067 0 1 FALSE 2 0: 590, 1: 361
FP068 0 1 FALSE 2 0: 607, 1: 344
FP069 0 1 FALSE 2 0: 607, 1: 344
FP070 0 1 FALSE 2 0: 613, 1: 338
FP071 0 1 FALSE 2 0: 640, 1: 311
FP072 0 1 FALSE 2 1: 626, 0: 325
FP073 0 1 FALSE 2 0: 656, 1: 295
FP074 0 1 FALSE 2 0: 642, 1: 309
FP075 0 1 FALSE 2 0: 629, 1: 322
FP076 0 1 FALSE 2 0: 639, 1: 312
FP077 0 1 FALSE 2 0: 646, 1: 305
FP078 0 1 FALSE 2 0: 662, 1: 289
FP079 0 1 FALSE 2 1: 656, 0: 295
FP080 0 1 FALSE 2 0: 663, 1: 288
FP081 0 1 FALSE 2 0: 686, 1: 265
FP082 0 1 FALSE 2 1: 679, 0: 272
FP083 0 1 FALSE 2 0: 691, 1: 260
FP084 0 1 FALSE 2 0: 679, 1: 272
FP085 0 1 FALSE 2 0: 708, 1: 243
FP086 0 1 FALSE 2 0: 695, 1: 256
FP087 0 1 FALSE 2 1: 691, 0: 260
FP088 0 1 FALSE 2 0: 701, 1: 250
FP089 0 1 FALSE 2 0: 716, 1: 235
FP090 0 1 FALSE 2 0: 714, 1: 237
FP091 0 1 FALSE 2 0: 737, 1: 214
FP092 0 1 FALSE 2 0: 719, 1: 232
FP093 0 1 FALSE 2 0: 719, 1: 232
FP094 0 1 FALSE 2 0: 731, 1: 220
FP095 0 1 FALSE 2 0: 742, 1: 209
FP096 0 1 FALSE 2 0: 744, 1: 207
FP097 0 1 FALSE 2 0: 727, 1: 224
FP098 0 1 FALSE 2 0: 725, 1: 226
FP099 0 1 FALSE 2 0: 735, 1: 216
FP100 0 1 FALSE 2 0: 731, 1: 220
FP101 0 1 FALSE 2 0: 726, 1: 225
FP102 0 1 FALSE 2 0: 759, 1: 192
FP103 0 1 FALSE 2 0: 743, 1: 208
FP104 0 1 FALSE 2 0: 739, 1: 212
FP105 0 1 FALSE 2 0: 746, 1: 205
FP106 0 1 FALSE 2 0: 769, 1: 182
FP107 0 1 FALSE 2 0: 750, 1: 201
FP108 0 1 FALSE 2 0: 756, 1: 195
FP109 0 1 FALSE 2 0: 783, 1: 168
FP110 0 1 FALSE 2 0: 755, 1: 196
FP111 0 1 FALSE 2 0: 764, 1: 187
FP112 0 1 FALSE 2 0: 766, 1: 185
FP113 0 1 FALSE 2 0: 765, 1: 186
FP114 0 1 FALSE 2 0: 803, 1: 148
FP115 0 1 FALSE 2 0: 781, 1: 170
FP116 0 1 FALSE 2 0: 768, 1: 183
FP117 0 1 FALSE 2 0: 781, 1: 170
FP118 0 1 FALSE 2 0: 768, 1: 183
FP119 0 1 FALSE 2 0: 796, 1: 155
FP120 0 1 FALSE 2 0: 793, 1: 158
FP121 0 1 FALSE 2 0: 818, 1: 133
FP122 0 1 FALSE 2 0: 795, 1: 156
FP123 0 1 FALSE 2 0: 792, 1: 159
FP124 0 1 FALSE 2 0: 797, 1: 154
FP125 0 1 FALSE 2 0: 803, 1: 148
FP126 0 1 FALSE 2 0: 810, 1: 141
FP127 0 1 FALSE 2 0: 818, 1: 133
FP128 0 1 FALSE 2 0: 810, 1: 141
FP129 0 1 FALSE 2 0: 819, 1: 132
FP130 0 1 FALSE 2 0: 851, 1: 100
FP131 0 1 FALSE 2 0: 831, 1: 120
FP132 0 1 FALSE 2 0: 832, 1: 119
FP133 0 1 FALSE 2 0: 831, 1: 120
FP134 0 1 FALSE 2 0: 830, 1: 121
FP135 0 1 FALSE 2 0: 831, 1: 120
FP136 0 1 FALSE 2 0: 836, 1: 115
FP137 0 1 FALSE 2 0: 841, 1: 110
FP138 0 1 FALSE 2 0: 845, 1: 106
FP139 0 1 FALSE 2 0: 873, 1: 78
FP140 0 1 FALSE 2 0: 845, 1: 106
FP141 0 1 FALSE 2 0: 840, 1: 111
FP142 0 1 FALSE 2 0: 847, 1: 104
FP143 0 1 FALSE 2 0: 874, 1: 77
FP144 0 1 FALSE 2 0: 852, 1: 99
FP145 0 1 FALSE 2 0: 852, 1: 99
FP146 0 1 FALSE 2 0: 853, 1: 98
FP147 0 1 FALSE 2 0: 851, 1: 100
FP148 0 1 FALSE 2 0: 868, 1: 83
FP149 0 1 FALSE 2 0: 865, 1: 86
FP150 0 1 FALSE 2 0: 876, 1: 75
FP151 0 1 FALSE 2 0: 898, 1: 53
FP152 0 1 FALSE 2 0: 873, 1: 78
FP153 0 1 FALSE 2 0: 877, 1: 74
FP155 0 1 FALSE 2 0: 885, 1: 66
FP156 0 1 FALSE 2 0: 884, 1: 67
FP157 0 1 FALSE 2 0: 892, 1: 59
FP158 0 1 FALSE 2 0: 900, 1: 51
FP159 0 1 FALSE 2 0: 884, 1: 67
FP160 0 1 FALSE 2 0: 886, 1: 65
FP161 0 1 FALSE 2 0: 888, 1: 63
FP162 0 1 FALSE 2 0: 480, 1: 471
FP163 0 1 FALSE 2 0: 498, 1: 453
FP164 0 1 FALSE 2 1: 597, 0: 354
FP165 0 1 FALSE 2 0: 619, 1: 332
FP166 0 1 FALSE 2 0: 636, 1: 315
FP167 0 1 FALSE 2 0: 639, 1: 312
FP168 0 1 FALSE 2 1: 633, 0: 318
FP169 0 1 FALSE 2 0: 774, 1: 177
FP170 0 1 FALSE 2 0: 776, 1: 175
FP171 0 1 FALSE 2 0: 790, 1: 161
FP172 0 1 FALSE 2 0: 807, 1: 144
FP173 0 1 FALSE 2 0: 816, 1: 135
FP174 0 1 FALSE 2 0: 827, 1: 124
FP175 0 1 FALSE 2 0: 823, 1: 128
FP176 0 1 FALSE 2 0: 835, 1: 116
FP177 0 1 FALSE 2 0: 836, 1: 115
FP178 0 1 FALSE 2 0: 836, 1: 115
FP179 0 1 FALSE 2 0: 858, 1: 93
FP180 0 1 FALSE 2 0: 849, 1: 102
FP181 0 1 FALSE 2 0: 862, 1: 89
FP182 0 1 FALSE 2 0: 857, 1: 94
FP183 0 1 FALSE 2 0: 879, 1: 72
FP184 0 1 FALSE 2 0: 871, 1: 80
FP185 0 1 FALSE 2 0: 870, 1: 81
FP186 0 1 FALSE 2 0: 878, 1: 73
FP187 0 1 FALSE 2 0: 882, 1: 69
FP188 0 1 FALSE 2 0: 886, 1: 65
FP189 0 1 FALSE 2 0: 878, 1: 73
FP190 0 1 FALSE 2 0: 882, 1: 69
FP191 0 1 FALSE 2 0: 884, 1: 67
FP192 0 1 FALSE 2 0: 893, 1: 58
FP193 0 1 FALSE 2 0: 892, 1: 59
FP194 0 1 FALSE 2 0: 895, 1: 56
FP195 0 1 FALSE 2 0: 893, 1: 58
FP196 0 1 FALSE 2 0: 897, 1: 54
FP197 0 1 FALSE 2 0: 901, 1: 50
FP198 0 1 FALSE 2 0: 897, 1: 54
FP201 0 1 FALSE 2 0: 901, 1: 50
FP202 0 1 FALSE 2 0: 706, 1: 245
FP203 0 1 FALSE 2 0: 842, 1: 109
FP204 0 1 FALSE 2 0: 857, 1: 94
FP205 0 1 FALSE 2 0: 877, 1: 74
FP206 0 1 FALSE 2 0: 894, 1: 57
FP207 0 1 FALSE 2 0: 897, 1: 54
FP208 0 1 FALSE 2 0: 844, 1: 107

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 0 1 -2.84 -0.80 -0.01 0.80 2.72 ▁▆▇▆▁
NumBonds 0 1 0 1 -2.92 -0.61 -0.04 0.60 3.23 ▁▅▇▃▁
NumMultBonds 0 1 0 1 -1.19 -1.00 -0.03 0.74 3.65 ▇▇▃▁▁
NumRotBonds 0 1 0 1 -0.93 -0.93 -0.10 0.52 5.71 ▇▂▁▁▁
NumDblBonds 0 1 0 1 -0.83 -0.83 -0.01 0.82 4.95 ▇▂▁▁▁
NumCarbon 0 1 0 1 -2.64 -0.69 -0.01 0.54 3.06 ▂▇▇▃▁
NumNitrogen 0 1 0 1 -0.69 -0.69 -0.69 0.16 4.37 ▇▂▁▁▁
NumOxygen 0 1 0 1 -0.91 -0.91 -0.33 0.25 6.61 ▇▂▁▁▁
NumSulfer 0 1 0 1 -0.34 -0.34 -0.34 -0.34 7.86 ▇▁▁▁▁
NumChlorine 0 1 0 1 -0.40 -0.40 -0.40 -0.40 6.74 ▇▁▁▁▁
NumHalogen 0 1 0 1 -0.47 -0.47 -0.47 0.20 6.32 ▇▁▁▁▁
NumRings 0 1 0 1 -1.08 -1.08 -0.31 0.46 4.31 ▇▃▂▁▁
HydrophilicFactor 0 1 0 1 -0.86 -0.66 -0.26 0.30 11.99 ▇▁▁▁▁
SurfaceArea1 0 1 0 1 -1.03 -0.77 -0.21 0.48 8.37 ▇▂▁▁▁
SurfaceArea2 0 1 0 1 -1.06 -0.78 -0.19 0.54 7.65 ▇▂▁▁▁
###################################
# Verifying the data dimensions
# for the train set
###################################
dim(PMA_PreModelling_Train)
## [1] 951 221
##################################
# Formulating the test set
##################################
DPA_Test <- Solubility_Test
DPA_Test.Predictors <- DPA_Test[,!names(DPA_Test) %in% c("Log_Solubility_Class")]
DPA_Test.Predictors.Numeric <- DPA_Test.Predictors[,-(grep("FP", names(DPA_Test.Predictors)))]
DPA_Test_BoxCox <- preProcess(DPA_Test.Predictors.Numeric, method = c("BoxCox"))
DPA_Test_BoxCoxTransformed <- predict(DPA_Test_BoxCox, DPA_Test.Predictors.Numeric)
DPA_Test.Predictors.Numeric_BoxCoxTransformed_CenteredScaled <- preProcess(DPA_Test_BoxCoxTransformed, method = c("center","scale"))
DPA_Test.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed <- predict(DPA_Test.Predictors.Numeric_BoxCoxTransformed_CenteredScaled, DPA_Test_BoxCoxTransformed)

##################################
# Creating the pre-modelling
# test set
##################################
Log_Solubility_Class <- DPA_Test$Log_Solubility_Class 
PMA_Test.Predictors.Factor   <- DPA_Test.Predictors[,(grep("FP", names(DPA_Test.Predictors)))]
PMA_Test.Predictors.Factor   <- as.data.frame(lapply(PMA_Test.Predictors.Factor,factor))
PMA_Test.Predictors.Numeric  <- DPA_Test.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed
PMA_Test_BoxCoxTransformed_CenteredScaledTransformed <- cbind(Log_Solubility_Class,PMA_Test.Predictors.Factor,PMA_Test.Predictors.Numeric)
PMA_Test_BoxCoxTransformed_CenteredScaledTransformed_ExcludedLowVariance_ExcludedLinearlyDependent_ExcludedHighCorrelation <- PMA_Test_BoxCoxTransformed_CenteredScaledTransformed[,!names(PMA_Test_BoxCoxTransformed_CenteredScaledTransformed) %in% c("FP154","FP199","FP200","NumNonHBonds","NumHydrogen","NumNonHAtoms","NumAromaticBonds","NumAtoms")]

PMA_PreModelling_Test <- PMA_Test_BoxCoxTransformed_CenteredScaledTransformed_ExcludedLowVariance_ExcludedLinearlyDependent_ExcludedHighCorrelation

##################################
# Gathering descriptive statistics
##################################
(PMA_PreModelling_Test_Skimmed <- skim(PMA_PreModelling_Test))
Data summary
Name PMA_PreModelling_Test
Number of rows 316
Number of columns 221
_______________________
Column type frequency:
factor 206
numeric 15
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 2 Hig: 173, Low: 143
FP001 0 1 FALSE 2 0: 168, 1: 148
FP002 0 1 FALSE 2 1: 185, 0: 131
FP003 0 1 FALSE 2 0: 176, 1: 140
FP004 0 1 FALSE 2 1: 168, 0: 148
FP005 0 1 FALSE 2 1: 195, 0: 121
FP006 0 1 FALSE 2 0: 205, 1: 111
FP007 0 1 FALSE 2 0: 204, 1: 112
FP008 0 1 FALSE 2 0: 202, 1: 114
FP009 0 1 FALSE 2 0: 233, 1: 83
FP010 0 1 FALSE 2 0: 255, 1: 61
FP011 0 1 FALSE 2 0: 261, 1: 55
FP012 0 1 FALSE 2 0: 263, 1: 53
FP013 0 1 FALSE 2 0: 264, 1: 52
FP014 0 1 FALSE 2 0: 266, 1: 50
FP015 0 1 FALSE 2 1: 262, 0: 54
FP016 0 1 FALSE 2 0: 271, 1: 45
FP017 0 1 FALSE 2 0: 269, 1: 47
FP018 0 1 FALSE 2 0: 289, 1: 27
FP019 0 1 FALSE 2 0: 280, 1: 36
FP020 0 1 FALSE 2 0: 282, 1: 34
FP021 0 1 FALSE 2 0: 282, 1: 34
FP022 0 1 FALSE 2 0: 279, 1: 37
FP023 0 1 FALSE 2 0: 289, 1: 27
FP024 0 1 FALSE 2 0: 285, 1: 31
FP025 0 1 FALSE 2 0: 291, 1: 25
FP026 0 1 FALSE 2 0: 279, 1: 37
FP027 0 1 FALSE 2 0: 291, 1: 25
FP028 0 1 FALSE 2 0: 298, 1: 18
FP029 0 1 FALSE 2 0: 300, 1: 16
FP030 0 1 FALSE 2 0: 290, 1: 26
FP031 0 1 FALSE 2 0: 285, 1: 31
FP032 0 1 FALSE 2 0: 275, 1: 41
FP033 0 1 FALSE 2 0: 278, 1: 38
FP034 0 1 FALSE 2 0: 295, 1: 21
FP035 0 1 FALSE 2 0: 285, 1: 31
FP036 0 1 FALSE 2 0: 297, 1: 19
FP037 0 1 FALSE 2 0: 286, 1: 30
FP038 0 1 FALSE 2 0: 306, 1: 10
FP039 0 1 FALSE 2 0: 296, 1: 20
FP040 0 1 FALSE 2 0: 298, 1: 18
FP041 0 1 FALSE 2 0: 297, 1: 19
FP042 0 1 FALSE 2 0: 297, 1: 19
FP043 0 1 FALSE 2 0: 302, 1: 14
FP044 0 1 FALSE 2 0: 297, 1: 19
FP045 0 1 FALSE 2 0: 296, 1: 20
FP046 0 1 FALSE 2 0: 213, 1: 103
FP047 0 1 FALSE 2 0: 222, 1: 94
FP048 0 1 FALSE 2 0: 280, 1: 36
FP049 0 1 FALSE 2 0: 282, 1: 34
FP050 0 1 FALSE 2 0: 280, 1: 36
FP051 0 1 FALSE 2 0: 298, 1: 18
FP052 0 1 FALSE 2 0: 283, 1: 33
FP053 0 1 FALSE 2 0: 297, 1: 19
FP054 0 1 FALSE 2 0: 285, 1: 31
FP055 0 1 FALSE 2 0: 287, 1: 29
FP056 0 1 FALSE 2 0: 296, 1: 20
FP057 0 1 FALSE 2 0: 277, 1: 39
FP058 0 1 FALSE 2 0: 273, 1: 43
FP059 0 1 FALSE 2 0: 302, 1: 14
FP060 0 1 FALSE 2 0: 173, 1: 143
FP061 0 1 FALSE 2 0: 192, 1: 124
FP062 0 1 FALSE 2 0: 181, 1: 135
FP063 0 1 FALSE 2 0: 203, 1: 113
FP064 0 1 FALSE 2 0: 193, 1: 123
FP065 0 1 FALSE 2 1: 189, 0: 127
FP066 0 1 FALSE 2 1: 195, 0: 121
FP067 0 1 FALSE 2 0: 213, 1: 103
FP068 0 1 FALSE 2 0: 224, 1: 92
FP069 0 1 FALSE 2 0: 198, 1: 118
FP070 0 1 FALSE 2 0: 211, 1: 105
FP071 0 1 FALSE 2 0: 207, 1: 109
FP072 0 1 FALSE 2 1: 204, 0: 112
FP073 0 1 FALSE 2 0: 224, 1: 92
FP074 0 1 FALSE 2 0: 213, 1: 103
FP075 0 1 FALSE 2 0: 235, 1: 81
FP076 0 1 FALSE 2 0: 216, 1: 100
FP077 0 1 FALSE 2 0: 219, 1: 97
FP078 0 1 FALSE 2 0: 218, 1: 98
FP079 0 1 FALSE 2 1: 230, 0: 86
FP080 0 1 FALSE 2 0: 233, 1: 83
FP081 0 1 FALSE 2 0: 225, 1: 91
FP082 0 1 FALSE 2 1: 235, 0: 81
FP083 0 1 FALSE 2 0: 236, 1: 80
FP084 0 1 FALSE 2 0: 245, 1: 71
FP085 0 1 FALSE 2 0: 231, 1: 85
FP086 0 1 FALSE 2 0: 230, 1: 86
FP087 0 1 FALSE 2 1: 241, 0: 75
FP088 0 1 FALSE 2 0: 239, 1: 77
FP089 0 1 FALSE 2 0: 236, 1: 80
FP090 0 1 FALSE 2 0: 244, 1: 72
FP091 0 1 FALSE 2 0: 243, 1: 73
FP092 0 1 FALSE 2 0: 247, 1: 69
FP093 0 1 FALSE 2 0: 248, 1: 68
FP094 0 1 FALSE 2 0: 237, 1: 79
FP095 0 1 FALSE 2 0: 251, 1: 65
FP096 0 1 FALSE 2 0: 257, 1: 59
FP097 0 1 FALSE 2 0: 250, 1: 66
FP098 0 1 FALSE 2 0: 252, 1: 64
FP099 0 1 FALSE 2 0: 249, 1: 67
FP100 0 1 FALSE 2 0: 259, 1: 57
FP101 0 1 FALSE 2 0: 260, 1: 56
FP102 0 1 FALSE 2 0: 270, 1: 46
FP103 0 1 FALSE 2 0: 247, 1: 69
FP104 0 1 FALSE 2 0: 258, 1: 58
FP105 0 1 FALSE 2 0: 248, 1: 68
FP106 0 1 FALSE 2 0: 273, 1: 43
FP107 0 1 FALSE 2 0: 254, 1: 62
FP108 0 1 FALSE 2 0: 259, 1: 57
FP109 0 1 FALSE 2 0: 261, 1: 55
FP110 0 1 FALSE 2 0: 264, 1: 52
FP111 0 1 FALSE 2 0: 259, 1: 57
FP112 0 1 FALSE 2 0: 260, 1: 56
FP113 0 1 FALSE 2 0: 264, 1: 52
FP114 0 1 FALSE 2 0: 260, 1: 56
FP115 0 1 FALSE 2 0: 266, 1: 50
FP116 0 1 FALSE 2 0: 269, 1: 47
FP117 0 1 FALSE 2 0: 262, 1: 54
FP118 0 1 FALSE 2 0: 279, 1: 37
FP119 0 1 FALSE 2 0: 263, 1: 53
FP120 0 1 FALSE 2 0: 267, 1: 49
FP121 0 1 FALSE 2 0: 282, 1: 34
FP122 0 1 FALSE 2 0: 273, 1: 43
FP123 0 1 FALSE 2 0: 270, 1: 46
FP124 0 1 FALSE 2 0: 274, 1: 42
FP125 0 1 FALSE 2 0: 278, 1: 38
FP126 0 1 FALSE 2 0: 280, 1: 36
FP127 0 1 FALSE 2 0: 269, 1: 47
FP128 0 1 FALSE 2 0: 282, 1: 34
FP129 0 1 FALSE 2 0: 272, 1: 44
FP130 0 1 FALSE 2 0: 290, 1: 26
FP131 0 1 FALSE 2 0: 282, 1: 34
FP132 0 1 FALSE 2 0: 276, 1: 40
FP133 0 1 FALSE 2 0: 273, 1: 43
FP134 0 1 FALSE 2 0: 289, 1: 27
FP135 0 1 FALSE 2 0: 296, 1: 20
FP136 0 1 FALSE 2 0: 284, 1: 32
FP137 0 1 FALSE 2 0: 288, 1: 28
FP138 0 1 FALSE 2 0: 290, 1: 26
FP139 0 1 FALSE 2 0: 296, 1: 20
FP140 0 1 FALSE 2 0: 288, 1: 28
FP141 0 1 FALSE 2 0: 294, 1: 22
FP142 0 1 FALSE 2 0: 286, 1: 30
FP143 0 1 FALSE 2 0: 299, 1: 17
FP144 0 1 FALSE 2 0: 287, 1: 29
FP145 0 1 FALSE 2 0: 296, 1: 20
FP146 0 1 FALSE 2 0: 287, 1: 29
FP147 0 1 FALSE 2 0: 294, 1: 22
FP148 0 1 FALSE 2 0: 291, 1: 25
FP149 0 1 FALSE 2 0: 290, 1: 26
FP150 0 1 FALSE 2 0: 295, 1: 21
FP151 0 1 FALSE 2 0: 306, 1: 10
FP152 0 1 FALSE 2 0: 299, 1: 17
FP153 0 1 FALSE 2 0: 305, 1: 11
FP155 0 1 FALSE 2 0: 295, 1: 21
FP156 0 1 FALSE 2 0: 301, 1: 15
FP157 0 1 FALSE 2 0: 298, 1: 18
FP158 0 1 FALSE 2 0: 291, 1: 25
FP159 0 1 FALSE 2 0: 305, 1: 11
FP160 0 1 FALSE 2 0: 305, 1: 11
FP161 0 1 FALSE 2 0: 305, 1: 11
FP162 0 1 FALSE 2 1: 168, 0: 148
FP163 0 1 FALSE 2 0: 173, 1: 143
FP164 0 1 FALSE 2 1: 207, 0: 109
FP165 0 1 FALSE 2 0: 215, 1: 101
FP166 0 1 FALSE 2 0: 209, 1: 107
FP167 0 1 FALSE 2 0: 221, 1: 95
FP168 0 1 FALSE 2 1: 226, 0: 90
FP169 0 1 FALSE 2 0: 257, 1: 59
FP170 0 1 FALSE 2 0: 267, 1: 49
FP171 0 1 FALSE 2 0: 275, 1: 41
FP172 0 1 FALSE 2 0: 269, 1: 47
FP173 0 1 FALSE 2 0: 273, 1: 43
FP174 0 1 FALSE 2 0: 267, 1: 49
FP175 0 1 FALSE 2 0: 274, 1: 42
FP176 0 1 FALSE 2 0: 282, 1: 34
FP177 0 1 FALSE 2 0: 284, 1: 32
FP178 0 1 FALSE 2 0: 282, 1: 34
FP179 0 1 FALSE 2 0: 272, 1: 44
FP180 0 1 FALSE 2 0: 294, 1: 22
FP181 0 1 FALSE 2 0: 283, 1: 33
FP182 0 1 FALSE 2 0: 292, 1: 24
FP183 0 1 FALSE 2 0: 274, 1: 42
FP184 0 1 FALSE 2 0: 286, 1: 30
FP185 0 1 FALSE 2 0: 285, 1: 31
FP186 0 1 FALSE 2 0: 297, 1: 19
FP187 0 1 FALSE 2 0: 295, 1: 21
FP188 0 1 FALSE 2 0: 294, 1: 22
FP189 0 1 FALSE 2 0: 303, 1: 13
FP190 0 1 FALSE 2 0: 299, 1: 17
FP191 0 1 FALSE 2 0: 298, 1: 18
FP192 0 1 FALSE 2 0: 294, 1: 22
FP193 0 1 FALSE 2 0: 294, 1: 22
FP194 0 1 FALSE 2 0: 295, 1: 21
FP195 0 1 FALSE 2 0: 300, 1: 16
FP196 0 1 FALSE 2 0: 294, 1: 22
FP197 0 1 FALSE 2 0: 296, 1: 20
FP198 0 1 FALSE 2 0: 302, 1: 14
FP201 0 1 FALSE 2 0: 303, 1: 13
FP202 0 1 FALSE 2 0: 232, 1: 84
FP203 0 1 FALSE 2 0: 273, 1: 43
FP204 0 1 FALSE 2 0: 286, 1: 30
FP205 0 1 FALSE 2 0: 291, 1: 25
FP206 0 1 FALSE 2 0: 300, 1: 16
FP207 0 1 FALSE 2 0: 302, 1: 14
FP208 0 1 FALSE 2 0: 273, 1: 43

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 0 1 -2.46 -0.78 -0.06 0.81 2.18 ▁▇▇▇▃
NumBonds 0 1 0 1 -2.92 -0.67 0.03 0.57 2.55 ▁▂▇▃▂
NumMultBonds 0 1 0 1 -1.24 -1.04 -0.06 0.72 4.06 ▇▇▅▁▁
NumRotBonds 0 1 0 1 -0.82 -0.82 -0.40 0.44 5.94 ▇▁▁▁▁
NumDblBonds 0 1 0 1 -0.76 -0.76 0.09 0.09 4.35 ▇▁▁▁▁
NumCarbon 0 1 0 1 -2.71 -0.70 -0.21 0.56 2.23 ▁▂▇▅▂
NumNitrogen 0 1 0 1 -0.63 -0.63 -0.63 0.26 4.71 ▇▂▁▁▁
NumOxygen 0 1 0 1 -0.92 -0.92 -0.26 0.40 5.02 ▇▃▁▁▁
NumSulfer 0 1 0 1 -0.28 -0.28 -0.28 -0.28 8.06 ▇▁▁▁▁
NumChlorine 0 1 0 1 -0.40 -0.40 -0.40 -0.40 6.02 ▇▁▁▁▁
NumHalogen 0 1 0 1 -0.48 -0.48 -0.48 0.20 5.57 ▇▁▁▁▁
NumRings 0 1 0 1 -1.14 -0.32 -0.32 0.49 3.74 ▇▃▁▁▁
HydrophilicFactor 0 1 0 1 -0.90 -0.68 -0.30 0.32 5.19 ▇▂▁▁▁
SurfaceArea1 0 1 0 1 -1.04 -0.75 -0.21 0.53 5.37 ▇▃▁▁▁
SurfaceArea2 0 1 0 1 -1.05 -0.77 -0.26 0.52 5.00 ▇▃▁▁▁
###################################
# Verifying the data dimensions
# for the test set
###################################
dim(PMA_PreModelling_Test)
## [1] 316 221

1.4 Data Exploration


Exploratory data analysis:

[A] Numeric variables which demonstrated differential relationships with the Log_Solubility_Class response variable include:
     [A.1] MolWeight variable (numeric)
     [A.2] NumCarbon variable (numeric)
     [A.3] NumChlorine variable (numeric)
     [A.4] NumHalogen variable (numeric)
     [A.5] NumMultBonds variable (numeric)

[B] Factor variables which demonstrated relatively better differentiation of the Log_Solubility_Class response variable between its 1 and 0 structure levels include:
     [B.1] FP207 variable (factor)
     [B.2] FP190 variable (factor)
     [B.3] FP197 variable (factor)
     [B.4] FP196 variable (factor)
     [B.5] FP193 variable (factor)
     [B.6] FP184 variable (factor)
     [B.7] FP172 variable (factor)
     [B.8] FP149 variable (factor)
     [B.9] FP112 variable (factor)
     [B.10] FP107 variable (factor)
     [B.11] FP089 variable (factor)
     [B.12] FP079 variable (factor)
     [B.13] FP076 variable (factor)
     [B.14] FP072 variable (factor)
     [B.15] FP071 variable (factor)
     [B.16] FP070 variable (factor)
     [B.17] FP065 variable (factor)
     [B.18] FP059 variable (factor)
     [B.19] FP054 variable (factor)
     [B.20] FP056 variable (factor)
     [B.21] FP053 variable (factor)
     [B.22] FP049 variable (factor)
     [B.23] FP044 variable (factor)
     [B.24] FP041 variable (factor)
     [B.25] FP039 variable (factor)
     [B.26] FP014 variable (factor)
     [B.27] FP013 variable (factor)
##################################
# Loading dataset
##################################
EDA <- PMA_PreModelling_Train

##################################
# Listing all predictors
##################################
EDA.Predictors <- EDA[,!names(EDA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
EDA.Predictors.Numeric <- EDA.Predictors[,sapply(EDA.Predictors, is.numeric)]
ncol(EDA.Predictors.Numeric)
## [1] 15
names(EDA.Predictors.Numeric)
##  [1] "MolWeight"         "NumBonds"          "NumMultBonds"     
##  [4] "NumRotBonds"       "NumDblBonds"       "NumCarbon"        
##  [7] "NumNitrogen"       "NumOxygen"         "NumSulfer"        
## [10] "NumChlorine"       "NumHalogen"        "NumRings"         
## [13] "HydrophilicFactor" "SurfaceArea1"      "SurfaceArea2"
##################################
# Listing all factor predictors
##################################
EDA.Predictors.Factor <- EDA.Predictors[,sapply(EDA.Predictors, is.factor)]
ncol(EDA.Predictors.Factor)
## [1] 205
names(EDA.Predictors.Factor)
##   [1] "FP001" "FP002" "FP003" "FP004" "FP005" "FP006" "FP007" "FP008" "FP009"
##  [10] "FP010" "FP011" "FP012" "FP013" "FP014" "FP015" "FP016" "FP017" "FP018"
##  [19] "FP019" "FP020" "FP021" "FP022" "FP023" "FP024" "FP025" "FP026" "FP027"
##  [28] "FP028" "FP029" "FP030" "FP031" "FP032" "FP033" "FP034" "FP035" "FP036"
##  [37] "FP037" "FP038" "FP039" "FP040" "FP041" "FP042" "FP043" "FP044" "FP045"
##  [46] "FP046" "FP047" "FP048" "FP049" "FP050" "FP051" "FP052" "FP053" "FP054"
##  [55] "FP055" "FP056" "FP057" "FP058" "FP059" "FP060" "FP061" "FP062" "FP063"
##  [64] "FP064" "FP065" "FP066" "FP067" "FP068" "FP069" "FP070" "FP071" "FP072"
##  [73] "FP073" "FP074" "FP075" "FP076" "FP077" "FP078" "FP079" "FP080" "FP081"
##  [82] "FP082" "FP083" "FP084" "FP085" "FP086" "FP087" "FP088" "FP089" "FP090"
##  [91] "FP091" "FP092" "FP093" "FP094" "FP095" "FP096" "FP097" "FP098" "FP099"
## [100] "FP100" "FP101" "FP102" "FP103" "FP104" "FP105" "FP106" "FP107" "FP108"
## [109] "FP109" "FP110" "FP111" "FP112" "FP113" "FP114" "FP115" "FP116" "FP117"
## [118] "FP118" "FP119" "FP120" "FP121" "FP122" "FP123" "FP124" "FP125" "FP126"
## [127] "FP127" "FP128" "FP129" "FP130" "FP131" "FP132" "FP133" "FP134" "FP135"
## [136] "FP136" "FP137" "FP138" "FP139" "FP140" "FP141" "FP142" "FP143" "FP144"
## [145] "FP145" "FP146" "FP147" "FP148" "FP149" "FP150" "FP151" "FP152" "FP153"
## [154] "FP155" "FP156" "FP157" "FP158" "FP159" "FP160" "FP161" "FP162" "FP163"
## [163] "FP164" "FP165" "FP166" "FP167" "FP168" "FP169" "FP170" "FP171" "FP172"
## [172] "FP173" "FP174" "FP175" "FP176" "FP177" "FP178" "FP179" "FP180" "FP181"
## [181] "FP182" "FP183" "FP184" "FP185" "FP186" "FP187" "FP188" "FP189" "FP190"
## [190] "FP191" "FP192" "FP193" "FP194" "FP195" "FP196" "FP197" "FP198" "FP201"
## [199] "FP202" "FP203" "FP204" "FP205" "FP206" "FP207" "FP208"
##################################
# Formulating the box plots
##################################
featurePlot(x = EDA.Predictors.Numeric, 
            y = EDA$Log_Solubility_Class,
            plot = "box",
            scales = list(x = list(relation="free", rot = 90), 
                          y = list(relation="free")),
            adjust = 1.5, 
            pch = "|")

##################################
# Restructuring the dataset for
# for barchart analysis
##################################
Log_Solubility_Class <- DPA$Log_Solubility_Class
EDA.Bar.Source <- as.data.frame(cbind(Log_Solubility_Class,
                     EDA.Predictors.Factor))
ncol(EDA.Bar.Source)
## [1] 206
##################################
# Creating a function to formulate
# the proportions table
##################################
EDA.PropTable.Function <- function(FactorVar) {
  EDA.Bar.Source.FactorVar <- EDA.Bar.Source[,c("Log_Solubility_Class",
                                          FactorVar)]
  EDA.Bar.Source.FactorVar.Prop <- as.data.frame(prop.table(table(EDA.Bar.Source.FactorVar), 2))
  names(EDA.Bar.Source.FactorVar.Prop)[2] <- "Structure"
  EDA.Bar.Source.FactorVar.Prop$Variable <- rep(FactorVar,nrow(EDA.Bar.Source.FactorVar.Prop))
  
  return(EDA.Bar.Source.FactorVar.Prop)

}

EDA.Bar.Source.FactorVar.Prop.Group5 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[162]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[163]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[164]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[165]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[166]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[167]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[168]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[169]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[170]),                           
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[171]),                           
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[172]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[173]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[174]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[175]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[176]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[177]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[178]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[179]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[180]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[181]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[182]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[183]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[184]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[185]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[186]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[187]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[188]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[189]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[190]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[191]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[192]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[193]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[194]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[195]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[196]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[197]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[198]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[199]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[200]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[201]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[202]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[203]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[204]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[205]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[206]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group5[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group5[,2] | EDA.Bar.Source.FactorVar.Prop.Group5[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group5,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group5[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

EDA.Bar.Source.FactorVar.Prop.Group4 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[122]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[123]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[124]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[125]),                          
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[126]),                           
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[127]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[128]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[129]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[130]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[131]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[132]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[133]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[134]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[135]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[136]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[137]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[138]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[139]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[140]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[141]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[142]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[143]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[144]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[145]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[146]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[147]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[148]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[149]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[150]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[151]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[152]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[153]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[154]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[155]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[156]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[157]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[158]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[159]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[160]),                          
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[161]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group4[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group4[,2] | EDA.Bar.Source.FactorVar.Prop.Group4[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group4,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group4[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

EDA.Bar.Source.FactorVar.Prop.Group3 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[82]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[83]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[84]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[85]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[86]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[87]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[88]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[89]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[90]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[91]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[92]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[93]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[94]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[95]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[96]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[97]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[98]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[99]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[100]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[101]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[102]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[103]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[104]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[105]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[106]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[107]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[108]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[109]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[110]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[111]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[112]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[113]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[114]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[115]),                           
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[116]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[117]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[118]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[119]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[120]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[121]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group3[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group3[,2] | EDA.Bar.Source.FactorVar.Prop.Group3[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group3,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group3[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

EDA.Bar.Source.FactorVar.Prop.Group2 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[42]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[43]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[44]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[45]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[46]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[47]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[48]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[49]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[50]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[51]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[52]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[53]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[54]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[55]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[56]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[57]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[58]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[59]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[60]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[61]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[62]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[63]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[64]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[65]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[66]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[67]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[68]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[69]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[70]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[71]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[72]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[73]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[74]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[75]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[76]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[77]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[78]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[79]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[80]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[81]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group2[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group2[,2] | EDA.Bar.Source.FactorVar.Prop.Group2[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group2,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group2[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

EDA.Bar.Source.FactorVar.Prop.Group1 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[2]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[3]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[4]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[5]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[6]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[7]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[8]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[9]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[10]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[11]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[12]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[13]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[14]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[15]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[16]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[17]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[18]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[19]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[20]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[21]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[22]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[23]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[24]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[25]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[26]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[27]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[28]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[29]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[30]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[31]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[32]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[33]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[34]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[35]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[36]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[37]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[38]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[39]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[40]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[41]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group1[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group1[,2] | EDA.Bar.Source.FactorVar.Prop.Group1[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group1,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group1[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

1.5 Predictive Model Development

1.5.1 Logistic Regression (LR)


[A] The logistic regression model from the stats package was implemented through the caret package.

[B] The model does not contain any hyperparameter.

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] ROC Curve AUC = 0.86164

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] FP063 (Structure=1) variable (factor)
     [D.2] MolWeight variable (numeric)
     [D.3] FP104 (Structure=1) variable (factor)
     [D.4] FP012 (Structure=1) variable (factor)
     [D.5] FP159 (Structure=1) variable (factor)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.87303
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_LR <- PMA_PreModelling_Train
PMA_PreModelling_Test_LR <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments 
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_LR$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# No hyperparameter tuning process conducted
# hyperparameter=intercept fixed to TRUE

##################################
# Running the logistic regression model
# by setting the caret method to 'glm'
##################################
set.seed(12345678)
LR_Tune <- train(x = PMA_PreModelling_Train_LR[,!names(PMA_PreModelling_Train_LR) %in% c("Log_Solubility_Class")], 
                 y = PMA_PreModelling_Train_LR$Log_Solubility_Class,
                 method = "glm",
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
LR_Tune
## Generalized Linear Model 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results:
## 
##   ROC        Sens       Spec     
##   0.8616392  0.7961794  0.8436865
LR_Tune$finalModel
## 
## Call:  NULL
## 
## Coefficients:
##       (Intercept)             FP0011             FP0021             FP0031  
##           -73.478             23.642            -63.792             29.009  
##            FP0041             FP0051             FP0061             FP0071  
##           -61.233            -10.359            126.716              4.106  
##            FP0081             FP0091             FP0101             FP0111  
##            44.714           -148.358             32.580            -35.712  
##            FP0121             FP0131             FP0141             FP0151  
##           150.447            100.835           -100.478            -51.850  
##            FP0161             FP0171             FP0181             FP0191  
##            14.599            -72.252            -76.040            123.798  
##            FP0201             FP0211             FP0221             FP0231  
##           -39.270            137.655           -140.820            -33.305  
##            FP0241             FP0251             FP0261             FP0271  
##            50.910            109.986            -59.291           -100.391  
##            FP0281             FP0291             FP0301             FP0311  
##           -53.217            120.259             -6.067              4.267  
##            FP0321             FP0331             FP0341             FP0351  
##          -142.025            154.036             91.367            -31.286  
##            FP0361             FP0371             FP0381             FP0391  
##             3.235             76.462              4.078             35.413  
##            FP0401             FP0411             FP0421             FP0431  
##           -94.345           -143.696            114.618           -155.763  
##            FP0441             FP0451             FP0461             FP0471  
##            11.007             50.524             72.530            -17.550  
##            FP0481             FP0491             FP0501             FP0511  
##            19.321            -32.341            -45.643             26.443  
##            FP0521             FP0531             FP0541             FP0551  
##            31.135             67.873             17.110             10.667  
##            FP0561             FP0571             FP0581             FP0591  
##            23.892            -57.760            120.795             26.711  
##            FP0601             FP0611             FP0621             FP0631  
##            16.357            -35.503            167.909            306.142  
##            FP0641             FP0651             FP0661             FP0671  
##            21.204              3.992             -2.965            -51.198  
##            FP0681             FP0691             FP0701             FP0711  
##          -197.983             28.044              3.822             13.276  
##            FP0721             FP0731             FP0741             FP0751  
##            96.718              9.386              6.163             62.776  
##            FP0761             FP0771             FP0781             FP0791  
##            61.763             -1.026            -46.437            -52.010  
##            FP0801             FP0811             FP0821             FP0831  
##            97.374             -8.238             12.896           -131.968  
##            FP0841             FP0851             FP0861             FP0871  
##            67.549            -11.058              3.183              5.585  
##            FP0881             FP0891             FP0901             FP0911  
##            32.577            -48.514             28.546            124.351  
##            FP0921             FP0931             FP0941             FP0951  
##           109.202             59.604            -43.210            -69.740  
##            FP0961             FP0971             FP0981             FP0991  
##            31.873            -63.515            -22.406             29.279  
##            FP1001             FP1011             FP1021             FP1031  
##           124.565            -64.999           -116.518              9.557  
##            FP1041             FP1051             FP1061             FP1071  
##           -75.807             -9.512            -37.698            -40.447  
##            FP1081             FP1091             FP1101             FP1111  
##           -55.197            -24.950           -146.311            -71.819  
##            FP1121             FP1131             FP1141             FP1151  
##           -13.401             -8.784            -80.249             35.511  
##            FP1161             FP1171             FP1181             FP1191  
##            25.361             51.423            -46.085            102.543  
##            FP1201             FP1211             FP1221             FP1231  
##          -115.444             -5.854             91.088            -47.361  
##            FP1241             FP1251             FP1261             FP1271  
##            21.566             73.821            -83.394             17.137  
##            FP1281             FP1291             FP1301             FP1311  
##             9.615             18.670            139.606            106.283  
##            FP1321             FP1331             FP1341             FP1351  
##           -60.900             24.554             64.458             38.337  
##            FP1361             FP1371             FP1381             FP1391  
##          -211.682            109.808           -122.970            -54.319  
##            FP1401             FP1411             FP1421             FP1431  
##            66.218           -252.454            -43.329            126.016  
##            FP1441             FP1451             FP1461             FP1471  
##            17.968            -18.638           -109.857            -14.412  
##            FP1481             FP1491             FP1501             FP1511  
##           -14.780             24.576            -13.686           -183.721  
##            FP1521             FP1531             FP1551             FP1561  
##           139.475             29.879            114.250           -230.935  
##            FP1571             FP1581             FP1591             FP1601  
##          -158.006            -98.477            386.562            -85.277  
##            FP1611             FP1621             FP1631             FP1641  
##            73.919            -12.368            -46.209             48.885  
##            FP1651             FP1661             FP1671             FP1681  
##            35.933            -27.182           -152.769            103.681  
##            FP1691             FP1701             FP1711             FP1721  
##           -22.744             -6.383             96.779            -18.229  
##            FP1731             FP1741             FP1751             FP1761  
##           -67.084           -144.129              2.561           -107.016  
##            FP1771             FP1781             FP1791             FP1801  
##            56.955            -58.915             62.378            -46.265  
##            FP1811             FP1821             FP1831             FP1841  
##           -79.937           -104.797           -116.208             74.850  
##            FP1851             FP1861             FP1871             FP1881  
##            64.332              2.161            -44.703             32.183  
##            FP1891             FP1901             FP1911             FP1921  
##           -27.250             20.897            -11.267            138.402  
##            FP1931             FP1941             FP1951             FP1961  
##            98.767            113.569             46.129           -148.367  
##            FP1971             FP1981             FP2011             FP2021  
##          -115.916            -63.312             29.714              9.347  
##            FP2031             FP2041             FP2051             FP2061  
##          -130.341             55.393            -31.422              8.553  
##            FP2071             FP2081          MolWeight           NumBonds  
##             0.389             30.840            -90.607           -122.580  
##      NumMultBonds        NumRotBonds        NumDblBonds          NumCarbon  
##          -116.050            -31.516             78.549             65.370  
##       NumNitrogen          NumOxygen          NumSulfer        NumChlorine  
##            95.518            116.199             59.793             -9.772  
##        NumHalogen           NumRings  HydrophilicFactor       SurfaceArea1  
##            -1.850             92.579            139.414             46.155  
##      SurfaceArea2  
##          -264.909  
## 
## Degrees of Freedom: 950 Total (i.e. Null);  730 Residual
## Null Deviance:       1308 
## Residual Deviance: 1.502e-07     AIC: 442
LR_Tune$results
##   parameter       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1      none 0.8616392 0.7961794 0.8436865 0.04359539 0.06796609 0.06105881
(LR_Train_ROCCurveAUC <- LR_Tune$results$ROC)
## [1] 0.8616392
##################################
# Identifying and plotting the
# best model predictors
##################################
LR_VarImp <- varImp(LR_Tune, scale = TRUE)
plot(LR_VarImp, 
     top=25, 
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Logistic Regression",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
LR_Test <- data.frame(LR_Observed = PMA_PreModelling_Test_LR$Log_Solubility_Class,
                      LR_Predicted = predict(LR_Tune, 
                      PMA_PreModelling_Test_LR[,!names(PMA_PreModelling_Test_LR) %in% c("Log_Solubility_Class")],
                      type = "prob"))

LR_Test
##      LR_Observed LR_Predicted.Low LR_Predicted.High
## 20          High     2.220446e-16      1.000000e+00
## 21          High     2.220446e-16      1.000000e+00
## 23          High     2.220446e-16      1.000000e+00
## 25          High     2.220446e-16      1.000000e+00
## 28          High     5.891554e-08      9.999999e-01
## 31          High     2.220446e-16      1.000000e+00
## 32          High     2.220446e-16      1.000000e+00
## 33          High     2.220446e-16      1.000000e+00
## 34          High     2.220446e-16      1.000000e+00
## 37          High     2.220446e-16      1.000000e+00
## 38          High     2.220446e-16      1.000000e+00
## 42          High     2.220446e-16      1.000000e+00
## 49          High     2.220446e-16      1.000000e+00
## 54          High     2.220446e-16      1.000000e+00
## 55          High     2.220446e-16      1.000000e+00
## 58          High     2.220446e-16      1.000000e+00
## 60          High     2.220446e-16      1.000000e+00
## 61          High     2.220446e-16      1.000000e+00
## 65          High     2.220446e-16      1.000000e+00
## 69          High     2.220446e-16      1.000000e+00
## 73          High     2.220446e-16      1.000000e+00
## 86          High     2.220446e-16      1.000000e+00
## 90          High     2.220446e-16      1.000000e+00
## 91          High     2.220446e-16      1.000000e+00
## 93          High     2.220446e-16      1.000000e+00
## 96          High     2.220446e-16      1.000000e+00
## 98          High     2.220446e-16      1.000000e+00
## 100         High     2.220446e-16      1.000000e+00
## 104         High     2.220446e-16      1.000000e+00
## 112         High     2.220446e-16      1.000000e+00
## 115         High     2.220446e-16      1.000000e+00
## 119         High     2.220446e-16      1.000000e+00
## 128         High     2.220446e-16      1.000000e+00
## 130         High     2.220446e-16      1.000000e+00
## 139         High     2.220446e-16      1.000000e+00
## 143         High     2.220446e-16      1.000000e+00
## 145         High     2.220446e-16      1.000000e+00
## 146         High     2.220446e-16      1.000000e+00
## 149         High     2.220446e-16      1.000000e+00
## 150         High     2.220446e-16      1.000000e+00
## 152         High     2.220446e-16      1.000000e+00
## 157         High     2.220446e-16      1.000000e+00
## 161         High     2.220446e-16      1.000000e+00
## 162         High     2.220446e-16      1.000000e+00
## 166         High     2.220446e-16      1.000000e+00
## 167         High     2.220446e-16      1.000000e+00
## 173         High     2.220446e-16      1.000000e+00
## 176         High     2.220446e-16      1.000000e+00
## 182         High     2.220446e-16      1.000000e+00
## 187         High     2.220446e-16      1.000000e+00
## 190         High     2.220446e-16      1.000000e+00
## 194         High     2.220446e-16      1.000000e+00
## 195         High     2.220446e-16      1.000000e+00
## 201         High     2.220446e-16      1.000000e+00
## 207         High     2.220446e-16      1.000000e+00
## 208         High     2.220446e-16      1.000000e+00
## 215         High     2.220446e-16      1.000000e+00
## 222         High     6.031580e-02      9.396842e-01
## 224         High     2.220446e-16      1.000000e+00
## 231         High     2.220446e-16      1.000000e+00
## 236         High     2.220446e-16      1.000000e+00
## 237         High     2.220446e-16      1.000000e+00
## 240         High     2.220446e-16      1.000000e+00
## 243         High     2.220446e-16      1.000000e+00
## 248         High     2.220446e-16      1.000000e+00
## 251         High     2.220446e-16      1.000000e+00
## 256         High     1.000000e+00      2.220446e-16
## 258         High     1.321706e-07      9.999999e-01
## 262         High     2.220446e-16      1.000000e+00
## 266         High     2.220446e-16      1.000000e+00
## 272         High     2.220446e-16      1.000000e+00
## 280         High     2.220446e-16      1.000000e+00
## 283         High     2.220446e-16      1.000000e+00
## 286         High     2.220446e-16      1.000000e+00
## 287         High     9.130220e-01      8.697798e-02
## 289         High     2.220446e-16      1.000000e+00
## 290         High     9.999585e-01      4.152350e-05
## 298         High     2.220446e-16      1.000000e+00
## 305         High     2.220446e-16      1.000000e+00
## 306         High     2.220446e-16      1.000000e+00
## 312         High     2.220446e-16      1.000000e+00
## 320         High     2.220446e-16      1.000000e+00
## 325         High     1.000000e+00      2.220446e-16
## 332         High     2.220446e-16      1.000000e+00
## 333         High     2.220446e-16      1.000000e+00
## 335         High     2.220446e-16      1.000000e+00
## 339         High     1.000000e+00      1.297243e-13
## 346         High     2.220446e-16      1.000000e+00
## 347         High     2.220446e-16      1.000000e+00
## 350         High     2.220446e-16      1.000000e+00
## 353         High     2.220446e-16      1.000000e+00
## 358         High     6.755818e-11      1.000000e+00
## 365         High     2.220446e-16      1.000000e+00
## 367         High     2.220446e-16      1.000000e+00
## 370         High     2.220446e-16      1.000000e+00
## 379         High     1.000000e+00      2.220446e-16
## 386         High     2.220446e-16      1.000000e+00
## 394         High     1.000000e+00      2.220446e-16
## 396         High     2.220446e-16      1.000000e+00
## 400         High     1.153293e-10      1.000000e+00
## 404         High     2.220446e-16      1.000000e+00
## 405         High     2.305626e-02      9.769437e-01
## 413         High     2.220446e-16      1.000000e+00
## 415         High     2.220446e-16      1.000000e+00
## 417         High     1.000000e+00      2.220446e-16
## 418         High     2.220446e-16      1.000000e+00
## 423         High     2.220446e-16      1.000000e+00
## 434         High     1.124513e-07      9.999999e-01
## 437         High     1.000000e+00      2.220446e-16
## 440         High     1.000000e+00      2.220446e-16
## 449         High     2.220446e-16      1.000000e+00
## 450         High     1.000000e+00      2.220446e-16
## 457         High     2.220446e-16      1.000000e+00
## 467         High     1.000000e+00      2.220446e-16
## 469         High     2.220446e-16      1.000000e+00
## 474         High     1.000000e+00      2.220446e-16
## 475         High     1.000000e+00      2.220446e-16
## 485         High     1.000000e+00      2.220446e-16
## 504          Low     2.220446e-16      1.000000e+00
## 511          Low     1.000000e+00      2.220446e-16
## 512          Low     2.220446e-16      1.000000e+00
## 517          Low     2.220446e-16      1.000000e+00
## 519          Low     1.000000e+00      2.220446e-16
## 520          Low     1.000000e+00      2.220446e-16
## 522          Low     2.220446e-16      1.000000e+00
## 527          Low     2.220446e-16      1.000000e+00
## 528          Low     1.000000e+00      2.220446e-16
## 529          Low     1.000000e+00      2.220446e-16
## 537          Low     1.000000e+00      2.220446e-16
## 540          Low     2.220446e-16      1.000000e+00
## 541          Low     1.000000e+00      1.735441e-12
## 547          Low     1.000000e+00      2.220446e-16
## 550          Low     1.000000e+00      2.220446e-16
## 555          Low     1.000000e+00      2.220446e-16
## 564          Low     1.000000e+00      2.220446e-16
## 570          Low     1.000000e+00      2.220446e-16
## 573          Low     1.000000e+00      1.200116e-08
## 575          Low     1.000000e+00      4.090493e-11
## 578          Low     2.220446e-16      1.000000e+00
## 581          Low     2.220446e-16      1.000000e+00
## 585          Low     2.001904e-04      9.997998e-01
## 590          Low     1.000000e+00      2.220446e-16
## 601          Low     1.000000e+00      2.220446e-16
## 602          Low     2.220446e-16      1.000000e+00
## 607          Low     2.220446e-16      1.000000e+00
## 610          Low     1.000000e+00      2.220446e-16
## 618          Low     2.220446e-16      1.000000e+00
## 624          Low     1.000000e+00      2.220446e-16
## 626          Low     1.000000e+00      2.220446e-16
## 627          Low     1.000000e+00      2.220446e-16
## 634          Low     1.000000e+00      2.008828e-09
## 640          Low     1.000000e+00      2.220446e-16
## 642          Low     1.000000e+00      2.220446e-16
## 643          Low     1.000000e+00      2.220446e-16
## 644          Low     2.220446e-16      1.000000e+00
## 645          Low     2.220446e-16      1.000000e+00
## 646          Low     1.000000e+00      2.220446e-16
## 647          Low     1.000000e+00      2.220446e-16
## 652          Low     1.000000e+00      2.220446e-16
## 658          Low     1.000000e+00      2.220446e-16
## 659          Low     9.999675e-01      3.251573e-05
## 660          Low     1.000000e+00      2.220446e-16
## 664          Low     4.952152e-05      9.999505e-01
## 666          Low     1.000000e+00      2.220446e-16
## 667          Low     1.000000e+00      2.220446e-16
## 675          Low     1.000000e+00      2.220446e-16
## 680          Low     1.000000e+00      2.220446e-16
## 681          Low     9.726381e-01      2.736193e-02
## 687          Low     1.000000e+00      2.220446e-16
## 694          Low     1.000000e+00      2.220446e-16
## 697          Low     1.000000e+00      2.220446e-16
## 701          Low     1.000000e+00      2.220446e-16
## 705          Low     1.000000e+00      2.220446e-16
## 707          Low     1.000000e+00      2.220446e-16
## 710          Low     1.000000e+00      2.220446e-16
## 716          Low     1.000000e+00      1.592413e-11
## 719          Low     1.000000e+00      2.220446e-16
## 720          Low     1.000000e+00      2.220446e-16
## 725          Low     1.000000e+00      2.220446e-16
## 727          Low     1.000000e+00      2.220446e-16
## 730          Low     1.000000e+00      2.220446e-16
## 738          Low     2.220446e-16      1.000000e+00
## 745          Low     1.000000e+00      2.220446e-16
## 748          Low     1.000000e+00      2.220446e-16
## 751          Low     1.000000e+00      2.220446e-16
## 756          Low     1.000000e+00      2.220446e-16
## 766          Low     1.000000e+00      2.220446e-16
## 769          Low     1.000000e+00      2.220446e-16
## 783          Low     1.000000e+00      2.220446e-16
## 785          Low     1.000000e+00      2.220446e-16
## 790          Low     1.000000e+00      2.220446e-16
## 793          Low     1.000000e+00      2.220446e-16
## 795          Low     1.000000e+00      2.220446e-16
## 796          Low     1.000000e+00      2.220446e-16
## 797          Low     1.000000e+00      2.220446e-16
## 801          Low     1.000000e+00      2.220446e-16
## 811          Low     1.000000e+00      2.220446e-16
## 812          Low     1.000000e+00      2.220446e-16
## 815          Low     1.000000e+00      2.220446e-16
## 816          Low     1.000000e+00      2.220446e-16
## 817          Low     1.000000e+00      2.220446e-16
## 824          Low     1.000000e+00      2.220446e-16
## 825          Low     1.000000e+00      2.220446e-16
## 826          Low     1.000000e+00      2.220446e-16
## 830          Low     1.000000e+00      2.220446e-16
## 837          Low     1.000000e+00      2.220446e-16
## 838          Low     1.000000e+00      2.220446e-16
## 844          Low     1.000000e+00      2.220446e-16
## 845          Low     1.000000e+00      2.220446e-16
## 847          Low     1.000000e+00      2.220446e-16
## 850          Low     1.000000e+00      2.220446e-16
## 852          Low     1.000000e+00      2.220446e-16
## 853          Low     1.000000e+00      2.220446e-16
## 861          Low     1.000000e+00      2.220446e-16
## 868          Low     1.000000e+00      2.220446e-16
## 874          Low     1.000000e+00      2.220446e-16
## 879         High     2.220446e-16      1.000000e+00
## 895         High     2.220446e-16      1.000000e+00
## 899         High     2.220446e-16      1.000000e+00
## 903         High     2.220446e-16      1.000000e+00
## 917         High     2.220446e-16      1.000000e+00
## 927         High     2.220446e-16      1.000000e+00
## 929         High     2.220446e-16      1.000000e+00
## 931         High     2.220446e-16      1.000000e+00
## 933         High     2.220446e-16      1.000000e+00
## 944         High     2.220446e-16      1.000000e+00
## 947         High     2.220446e-16      1.000000e+00
## 949         High     2.220446e-16      1.000000e+00
## 953         High     2.220446e-16      1.000000e+00
## 958         High     1.000000e+00      5.733169e-09
## 961         High     2.220446e-16      1.000000e+00
## 963         High     2.220446e-16      1.000000e+00
## 964         High     2.220446e-16      1.000000e+00
## 973         High     2.220446e-16      1.000000e+00
## 976         High     2.220446e-16      1.000000e+00
## 977         High     2.220446e-16      1.000000e+00
## 980         High     2.220446e-16      1.000000e+00
## 983         High     2.220446e-16      1.000000e+00
## 984         High     2.220446e-16      1.000000e+00
## 986         High     2.220446e-16      1.000000e+00
## 989         High     2.220446e-16      1.000000e+00
## 991         High     2.220446e-16      1.000000e+00
## 996         High     2.220446e-16      1.000000e+00
## 997         High     1.000000e+00      2.220446e-16
## 999         High     2.220446e-16      1.000000e+00
## 1000        High     2.220446e-16      1.000000e+00
## 1003        High     2.220446e-16      1.000000e+00
## 1008        High     2.220446e-16      1.000000e+00
## 1009        High     2.220446e-16      1.000000e+00
## 1014        High     2.220446e-16      1.000000e+00
## 1015        High     2.220446e-16      1.000000e+00
## 1040        High     1.000000e+00      2.220446e-16
## 1042        High     2.220446e-16      1.000000e+00
## 1043        High     1.000000e+00      2.220446e-16
## 1050        High     1.000000e+00      2.220446e-16
## 1052        High     2.220446e-16      1.000000e+00
## 1056        High     2.220446e-16      1.000000e+00
## 1070        High     2.220446e-16      1.000000e+00
## 1073        High     1.000000e+00      2.220446e-16
## 1074        High     2.220446e-16      1.000000e+00
## 1079        High     2.220446e-16      1.000000e+00
## 1080        High     2.220446e-16      1.000000e+00
## 1085        High     2.220446e-16      1.000000e+00
## 1087        High     2.220446e-16      1.000000e+00
## 1096        High     3.436140e-12      1.000000e+00
## 1099        High     2.220446e-16      1.000000e+00
## 1100        High     1.000000e+00      5.528555e-09
## 1102        High     2.220446e-16      1.000000e+00
## 1107         Low     9.922518e-01      7.748197e-03
## 1109         Low     2.220446e-16      1.000000e+00
## 1114         Low     1.000000e+00      2.220446e-16
## 1118         Low     1.000000e+00      2.220446e-16
## 1123         Low     1.000000e+00      2.220446e-16
## 1132         Low     1.000000e+00      2.220446e-16
## 1134         Low     1.844113e-09      1.000000e+00
## 1137         Low     1.000000e+00      2.220446e-16
## 1154         Low     1.000000e+00      2.220446e-16
## 1155         Low     2.220446e-16      1.000000e+00
## 1157         Low     1.000000e+00      2.220446e-16
## 1162         Low     1.000000e+00      2.220446e-16
## 1164         Low     1.000000e+00      2.220446e-16
## 1171         Low     1.000000e+00      2.220446e-16
## 1172         Low     2.286853e-09      1.000000e+00
## 1175         Low     1.000000e+00      2.220446e-16
## 1177         Low     1.000000e+00      2.220446e-16
## 1179         Low     1.000000e+00      9.377951e-11
## 1183         Low     1.000000e+00      2.875438e-12
## 1185         Low     2.220446e-16      1.000000e+00
## 1189         Low     1.000000e+00      2.220446e-16
## 1211         Low     1.000000e+00      2.220446e-16
## 1218         Low     2.220446e-16      1.000000e+00
## 1224         Low     1.000000e+00      2.220446e-16
## 1225         Low     1.000000e+00      2.220446e-16
## 1227         Low     1.000000e+00      2.220446e-16
## 1232         Low     1.000000e+00      2.220446e-16
## 1235         Low     1.000000e+00      2.220446e-16
## 1238         Low     1.000000e+00      2.220446e-16
## 1240         Low     1.000000e+00      2.220446e-16
## 1241         Low     1.000000e+00      2.220446e-16
## 1248         Low     1.000000e+00      2.220446e-16
## 1258         Low     1.000000e+00      2.220446e-16
## 1261         Low     1.000000e+00      2.220446e-16
## 1263         Low     1.000000e+00      2.220446e-16
## 1269         Low     1.000000e+00      2.220446e-16
## 1270         Low     1.000000e+00      2.220446e-16
## 1271         Low     1.000000e+00      2.220446e-16
## 1272         Low     1.000000e+00      2.220446e-16
## 1280         Low     1.000000e+00      2.220446e-16
## 1286         Low     1.000000e+00      2.220446e-16
## 1287         Low     1.000000e+00      2.220446e-16
## 1289         Low     1.000000e+00      2.220446e-16
## 1290         Low     1.000000e+00      2.220446e-16
## 1291        High     2.220446e-16      1.000000e+00
## 1294        High     2.220446e-16      1.000000e+00
## 1305         Low     1.000000e+00      2.220446e-16
## 1308        High     1.000000e+00      2.220446e-16
##################################
# Reporting the independent evaluation results
# for the test set
##################################
LR_Test_ROC <- roc(response = LR_Test$LR_Observed,
             predictor = LR_Test$LR_Predicted.High,
             levels = rev(levels(LR_Test$LR_Observed)))

(LR_Test_ROCCurveAUC <- auc(LR_Test_ROC)[1])
## [1] 0.8730345

1.5.2 Linear Discriminant Analysis (LDA)


[A] The linear discriminant analysis model from the MASS package was implemented through the caret package.

[B] The model does not contain any hyperparameter.

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] ROC Curve AUC = 0.90968

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.92138
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_LDA <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_LDA$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_LDA)
## [1] 951 221
PMA_PreModelling_Test_LDA <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_LDA$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_LDA)
## [1] 316 221
##################################
# Creating consistent fold assignments 
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_LDA$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# No hyperparameter tuning process conducted

##################################
# Running the linear discriminant analysis model
# by setting the caret method to 'lda'
##################################
set.seed(12345678)
LDA_Tune <- train(x = PMA_PreModelling_Train_LDA[,!names(PMA_PreModelling_Train_LDA) %in% c("Log_Solubility_Class")], 
                 y = PMA_PreModelling_Train_LDA$Log_Solubility_Class,
                 method = "lda",
                 preProc = c("center","scale"),
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
LDA_Tune
## Linear Discriminant Analysis 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results:
## 
##   ROC        Sens      Spec     
##   0.9096763  0.817165  0.8416909
LDA_Tune$finalModel
## Call:
## lda(x, y)
## 
## Prior probabilities of groups:
##       Low      High 
## 0.4490011 0.5509989 
## 
## Group means:
##            FP001      FP002        FP003       FP004      FP005      FP006
## Low  -0.04954059  0.2801751  0.007856301 -0.06481098  0.2731141 -0.1627379
## High  0.04036991 -0.2283107 -0.006401986  0.05281352 -0.2225567  0.1326128
##            FP007      FP008      FP009       FP010      FP011       FP012
## Low   0.03233293  0.1438642  0.3158384 -0.09365294 -0.1402546 -0.02106485
## High -0.02634763 -0.1172328 -0.2573722  0.07631642  0.1142914  0.01716544
##           FP013      FP014      FP015       FP016      FP017      FP018
## Low   0.3525294  0.3395685 -0.1976220  0.03040486  0.1365611  0.1376840
## High -0.2872711 -0.2767094  0.1610393 -0.02477648 -0.1112817 -0.1121967
##             FP019       FP020       FP021        FP022       FP023       FP024
## Low  -0.007754077 -0.04457870  0.05287346 -0.003457511  0.11021758 -0.01513399
## High  0.006318685  0.03632653 -0.04308582  0.002817476 -0.08981471  0.01233247
##            FP025       FP026       FP027       FP028       FP029       FP030
## Low  -0.04676690  0.06813605 -0.10840914 -0.03304107  0.02665863 -0.05594394
## High  0.03810967 -0.05552308  0.08834103  0.02692469 -0.02172373  0.04558790
##            FP031       FP032       FP033       FP034      FP035      FP036
## Low   0.03146379 -0.07556463 -0.06110273  0.05072117  0.1716135 -0.1267802
## High -0.02563939  0.06157652  0.04979173 -0.04133194 -0.1398453  0.1033113
##            FP037       FP038      FP039       FP040      FP041       FP042
## Low   0.07241315 -0.04851628  0.1791850 -0.08519871  0.1546157 -0.03283123
## High -0.05900842  0.03953522 -0.1460152  0.06942720 -0.1259941  0.02675370
##            FP043      FP044       FP045      FP046      FP047       FP048
## Low   0.06317712  0.2702580  0.11430896  0.1929160  0.1027778  0.03562711
## High -0.05148211 -0.2202293 -0.09314871 -0.1572045 -0.0837521 -0.02903202
##           FP049       FP050       FP051       FP052      FP053      FP054
## Low   0.2711896  0.08856849  0.11478038 -0.03298863  0.2173025  0.1652162
## High -0.2209885 -0.07217317 -0.09353287  0.02688196 -0.1770766 -0.1346323
##            FP055      FP056       FP057        FP058      FP059      FP060
## Low  -0.06129149  0.1722025  0.04189625  0.011124158  0.1508474 -0.1341772
## High  0.04994555 -0.1403254 -0.03414064 -0.009064915 -0.1229234  0.1093390
##            FP061       FP062       FP063       FP064      FP065        FP066
## Low  -0.01330222 -0.06975983 -0.08447482 -0.04655345  0.3609846 -0.002018379
## High  0.01083978  0.05684628  0.06883730  0.03793573 -0.2941611  0.001644748
##            FP067       FP068       FP069      FP070      FP071      FP072
## Low  -0.03901753 -0.03145129  0.04161918  0.3288123  0.2861991 -0.2569933
## High  0.03179482  0.02562920 -0.03391486 -0.2679444 -0.2332195  0.2094201
##           FP073       FP074       FP075      FP076       FP077       FP078
## Low  -0.1389273 -0.04868503 -0.07210725  0.4980956  0.07048212  0.02157141
## High  0.1132098  0.03967273  0.05875916 -0.4058909 -0.05743486 -0.01757823
##           FP079       FP080       FP081      FP082      FP083       FP084
## Low   0.3463924 -0.05762649  0.07838924  0.3373452 -0.1404314 -0.03174270
## High -0.2822702  0.04695899 -0.06387826 -0.2748977  0.1144355  0.02586667
##           FP085       FP086      FP087       FP088      FP089      FP090
## Low   0.3053243  0.10584011  0.3032336 -0.10767772  0.4204845  0.1059896
## High -0.2488043 -0.08624757 -0.2471007  0.08774501 -0.3426467 -0.0863694
##             FP091      FP092      FP093        FP094       FP095      FP096
## Low   0.005121802  0.3533487  0.1680405  0.001219888 -0.04432336  0.0513720
## High -0.004173682 -0.2879388 -0.1369338 -0.000994069  0.03611847 -0.0418623
##           FP097       FP098      FP099       FP100       FP101      FP102
## Low   0.2946914 -0.05760012  0.1732751 -0.07094028 -0.03318476  0.1329019
## High -0.2401397  0.04693750 -0.1411994  0.05780820  0.02704178 -0.1082999
##            FP103       FP104      FP105       FP106      FP107        FP108
## Low   0.12235122  0.10579469  0.1648155  0.09092851  0.2794970 -0.003218840
## High -0.09970223 -0.08621056 -0.1343058 -0.07409632 -0.2277581  0.002622986
##           FP109       FP110       FP111      FP112       FP113       FP114
## Low   0.1016844 -0.06946341  0.02377356  0.3898869 -0.07974936  0.06165111
## High -0.0828611  0.05660473 -0.01937273 -0.3177132  0.06498660 -0.05023859
##            FP115       FP116       FP117       FP118       FP119       FP120
## Low   0.02852821 -0.03068122  0.10794595 -0.05443201 -0.02278350 -0.05623436
## High -0.02324722  0.02500168 -0.08796359  0.04435586  0.01856594  0.04582457
##            FP121        FP122      FP123       FP124       FP125        FP126
## Low   0.11663727  0.006041735  0.1543669 -0.03269777 -0.02874788 -0.002036287
## High -0.09504602 -0.004923322 -0.1257913  0.02664494  0.02342623  0.001659341
##            FP127       FP128      FP129       FP130        FP131      FP132
## Low  -0.06557830 -0.06131717  0.1268166  0.06943777  0.007894091 -0.1233146
## High  0.05343881  0.04996647 -0.1033410 -0.05658383 -0.006432780  0.1004873
##            FP133       FP134        FP135       FP136       FP137       FP138
## Low  -0.02030227  0.10305010  0.007894091 -0.01173875  0.09228709  0.07739663
## High  0.01654402 -0.08397403 -0.006432780  0.00956574 -0.07520341 -0.06306939
##            FP139       FP140      FP141       FP142       FP143       FP144
## Low   0.03393326 -0.05648327  0.1251016  0.03227952  0.04656681 -0.08010303
## High -0.02765172  0.04602740 -0.1019434 -0.02630411 -0.03794661  0.06527480
##            FP145      FP146       FP147       FP148      FP149       FP150
## Low  -0.04944482  0.2078579 -0.02212958 -0.03538806  0.2479928 -0.01454711
## High  0.04029187 -0.1693804  0.01803307  0.02883722 -0.2020858  0.01185423
##            FP151       FP152       FP153      FP155       FP156       FP157
## Low  -0.01833621  0.05952448  0.07666591  0.1875793  0.08155977  0.01464155
## High  0.01494191 -0.04850564 -0.06247394 -0.1528556 -0.06646187 -0.01193119
##            FP158       FP159        FP160      FP161      FP162       FP163
## Low  -0.07168155  0.07241315  0.007559130 -0.1721042  0.2505609 -0.07216223
## High  0.05841225 -0.05900842 -0.006159826  0.1402452 -0.2041784  0.05880396
##           FP164       FP165      FP166       FP167      FP168     FP169
## Low   0.3096359 -0.03470786  0.1669255 -0.04032322  0.3362988  0.327927
## High -0.2523178  0.02828293 -0.1360252  0.03285881 -0.2740450 -0.267223
##            FP170       FP171      FP172      FP173       FP174        FP175
## Low   0.11733598 -0.09542927  0.3613895  0.1501297  0.07871463  0.010478627
## High -0.09561539  0.07776393 -0.2944911 -0.1223385 -0.06414341 -0.008538881
##              FP176       FP177      FP178       FP179       FP180      FP181
## Low  -0.0006016742  0.02415692  0.1246648  0.06495599 -0.05898743  0.2012292
## High  0.0004902956 -0.01968512 -0.1015875 -0.05293170  0.04806800 -0.1639787
##            FP182       FP183      FP184      FP185       FP186        FP187
## Low  -0.03298749 -0.06484156  0.2620897  0.1478417 -0.02441762  0.009194087
## High  0.02688103  0.05283845 -0.2135731 -0.1204740  0.01989757 -0.007492128
##            FP188       FP189      FP190       FP191       FP192      FP193
## Low  -0.07592293  0.08109314  0.2167300 -0.01905305  0.08761784  0.2572220
## High  0.06186849 -0.06608162 -0.1766101  0.01552606 -0.07139851 -0.2096065
##            FP194      FP195      FP196      FP197       FP198       FP201
## Low  -0.02131844 -0.1471268  0.2099093  0.1945447 -0.08340218 -0.06764568
## High  0.01737209  0.1198915 -0.1710521 -0.1585317  0.06796323  0.05512348
##           FP202        FP203       FP204      FP205       FP206      FP207
## Low   0.1551880  0.007780434  0.10033971  0.1640452  0.10262214  0.2099093
## High -0.1264604 -0.006340163 -0.08176537 -0.1336781 -0.08362529 -0.1710521
##            FP208  MolWeight   NumBonds NumMultBonds NumRotBonds NumDblBonds
## Low   0.01449529  0.6447051  0.5260887    0.4454402   0.2155584  0.07217700
## High -0.01181200 -0.5253608 -0.4287020   -0.3629828  -0.1756554 -0.05881599
##       NumCarbon NumNitrogen   NumOxygen   NumSulfer NumChlorine NumHalogen
## Low   0.6263249 -0.02976857 -0.03406840  0.11971764   0.3118792  0.3385013
## High -0.5103830  0.02425798  0.02776184 -0.09755617  -0.2541458 -0.2758398
##        NumRings HydrophilicFactor SurfaceArea1 SurfaceArea2
## Low   0.4841073        -0.2459915  -0.09225436  -0.04168274
## High -0.3944921         0.2004549   0.07517674   0.03396666
## 
## Coefficients of linear discriminants:
##                            LD1
## FP001              0.012875326
## FP002             -0.248225553
## FP003             -0.187395370
## FP004             -0.433046298
## FP005             -0.362154129
## FP006             -0.020171530
## FP007              0.023306160
## FP008             -0.032081948
## FP009             -0.717769114
## FP010              0.110779863
## FP011              0.258826748
## FP012              0.209427218
## FP013              0.019882720
## FP014             -0.057333713
## FP015             -0.080915412
## FP016             -0.130667605
## FP017             -0.227574267
## FP018             -0.255928604
## FP019             -0.181709412
## FP020             -0.215412670
## FP021              0.501216467
## FP022             -0.357311775
## FP023             -0.052913180
## FP024              0.035967510
## FP025              0.177343692
## FP026             -0.323519114
## FP027             -0.007178850
## FP028             -0.032975063
## FP029              0.145296265
## FP030             -0.161155803
## FP031              0.046337595
## FP032             -0.743681838
## FP033              0.311424434
## FP034              0.094788437
## FP035             -0.202694496
## FP036             -0.032828299
## FP037              0.260679548
## FP038             -0.128056904
## FP039              0.089605500
## FP040              0.071442073
## FP041             -0.067564396
## FP042              0.930984536
## FP043             -0.169567237
## FP044              0.243967686
## FP045              0.080382127
## FP046              0.030736083
## FP047             -0.057942188
## FP048              0.008206059
## FP049             -0.037741091
## FP050             -0.147981935
## FP051              0.134845376
## FP052              0.176151364
## FP053              0.231774338
## FP054             -0.070601965
## FP055              0.014143815
## FP056             -0.095182501
## FP057             -0.007420043
## FP058              0.535139988
## FP059             -0.014252609
## FP060             -0.065950196
## FP061             -0.122312068
## FP062              0.393612442
## FP063              0.930813438
## FP064              0.065441624
## FP065              0.186805195
## FP066              0.167958525
## FP067             -0.212616346
## FP068             -0.519887504
## FP069              0.090686177
## FP070              0.200155899
## FP071              0.088134834
## FP072              0.908780645
## FP073             -0.250802725
## FP074             -0.082227983
## FP075              0.057002521
## FP076              0.013837596
## FP077              0.094264936
## FP078             -0.242277204
## FP079             -0.023865803
## FP080              0.439565858
## FP081             -0.077157657
## FP082              0.091106844
## FP083             -0.064042942
## FP084             -0.176819154
## FP085             -0.268673937
## FP086              0.030390219
## FP087             -0.194957587
## FP088              0.163794423
## FP089             -0.282944026
## FP090              0.009357220
## FP091              0.285834751
## FP092              0.459990457
## FP093              0.104850491
## FP094             -0.073168130
## FP095             -0.319889448
## FP096              0.066474232
## FP097             -0.136110771
## FP098              0.147457368
## FP099              0.211568568
## FP100             -0.076438380
## FP101              0.077177684
## FP102             -0.338795554
## FP103              0.006792125
## FP104             -0.386425756
## FP105             -0.069381157
## FP106             -0.058498907
## FP107             -0.230462820
## FP108             -0.094827896
## FP109              0.299118672
## FP110             -0.372150175
## FP111             -0.098659228
## FP112             -0.283228997
## FP113              0.093992519
## FP114             -0.140293999
## FP115             -0.049811746
## FP116              0.425814720
## FP117             -0.003831833
## FP118             -0.128014629
## FP119              0.484681499
## FP120             -0.328296417
## FP121              0.131825432
## FP122              0.193654715
## FP123             -0.192192593
## FP124             -0.084615248
## FP125              0.077673681
## FP126             -0.290792002
## FP127              0.058235282
## FP128              0.316749603
## FP129              0.376783202
## FP130              0.248127770
## FP131              0.282887048
## FP132              0.082237362
## FP133              0.077683007
## FP134              0.113216796
## FP135             -0.051285300
## FP136             -0.326880813
## FP137              0.145941700
## FP138             -0.178259305
## FP139             -0.320335708
## FP140              0.445465221
## FP141             -0.395738194
## FP142             -0.041396998
## FP143              0.224994152
## FP144              0.070763526
## FP145             -0.029325224
## FP146             -0.141322324
## FP147              0.107304633
## FP148             -0.056022933
## FP149              0.052097963
## FP150              0.087748229
## FP151             -0.015973030
## FP152              0.017502434
## FP153              0.049739096
## FP155              0.136703365
## FP156             -0.333916842
## FP157             -0.295929021
## FP158             -0.049526714
## FP159              0.333650313
## FP160              0.198974937
## FP161             -0.005771305
## FP162              0.065758353
## FP163             -0.274695492
## FP164              0.518357241
## FP165              0.159032681
## FP166              0.038381456
## FP167             -0.329079325
## FP168             -0.047259271
## FP169             -0.088937588
## FP170              0.163658892
## FP171              0.216749476
## FP172              0.009570624
## FP173             -0.085144281
## FP174             -0.031642714
## FP175              0.047375613
## FP176             -0.087959080
## FP177              0.229511308
## FP178              0.042694344
## FP179              0.290071401
## FP180              0.152923230
## FP181             -0.192565242
## FP182             -0.176167992
## FP183              0.412115851
## FP184              0.199266994
## FP185              0.167423298
## FP186              0.070957356
## FP187             -0.391419133
## FP188             -0.016694210
## FP189             -0.100533547
## FP190             -0.063175723
## FP191              0.038411139
## FP192              0.131234896
## FP193              0.014403687
## FP194             -0.627900664
## FP195              0.084256288
## FP196             -0.217704936
## FP197             -0.301977667
## FP198              0.056480096
## FP201             -0.009941918
## FP202              0.165033685
## FP203             -0.135845702
## FP204             -0.099068181
## FP205              0.005210160
## FP206             -0.001473758
## FP207              0.052079412
## FP208             -0.364736773
## MolWeight         -0.879499894
## NumBonds          -1.047867086
## NumMultBonds      -0.325380591
## NumRotBonds       -0.336768637
## NumDblBonds       -0.182263696
## NumCarbon          0.625278394
## NumNitrogen        0.675860288
## NumOxygen          1.146841627
## NumSulfer          0.581387772
## NumChlorine       -0.024337219
## NumHalogen         0.145791905
## NumRings          -0.144261011
## HydrophilicFactor -0.100865167
## SurfaceArea1       0.980164468
## SurfaceArea2      -1.522398889
LDA_Tune$results
##   parameter       ROC     Sens      Spec      ROCSD     SensSD     SpecSD
## 1      none 0.9096763 0.817165 0.8416909 0.02903576 0.06810246 0.05240927
(LDA_Train_ROCCurveAUC <- LDA_Tune$results$ROC)
## [1] 0.9096763
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
LDA_Test <- data.frame(LDA_Observed = PMA_PreModelling_Test_LDA$Log_Solubility_Class,
                      LDA_Predicted = predict(LDA_Tune, 
                      PMA_PreModelling_Test_LDA[,!names(PMA_PreModelling_Test_LDA) %in% c("Log_Solubility_Class")],
                      type = "prob"))

LDA_Test
##     LDA_Observed LDA_Predicted.Low LDA_Predicted.High
## 1           High      6.101853e-06       9.999939e-01
## 2           High      5.801348e-04       9.994199e-01
## 3           High      8.333462e-04       9.991667e-01
## 4           High      1.274634e-02       9.872537e-01
## 5           High      2.342759e-03       9.976572e-01
## 6           High      9.489361e-07       9.999991e-01
## 7           High      2.843413e-05       9.999716e-01
## 8           High      2.055907e-05       9.999794e-01
## 9           High      9.993396e-06       9.999900e-01
## 10          High      2.407199e-02       9.759280e-01
## 11          High      3.553017e-02       9.644698e-01
## 12          High      2.005432e-02       9.799457e-01
## 13          High      5.819250e-05       9.999418e-01
## 14          High      6.854088e-05       9.999315e-01
## 15          High      1.557334e-02       9.844267e-01
## 16          High      2.624025e-04       9.997376e-01
## 17          High      6.220519e-06       9.999938e-01
## 18          High      2.021402e-05       9.999798e-01
## 19          High      6.765133e-02       9.323487e-01
## 20          High      1.128928e-03       9.988711e-01
## 21          High      1.864596e-04       9.998135e-01
## 22          High      1.529233e-05       9.999847e-01
## 23          High      6.770491e-04       9.993230e-01
## 24          High      3.604555e-03       9.963954e-01
## 25          High      1.535838e-03       9.984642e-01
## 26          High      1.035444e-03       9.989646e-01
## 27          High      3.685756e-04       9.996314e-01
## 28          High      2.446010e-07       9.999998e-01
## 29          High      2.138715e-01       7.861285e-01
## 30          High      4.879130e-02       9.512087e-01
## 31          High      9.314797e-04       9.990685e-01
## 32          High      3.083479e-04       9.996917e-01
## 33          High      1.931832e-04       9.998068e-01
## 34          High      9.522193e-06       9.999905e-01
## 35          High      8.879957e-06       9.999911e-01
## 36          High      4.334430e-02       9.566557e-01
## 37          High      1.929392e-05       9.999807e-01
## 38          High      4.094468e-04       9.995906e-01
## 39          High      2.575069e-04       9.997425e-01
## 40          High      2.006488e-03       9.979935e-01
## 41          High      4.442402e-04       9.995558e-01
## 42          High      1.555145e-01       8.444855e-01
## 43          High      3.391193e-03       9.966088e-01
## 44          High      4.363344e-04       9.995637e-01
## 45          High      4.146480e-04       9.995854e-01
## 46          High      1.935511e-03       9.980645e-01
## 47          High      8.212070e-03       9.917879e-01
## 48          High      1.611458e-03       9.983885e-01
## 49          High      1.929248e-03       9.980708e-01
## 50          High      5.943037e-04       9.994057e-01
## 51          High      9.963823e-01       3.617746e-03
## 52          High      5.850619e-04       9.994149e-01
## 53          High      4.364703e-03       9.956353e-01
## 54          High      1.270009e-02       9.872999e-01
## 55          High      3.224993e-02       9.677501e-01
## 56          High      7.489621e-02       9.251038e-01
## 57          High      8.807745e-03       9.911923e-01
## 58          High      2.252293e-03       9.977477e-01
## 59          High      9.138841e-03       9.908612e-01
## 60          High      2.602806e-01       7.397194e-01
## 61          High      2.115881e-05       9.999788e-01
## 62          High      2.325644e-03       9.976744e-01
## 63          High      8.351655e-04       9.991648e-01
## 64          High      3.301942e-04       9.996698e-01
## 65          High      5.307614e-03       9.946924e-01
## 66          High      2.388042e-03       9.976120e-01
## 67          High      9.615860e-01       3.841395e-02
## 68          High      2.402377e-01       7.597623e-01
## 69          High      2.867821e-01       7.132179e-01
## 70          High      2.487167e-02       9.751283e-01
## 71          High      1.001441e-03       9.989986e-01
## 72          High      5.553754e-02       9.444625e-01
## 73          High      3.565931e-02       9.643407e-01
## 74          High      3.939077e-01       6.060923e-01
## 75          High      2.345573e-02       9.765443e-01
## 76          High      3.751948e-01       6.248052e-01
## 77          High      4.575808e-01       5.424192e-01
## 78          High      2.276101e-02       9.772390e-01
## 79          High      7.403096e-03       9.925969e-01
## 80          High      9.682064e-02       9.031794e-01
## 81          High      1.108423e-03       9.988916e-01
## 82          High      5.691326e-01       4.308674e-01
## 83          High      6.199096e-01       3.800904e-01
## 84          High      4.581526e-02       9.541847e-01
## 85          High      1.245892e-01       8.754108e-01
## 86          High      5.959941e-03       9.940401e-01
## 87          High      9.864226e-01       1.357740e-02
## 88          High      1.726463e-01       8.273537e-01
## 89          High      4.407236e-01       5.592764e-01
## 90          High      2.761076e-02       9.723892e-01
## 91          High      2.677744e-02       9.732226e-01
## 92          High      1.071287e-01       8.928713e-01
## 93          High      1.705059e-01       8.294941e-01
## 94          High      2.482345e-02       9.751766e-01
## 95          High      8.511602e-05       9.999149e-01
## 96          High      9.118778e-02       9.088122e-01
## 97          High      1.391049e-01       8.608951e-01
## 98          High      9.973670e-01       2.632968e-03
## 99          High      6.721581e-02       9.327842e-01
## 100         High      3.625039e-02       9.637496e-01
## 101         High      2.277153e-01       7.722847e-01
## 102         High      1.301448e-01       8.698552e-01
## 103         High      3.270567e-01       6.729433e-01
## 104         High      4.124281e-02       9.587572e-01
## 105         High      7.139047e-01       2.860953e-01
## 106         High      5.208752e-01       4.791248e-01
## 107         High      6.917931e-01       3.082069e-01
## 108         High      1.232158e-01       8.767842e-01
## 109         High      8.426851e-01       1.573149e-01
## 110         High      9.998185e-01       1.815154e-04
## 111         High      1.292558e-01       8.707442e-01
## 112         High      9.912063e-01       8.793663e-03
## 113         High      2.037267e-01       7.962733e-01
## 114         High      9.956007e-01       4.399346e-03
## 115         High      3.155242e-02       9.684476e-01
## 116         High      9.955460e-01       4.454031e-03
## 117         High      9.955601e-01       4.439852e-03
## 118         High      8.404624e-01       1.595376e-01
## 119          Low      4.177108e-02       9.582289e-01
## 120          Low      9.934719e-01       6.528115e-03
## 121          Low      4.656643e-01       5.343357e-01
## 122          Low      2.362482e-01       7.637518e-01
## 123          Low      9.982686e-01       1.731384e-03
## 124          Low      3.232824e-01       6.767176e-01
## 125          Low      5.675544e-01       4.324456e-01
## 126          Low      5.062279e-01       4.937721e-01
## 127          Low      9.438669e-01       5.613309e-02
## 128          Low      9.727800e-01       2.721998e-02
## 129          Low      6.244203e-01       3.755797e-01
## 130          Low      8.826495e-03       9.911735e-01
## 131          Low      9.164968e-01       8.350318e-02
## 132          Low      9.772638e-01       2.273623e-02
## 133          Low      9.871723e-01       1.282771e-02
## 134          Low      9.159814e-01       8.401856e-02
## 135          Low      8.814587e-01       1.185413e-01
## 136          Low      2.318498e-01       7.681502e-01
## 137          Low      4.316099e-01       5.683901e-01
## 138          Low      5.438020e-01       4.561980e-01
## 139          Low      6.322269e-01       3.677731e-01
## 140          Low      1.956276e-01       8.043724e-01
## 141          Low      1.980658e-01       8.019342e-01
## 142          Low      9.987986e-01       1.201391e-03
## 143          Low      9.984171e-01       1.582875e-03
## 144          Low      7.608319e-02       9.239168e-01
## 145          Low      4.837205e-04       9.995163e-01
## 146          Low      8.007384e-01       1.992616e-01
## 147          Low      1.722112e-01       8.277888e-01
## 148          Low      5.851277e-01       4.148723e-01
## 149          Low      8.322048e-01       1.677952e-01
## 150          Low      9.870957e-01       1.290429e-02
## 151          Low      1.793870e-01       8.206130e-01
## 152          Low      1.140077e-01       8.859923e-01
## 153          Low      3.037593e-01       6.962407e-01
## 154          Low      9.672811e-01       3.271888e-02
## 155          Low      3.947637e-02       9.605236e-01
## 156          Low      3.706631e-02       9.629337e-01
## 157          Low      9.946324e-01       5.367647e-03
## 158          Low      9.945409e-01       5.459073e-03
## 159          Low      7.740231e-01       2.259769e-01
## 160          Low      9.998944e-01       1.056368e-04
## 161          Low      9.998588e-01       1.411624e-04
## 162          Low      9.937736e-01       6.226392e-03
## 163          Low      8.266348e-01       1.733652e-01
## 164          Low      9.996894e-01       3.106243e-04
## 165          Low      9.981531e-01       1.846923e-03
## 166          Low      9.433830e-01       5.661698e-02
## 167          Low      9.136312e-01       8.636876e-02
## 168          Low      2.270822e-01       7.729178e-01
## 169          Low      9.989725e-01       1.027493e-03
## 170          Low      9.997259e-01       2.741362e-04
## 171          Low      9.841018e-01       1.589822e-02
## 172          Low      9.711651e-01       2.883495e-02
## 173          Low      9.954739e-01       4.526110e-03
## 174          Low      9.997326e-01       2.673545e-04
## 175          Low      9.999283e-01       7.172248e-05
## 176          Low      9.982533e-01       1.746653e-03
## 177          Low      9.425413e-01       5.745873e-02
## 178          Low      9.999570e-01       4.296069e-05
## 179          Low      9.982197e-01       1.780310e-03
## 180          Low      7.825476e-01       2.174524e-01
## 181          Low      9.946059e-01       5.394131e-03
## 182          Low      6.447754e-01       3.552246e-01
## 183          Low      9.978899e-01       2.110082e-03
## 184          Low      9.996036e-01       3.964283e-04
## 185          Low      9.984944e-01       1.505564e-03
## 186          Low      9.983299e-01       1.670141e-03
## 187          Low      9.984870e-01       1.512976e-03
## 188          Low      9.999101e-01       8.992098e-05
## 189          Low      9.984617e-01       1.538333e-03
## 190          Low      9.354852e-01       6.451484e-02
## 191          Low      9.997062e-01       2.938090e-04
## 192          Low      9.587741e-01       4.122592e-02
## 193          Low      9.678394e-01       3.216060e-02
## 194          Low      9.991819e-01       8.181038e-04
## 195          Low      9.875417e-01       1.245826e-02
## 196          Low      9.989732e-01       1.026840e-03
## 197          Low      9.981195e-01       1.880527e-03
## 198          Low      9.980300e-01       1.969970e-03
## 199          Low      9.999900e-01       9.950696e-06
## 200          Low      9.998777e-01       1.222709e-04
## 201          Low      9.959686e-01       4.031388e-03
## 202          Low      9.992742e-01       7.258191e-04
## 203          Low      9.974999e-01       2.500144e-03
## 204          Low      9.993411e-01       6.588611e-04
## 205          Low      9.992328e-01       7.672247e-04
## 206          Low      9.987893e-01       1.210711e-03
## 207          Low      9.999710e-01       2.903754e-05
## 208          Low      9.998677e-01       1.322896e-04
## 209          Low      9.999401e-01       5.986853e-05
## 210          Low      9.998021e-01       1.978994e-04
## 211          Low      9.995115e-01       4.884506e-04
## 212          Low      9.992708e-01       7.291957e-04
## 213          Low      9.999075e-01       9.252472e-05
## 214          Low      9.999353e-01       6.471179e-05
## 215          Low      9.999139e-01       8.606843e-05
## 216          Low      9.994547e-01       5.452919e-04
## 217         High      1.858673e-03       9.981413e-01
## 218         High      1.076282e-04       9.998924e-01
## 219         High      6.564478e-02       9.343552e-01
## 220         High      4.736164e-05       9.999526e-01
## 221         High      4.085723e-04       9.995914e-01
## 222         High      3.018304e-04       9.996982e-01
## 223         High      7.478741e-04       9.992521e-01
## 224         High      2.669598e-04       9.997330e-01
## 225         High      9.323018e-01       6.769815e-02
## 226         High      4.174843e-03       9.958252e-01
## 227         High      1.457604e-03       9.985424e-01
## 228         High      9.260600e-04       9.990739e-01
## 229         High      2.989736e-04       9.997010e-01
## 230         High      1.228192e-04       9.998772e-01
## 231         High      3.120396e-02       9.687960e-01
## 232         High      1.124519e-02       9.887548e-01
## 233         High      1.594777e-03       9.984052e-01
## 234         High      2.933700e-04       9.997066e-01
## 235         High      8.034844e-02       9.196516e-01
## 236         High      1.543943e-03       9.984561e-01
## 237         High      8.995170e-01       1.004830e-01
## 238         High      1.399792e-02       9.860021e-01
## 239         High      4.364703e-03       9.956353e-01
## 240         High      1.467963e-03       9.985320e-01
## 241         High      4.529777e-04       9.995470e-01
## 242         High      4.518727e-01       5.481273e-01
## 243         High      1.543381e-02       9.845662e-01
## 244         High      9.528498e-01       4.715025e-02
## 245         High      9.421706e-02       9.057829e-01
## 246         High      1.036434e-04       9.998964e-01
## 247         High      1.832249e-03       9.981678e-01
## 248         High      3.351149e-03       9.966489e-01
## 249         High      6.478475e-03       9.935215e-01
## 250         High      1.257219e-01       8.742781e-01
## 251         High      6.252382e-03       9.937476e-01
## 252         High      2.190669e-02       9.780933e-01
## 253         High      2.724629e-01       7.275371e-01
## 254         High      7.200249e-01       2.799751e-01
## 255         High      6.241526e-01       3.758474e-01
## 256         High      2.442795e-02       9.755721e-01
## 257         High      2.769711e-05       9.999723e-01
## 258         High      4.861685e-02       9.513831e-01
## 259         High      9.940406e-01       5.959380e-03
## 260         High      5.298627e-03       9.947014e-01
## 261         High      1.096083e-01       8.903917e-01
## 262         High      1.955142e-03       9.980449e-01
## 263         High      1.019986e-01       8.980014e-01
## 264         High      4.602847e-01       5.397153e-01
## 265         High      8.446951e-01       1.553049e-01
## 266         High      5.435098e-05       9.999456e-01
## 267         High      9.187425e-02       9.081257e-01
## 268         High      2.927730e-03       9.970723e-01
## 269          Low      4.564682e-01       5.435318e-01
## 270          Low      8.441996e-01       1.558004e-01
## 271          Low      7.399371e-01       2.600629e-01
## 272          Low      9.671848e-01       3.281523e-02
## 273          Low      9.948918e-01       5.108168e-03
## 274          Low      9.856775e-01       1.432246e-02
## 275          Low      1.122599e-01       8.877401e-01
## 276          Low      9.855100e-01       1.449000e-02
## 277          Low      9.816237e-01       1.837628e-02
## 278          Low      4.574519e-01       5.425481e-01
## 279          Low      9.994376e-01       5.624466e-04
## 280          Low      7.320493e-01       2.679507e-01
## 281          Low      5.528278e-01       4.471722e-01
## 282          Low      9.976586e-01       2.341403e-03
## 283          Low      9.753766e-01       2.462343e-02
## 284          Low      9.945286e-01       5.471402e-03
## 285          Low      9.898977e-01       1.010230e-02
## 286          Low      3.919536e-01       6.080464e-01
## 287          Low      9.062465e-01       9.375346e-02
## 288          Low      1.543449e-03       9.984566e-01
## 289          Low      9.963301e-01       3.669899e-03
## 290          Low      9.982430e-01       1.756953e-03
## 291          Low      9.719170e-01       2.808300e-02
## 292          Low      9.950976e-01       4.902382e-03
## 293          Low      8.423258e-01       1.576742e-01
## 294          Low      9.977819e-01       2.218137e-03
## 295          Low      9.986966e-01       1.303430e-03
## 296          Low      2.435234e-01       7.564766e-01
## 297          Low      9.993080e-01       6.919813e-04
## 298          Low      9.982025e-01       1.797495e-03
## 299          Low      9.993432e-01       6.568128e-04
## 300          Low      9.984324e-01       1.567643e-03
## 301          Low      9.999403e-01       5.966629e-05
## 302          Low      9.990657e-01       9.342658e-04
## 303          Low      9.971222e-01       2.877827e-03
## 304          Low      9.968341e-01       3.165885e-03
## 305          Low      9.999922e-01       7.806887e-06
## 306          Low      9.983887e-01       1.611304e-03
## 307          Low      9.996808e-01       3.192036e-04
## 308          Low      9.999521e-01       4.787311e-05
## 309          Low      9.999946e-01       5.401102e-06
## 310          Low      9.999974e-01       2.565390e-06
## 311          Low      9.999764e-01       2.356976e-05
## 312          Low      9.989466e-01       1.053401e-03
## 313         High      4.702359e-03       9.952976e-01
## 314         High      6.414674e-02       9.358533e-01
## 315          Low      8.828822e-01       1.171178e-01
## 316         High      9.992564e-01       7.435747e-04
##################################
# Reporting the independent evaluation results
# for the test set
##################################
LDA_Test_ROC <- roc(response = LDA_Test$LDA_Observed,
             predictor = LDA_Test$LDA_Predicted.High,
             levels = rev(levels(LDA_Test$LDA_Observed)))

(LDA_Test_ROCCurveAUC <- auc(LDA_Test_ROC)[1])
## [1] 0.9213792

1.5.3 Flexible Discriminant Analysis (FDA)


[A] The flexible discriminant analysis model from the earth and mda packages was implemented through the caret package.

[B] The model contains 2 hyperparameters:
     [B.1] degree = product degree held constant at a value of 1
     [B.2] nprune = number of terms made to vary across a range of values equal to 2 to 25

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves degree=1 and nprune=24
     [C.2] ROC Curve AUC = 0.94949

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] HydrophilicFactor variable (numeric)
     [D.3] NumOxygen variable (numeric)
     [D.4] FP070 (Structure=1) variable (factor)
     [D.5] FP075 (Structure=1) variable (factor)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.95933
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_FDA <- PMA_PreModelling_Train
PMA_PreModelling_Test_FDA <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_FDA$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
FDA_Grid = expand.grid(degree = 1, nprune = 2:25)

##################################
# Running the flexible discriminant analysis model
# by setting the caret method to 'fda'
##################################
set.seed(12345678)
FDA_Tune <- train(x = PMA_PreModelling_Train_FDA[,!names(PMA_PreModelling_Train_FDA) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_FDA$Log_Solubility_Class,
                 method = "fda",
                 tuneGrid = FDA_Grid,
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
FDA_Tune
## Flexible Discriminant Analysis 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   nprune  ROC        Sens       Spec     
##    2      0.8419414  0.7117386  0.8341074
##    3      0.9106928  0.8057032  0.8627721
##    4      0.9227555  0.8053710  0.8742380
##    5      0.9269196  0.8243079  0.8720972
##    6      0.9326890  0.8291251  0.8855225
##    7      0.9353226  0.8384275  0.8835994
##    8      0.9377446  0.8360465  0.8644775
##    9      0.9412788  0.8501107  0.8760160
##   10      0.9412875  0.8429679  0.8722424
##   11      0.9424124  0.8451827  0.8703193
##   12      0.9433294  0.8452935  0.8760885
##   13      0.9420364  0.8570321  0.8797170
##   14      0.9424613  0.8430233  0.8739840
##   15      0.9419380  0.8524363  0.8683237
##   16      0.9420235  0.8500000  0.8664369
##   17      0.9423609  0.8523810  0.8664369
##   18      0.9457102  0.8475083  0.8779390
##   19      0.9482061  0.8522148  0.8855951
##   20      0.9476880  0.8474529  0.8931785
##   21      0.9492896  0.8591916  0.8798621
##   22      0.9494056  0.8591916  0.8817489
##   23      0.9488624  0.8568106  0.8760522
##   24      0.9494893  0.8497785  0.8779390
##   25      0.9477070  0.8616833  0.8893324
## 
## Tuning parameter 'degree' was held constant at a value of 1
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were degree = 1 and nprune = 24.
FDA_Tune$finalModel
## Call:
## mda::fda(formula = .outcome ~ ., data = dat, weights = wts, method = earth::earth, 
##     degree = param$degree, nprune = param$nprune)
## 
## Dimension: 1 
## 
## Percent Between-Group Variance Explained:
##  v1 
## 100 
## 
## Training Misclassification Error: 0.08623 ( N = 951 )
FDA_Tune$results
##    degree nprune       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1       1      2 0.8419414 0.7117386 0.8341074 0.03896762 0.09489524 0.06239354
## 2       1      3 0.9106928 0.8057032 0.8627721 0.02242246 0.07519247 0.06804707
## 3       1      4 0.9227555 0.8053710 0.8742380 0.02195624 0.06249717 0.05802672
## 4       1      5 0.9269196 0.8243079 0.8720972 0.01802883 0.04334609 0.05514159
## 5       1      6 0.9326890 0.8291251 0.8855225 0.01780746 0.03617307 0.04943403
## 6       1      7 0.9353226 0.8384275 0.8835994 0.01303631 0.04171346 0.04724288
## 7       1      8 0.9377446 0.8360465 0.8644775 0.01248855 0.05823961 0.05536583
## 8       1      9 0.9412788 0.8501107 0.8760160 0.01455529 0.03670488 0.05254503
## 9       1     10 0.9412875 0.8429679 0.8722424 0.01545052 0.05450548 0.04888567
## 10      1     11 0.9424124 0.8451827 0.8703193 0.01618394 0.05283938 0.05936728
## 11      1     12 0.9433294 0.8452935 0.8760885 0.01751110 0.05677991 0.05600524
## 12      1     13 0.9420364 0.8570321 0.8797170 0.02077095 0.06745409 0.05434716
## 13      1     14 0.9424613 0.8430233 0.8739840 0.02012156 0.07140365 0.05302971
## 14      1     15 0.9419380 0.8524363 0.8683237 0.01729176 0.06118946 0.05069259
## 15      1     16 0.9420235 0.8500000 0.8664369 0.01659259 0.07343215 0.05493565
## 16      1     17 0.9423609 0.8523810 0.8664369 0.01745948 0.05510654 0.05105891
## 17      1     18 0.9457102 0.8475083 0.8779390 0.01604604 0.05923356 0.06134573
## 18      1     19 0.9482061 0.8522148 0.8855951 0.01423424 0.05130079 0.05982429
## 19      1     20 0.9476880 0.8474529 0.8931785 0.01548466 0.05944141 0.05733283
## 20      1     21 0.9492896 0.8591916 0.8798621 0.01736480 0.05482756 0.05841022
## 21      1     22 0.9494056 0.8591916 0.8817489 0.01727343 0.05692662 0.05320937
## 22      1     23 0.9488624 0.8568106 0.8760522 0.01612087 0.05671808 0.05342934
## 23      1     24 0.9494893 0.8497785 0.8779390 0.01369371 0.05853053 0.04782343
## 24      1     25 0.9477070 0.8616833 0.8893324 0.01488523 0.05605751 0.04936318
(FDA_Train_ROCCurveAUC <- FDA_Tune$results[FDA_Tune$results$degree==FDA_Tune$bestTune$degree &
                              FDA_Tune$results$nprune==FDA_Tune$bestTune$nprune,
                              c("ROC")])
## [1] 0.9494893
##################################
# Identifying and plotting the
# best model predictors
##################################
FDA_VarImp <- varImp(FDA_Tune, scale = TRUE)
plot(FDA_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Flexible Discriminant Analysis",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
FDA_Test <- data.frame(FDA_Observed = PMA_PreModelling_Test_FDA$Log_Solubility_Class,
                      FDA_Predicted = predict(FDA_Tune,
                      PMA_PreModelling_Test_FDA[,!names(PMA_PreModelling_Test_FDA) %in% c("Log_Solubility_Class")],
                      type = "prob"))

FDA_Test
##     FDA_Observed FDA_Predicted.Low FDA_Predicted.High
## 1           High      3.690766e-04       9.996309e-01
## 2           High      7.423450e-04       9.992577e-01
## 3           High      1.699865e-03       9.983001e-01
## 4           High      1.452439e-02       9.854756e-01
## 5           High      4.908517e-03       9.950915e-01
## 6           High      5.230972e-04       9.994769e-01
## 7           High      2.320216e-03       9.976798e-01
## 8           High      1.311373e-04       9.998689e-01
## 9           High      4.142991e-03       9.958570e-01
## 10          High      2.556431e-02       9.744357e-01
## 11          High      2.556431e-02       9.744357e-01
## 12          High      9.277825e-02       9.072217e-01
## 13          High      2.599678e-03       9.974003e-01
## 14          High      5.670742e-03       9.943293e-01
## 15          High      9.824829e-03       9.901752e-01
## 16          High      1.921582e-03       9.980784e-01
## 17          High      4.593616e-04       9.995406e-01
## 18          High      4.142991e-03       9.958570e-01
## 19          High      5.262656e-03       9.947373e-01
## 20          High      1.432298e-02       9.856770e-01
## 21          High      4.023503e-04       9.995976e-01
## 22          High      6.763996e-04       9.993236e-01
## 23          High      3.336696e-03       9.966633e-01
## 24          High      7.349325e-04       9.992651e-01
## 25          High      3.254626e-03       9.967454e-01
## 26          High      7.349325e-04       9.992651e-01
## 27          High      4.669673e-04       9.995330e-01
## 28          High      1.870383e-03       9.981296e-01
## 29          High      1.193320e-01       8.806680e-01
## 30          High      2.834895e-03       9.971651e-01
## 31          High      7.976461e-01       2.023539e-01
## 32          High      4.081256e-03       9.959187e-01
## 33          High      4.081256e-03       9.959187e-01
## 34          High      3.809269e-04       9.996191e-01
## 35          High      3.809269e-04       9.996191e-01
## 36          High      8.172885e-03       9.918271e-01
## 37          High      1.014634e-03       9.989854e-01
## 38          High      4.081256e-03       9.959187e-01
## 39          High      7.245229e-04       9.992755e-01
## 40          High      9.893476e-03       9.901065e-01
## 41          High      4.142991e-03       9.958570e-01
## 42          High      3.427320e-01       6.572680e-01
## 43          High      4.636016e-04       9.995364e-01
## 44          High      5.056320e-04       9.994944e-01
## 45          High      5.479196e-03       9.945208e-01
## 46          High      4.612939e-03       9.953871e-01
## 47          High      2.218493e-03       9.977815e-01
## 48          High      3.980945e-03       9.960191e-01
## 49          High      3.871762e-03       9.961282e-01
## 50          High      2.837688e-02       9.716231e-01
## 51          High      1.106885e-03       9.988931e-01
## 52          High      3.739651e-04       9.996260e-01
## 53          High      2.501833e-03       9.974982e-01
## 54          High      6.742678e-03       9.932573e-01
## 55          High      1.605218e-02       9.839478e-01
## 56          High      2.288111e-02       9.771189e-01
## 57          High      1.743380e-03       9.982566e-01
## 58          High      2.972227e-03       9.970278e-01
## 59          High      6.393883e-02       9.360612e-01
## 60          High      2.924325e-01       7.075675e-01
## 61          High      1.281825e-03       9.987182e-01
## 62          High      1.595795e-02       9.840421e-01
## 63          High      4.376138e-02       9.562386e-01
## 64          High      2.448088e-02       9.755191e-01
## 65          High      2.501833e-03       9.974982e-01
## 66          High      1.175126e-01       8.824874e-01
## 67          High      6.266342e-02       9.373366e-01
## 68          High      6.051931e-02       9.394807e-01
## 69          High      1.327617e-03       9.986724e-01
## 70          High      2.124046e-02       9.787595e-01
## 71          High      2.352924e-01       7.647076e-01
## 72          High      4.971132e-01       5.028868e-01
## 73          High      1.458067e-02       9.854193e-01
## 74          High      5.929047e-01       4.070953e-01
## 75          High      7.110307e-03       9.928897e-01
## 76          High      1.010587e-01       8.989413e-01
## 77          High      1.544292e-01       8.455708e-01
## 78          High      1.899620e-02       9.810038e-01
## 79          High      3.543392e-03       9.964566e-01
## 80          High      4.616116e-02       9.538388e-01
## 81          High      3.554147e-03       9.964459e-01
## 82          High      5.406019e-03       9.945940e-01
## 83          High      4.426784e-01       5.573216e-01
## 84          High      1.390850e-02       9.860915e-01
## 85          High      1.411045e-02       9.858895e-01
## 86          High      5.210824e-03       9.947892e-01
## 87          High      9.378256e-01       6.217444e-02
## 88          High      1.039062e-01       8.960938e-01
## 89          High      3.806806e-03       9.961932e-01
## 90          High      1.202481e-01       8.797519e-01
## 91          High      1.133910e-03       9.988661e-01
## 92          High      1.795044e-02       9.820496e-01
## 93          High      5.336750e-01       4.663250e-01
## 94          High      4.657651e-03       9.953423e-01
## 95          High      8.063033e-05       9.999194e-01
## 96          High      1.057543e-01       8.942457e-01
## 97          High      9.692450e-01       3.075500e-02
## 98          High      8.670629e-01       1.329371e-01
## 99          High      4.937442e-02       9.506256e-01
## 100         High      3.734618e-01       6.265382e-01
## 101         High      1.257556e-02       9.874244e-01
## 102         High      6.502591e-02       9.349741e-01
## 103         High      7.142432e-02       9.285757e-01
## 104         High      2.092970e-02       9.790703e-01
## 105         High      9.834200e-01       1.657998e-02
## 106         High      8.221655e-01       1.778345e-01
## 107         High      1.121831e-01       8.878169e-01
## 108         High      6.908868e-04       9.993091e-01
## 109         High      8.747325e-01       1.252675e-01
## 110         High      7.035148e-01       2.964852e-01
## 111         High      4.696805e-01       5.303195e-01
## 112         High      7.442036e-01       2.557964e-01
## 113         High      4.696805e-01       5.303195e-01
## 114         High      4.431669e-01       5.568331e-01
## 115         High      8.552474e-01       1.447526e-01
## 116         High      9.256902e-01       7.430983e-02
## 117         High      8.307910e-01       1.692090e-01
## 118         High      9.898415e-01       1.015848e-02
## 119          Low      8.806870e-01       1.193130e-01
## 120          Low      6.157921e-01       3.842079e-01
## 121          Low      7.421311e-01       2.578689e-01
## 122          Low      1.055387e-02       9.894461e-01
## 123          Low      9.499792e-01       5.002079e-02
## 124          Low      8.235425e-01       1.764575e-01
## 125          Low      9.847774e-01       1.522265e-02
## 126          Low      4.111559e-01       5.888441e-01
## 127          Low      9.971740e-01       2.825970e-03
## 128          Low      9.718858e-01       2.811418e-02
## 129          Low      4.662684e-01       5.337316e-01
## 130          Low      9.378376e-01       6.216236e-02
## 131          Low      9.975638e-01       2.436173e-03
## 132          Low      2.479609e-02       9.752039e-01
## 133          Low      2.854703e-02       9.714530e-01
## 134          Low      8.819377e-01       1.180623e-01
## 135          Low      9.827337e-01       1.726634e-02
## 136          Low      3.672445e-01       6.327555e-01
## 137          Low      9.668295e-01       3.317052e-02
## 138          Low      9.910528e-01       8.947155e-03
## 139          Low      9.491286e-01       5.087143e-02
## 140          Low      7.746190e-02       9.225381e-01
## 141          Low      9.746202e-01       2.537985e-02
## 142          Low      8.958176e-01       1.041824e-01
## 143          Low      9.915813e-01       8.418748e-03
## 144          Low      6.471754e-01       3.528246e-01
## 145          Low      5.073710e-02       9.492629e-01
## 146          Low      1.209044e-01       8.790956e-01
## 147          Low      8.495289e-01       1.504711e-01
## 148          Low      9.949639e-01       5.036067e-03
## 149          Low      6.938987e-01       3.061013e-01
## 150          Low      9.418795e-01       5.812049e-02
## 151          Low      4.952725e-02       9.504728e-01
## 152          Low      8.702888e-01       1.297112e-01
## 153          Low      9.732999e-01       2.670008e-02
## 154          Low      9.994836e-01       5.163749e-04
## 155          Low      9.387298e-01       6.127016e-02
## 156          Low      9.905819e-01       9.418053e-03
## 157          Low      9.991229e-01       8.770837e-04
## 158          Low      9.998848e-01       1.152306e-04
## 159          Low      8.447694e-01       1.552306e-01
## 160          Low      9.987459e-01       1.254135e-03
## 161          Low      9.998343e-01       1.656888e-04
## 162          Low      9.451457e-01       5.485433e-02
## 163          Low      9.891499e-01       1.085009e-02
## 164          Low      9.793381e-01       2.066190e-02
## 165          Low      9.737576e-01       2.624242e-02
## 166          Low      9.980937e-01       1.906257e-03
## 167          Low      9.897082e-01       1.029176e-02
## 168          Low      9.813784e-01       1.862159e-02
## 169          Low      9.999451e-01       5.494920e-05
## 170          Low      9.999128e-01       8.724066e-05
## 171          Low      9.816934e-01       1.830657e-02
## 172          Low      9.972415e-01       2.758533e-03
## 173          Low      9.933940e-01       6.606000e-03
## 174          Low      9.992061e-01       7.939013e-04
## 175          Low      9.993478e-01       6.522487e-04
## 176          Low      9.866584e-01       1.334161e-02
## 177          Low      8.062334e-01       1.937666e-01
## 178          Low      9.999814e-01       1.858947e-05
## 179          Low      9.995361e-01       4.639220e-04
## 180          Low      9.972415e-01       2.758533e-03
## 181          Low      9.800861e-01       1.991392e-02
## 182          Low      9.922538e-01       7.746157e-03
## 183          Low      9.999363e-01       6.373567e-05
## 184          Low      9.990488e-01       9.511598e-04
## 185          Low      9.889232e-01       1.107676e-02
## 186          Low      9.987096e-01       1.290389e-03
## 187          Low      9.934819e-01       6.518055e-03
## 188          Low      9.068968e-01       9.310315e-02
## 189          Low      9.958666e-01       4.133367e-03
## 190          Low      9.999703e-01       2.965189e-05
## 191          Low      9.282542e-01       7.174584e-02
## 192          Low      7.522999e-01       2.477001e-01
## 193          Low      9.990779e-01       9.220585e-04
## 194          Low      9.997988e-01       2.012188e-04
## 195          Low      9.858434e-01       1.415659e-02
## 196          Low      9.976618e-01       2.338240e-03
## 197          Low      9.793172e-01       2.068281e-02
## 198          Low      9.915726e-01       8.427397e-03
## 199          Low      9.999996e-01       4.456382e-07
## 200          Low      9.813403e-01       1.865972e-02
## 201          Low      9.999851e-01       1.489821e-05
## 202          Low      9.992209e-01       7.790860e-04
## 203          Low      9.992209e-01       7.790860e-04
## 204          Low      9.992209e-01       7.790860e-04
## 205          Low      9.999956e-01       4.418394e-06
## 206          Low      9.999986e-01       1.368052e-06
## 207          Low      9.950506e-01       4.949429e-03
## 208          Low      9.999990e-01       9.518195e-07
## 209          Low      9.999995e-01       4.915466e-07
## 210          Low      9.997849e-01       2.151436e-04
## 211          Low      9.985056e-01       1.494411e-03
## 212          Low      9.990729e-01       9.270714e-04
## 213          Low      9.990729e-01       9.270714e-04
## 214          Low      9.993964e-01       6.036160e-04
## 215          Low      9.999952e-01       4.804299e-06
## 216          Low      9.995931e-01       4.068867e-04
## 217         High      2.255202e-04       9.997745e-01
## 218         High      2.276146e-03       9.977239e-01
## 219         High      1.958320e-04       9.998042e-01
## 220         High      8.363020e-03       9.916370e-01
## 221         High      6.566203e-04       9.993434e-01
## 222         High      1.540351e-03       9.984596e-01
## 223         High      1.475592e-02       9.852441e-01
## 224         High      5.670742e-03       9.943293e-01
## 225         High      7.096778e-01       2.903222e-01
## 226         High      2.135624e-03       9.978644e-01
## 227         High      9.048039e-04       9.990952e-01
## 228         High      5.473683e-03       9.945263e-01
## 229         High      1.287000e-03       9.987130e-01
## 230         High      3.266078e-02       9.673392e-01
## 231         High      1.850478e-01       8.149522e-01
## 232         High      2.381172e-03       9.976188e-01
## 233         High      1.879250e-03       9.981208e-01
## 234         High      1.457875e-03       9.985421e-01
## 235         High      2.743915e-03       9.972561e-01
## 236         High      2.501833e-03       9.974982e-01
## 237         High      9.847491e-01       1.525093e-02
## 238         High      1.978247e-02       9.802175e-01
## 239         High      2.501833e-03       9.974982e-01
## 240         High      3.554147e-03       9.964459e-01
## 241         High      5.571878e-03       9.944281e-01
## 242         High      3.214995e-02       9.678501e-01
## 243         High      8.130724e-03       9.918693e-01
## 244         High      6.582718e-03       9.934173e-01
## 245         High      1.733806e-02       9.826619e-01
## 246         High      1.998389e-04       9.998002e-01
## 247         High      4.367589e-03       9.956324e-01
## 248         High      2.727005e-03       9.972730e-01
## 249         High      7.010362e-02       9.298964e-01
## 250         High      1.609613e-01       8.390387e-01
## 251         High      6.746265e-01       3.253735e-01
## 252         High      7.872232e-03       9.921278e-01
## 253         High      3.121653e-01       6.878347e-01
## 254         High      5.845846e-01       4.154154e-01
## 255         High      2.665529e-01       7.334471e-01
## 256         High      5.787852e-04       9.994212e-01
## 257         High      2.648977e-02       9.735102e-01
## 258         High      3.150072e-01       6.849928e-01
## 259         High      3.336151e-01       6.663849e-01
## 260         High      6.803261e-03       9.931967e-01
## 261         High      1.095579e-01       8.904421e-01
## 262         High      1.706943e-01       8.293057e-01
## 263         High      4.729980e-02       9.527002e-01
## 264         High      6.225764e-02       9.377424e-01
## 265         High      4.459511e-01       5.540489e-01
## 266         High      3.348277e-01       6.651723e-01
## 267         High      9.334114e-02       9.066589e-01
## 268         High      9.489563e-01       5.104370e-02
## 269          Low      9.922257e-01       7.774338e-03
## 270          Low      8.731715e-01       1.268285e-01
## 271          Low      9.883396e-01       1.166037e-02
## 272          Low      6.468122e-01       3.531878e-01
## 273          Low      9.984132e-01       1.586838e-03
## 274          Low      9.988656e-01       1.134392e-03
## 275          Low      1.252445e-01       8.747555e-01
## 276          Low      9.418795e-01       5.812049e-02
## 277          Low      9.956807e-01       4.319262e-03
## 278          Low      2.847007e-01       7.152993e-01
## 279          Low      9.932363e-01       6.763709e-03
## 280          Low      9.994836e-01       5.163749e-04
## 281          Low      9.732999e-01       2.670008e-02
## 282          Low      9.889232e-01       1.107676e-02
## 283          Low      9.941472e-01       5.852827e-03
## 284          Low      9.954809e-01       4.519077e-03
## 285          Low      9.801197e-01       1.988031e-02
## 286          Low      6.355589e-01       3.644411e-01
## 287          Low      9.903434e-01       9.656559e-03
## 288          Low      8.261194e-01       1.738806e-01
## 289          Low      9.946350e-01       5.364997e-03
## 290          Low      9.998786e-01       1.214263e-04
## 291          Low      9.950626e-01       4.937433e-03
## 292          Low      8.690051e-01       1.309949e-01
## 293          Low      9.972415e-01       2.758533e-03
## 294          Low      9.984568e-01       1.543181e-03
## 295          Low      9.982758e-01       1.724221e-03
## 296          Low      2.870159e-01       7.129841e-01
## 297          Low      9.852478e-01       1.475222e-02
## 298          Low      9.991623e-01       8.377175e-04
## 299          Low      9.998786e-01       1.214263e-04
## 300          Low      9.999956e-01       4.418394e-06
## 301          Low      9.905874e-01       9.412579e-03
## 302          Low      9.953501e-01       4.649855e-03
## 303          Low      9.953203e-01       4.679661e-03
## 304          Low      8.241165e-01       1.758835e-01
## 305          Low      9.977351e-01       2.264928e-03
## 306          Low      9.985056e-01       1.494411e-03
## 307          Low      9.990729e-01       9.270714e-04
## 308          Low      9.995931e-01       4.068867e-04
## 309          Low      9.999975e-01       2.470773e-06
## 310          Low      9.999946e-01       5.393850e-06
## 311          Low      9.997960e-01       2.039678e-04
## 312          Low      9.990729e-01       9.270714e-04
## 313         High      3.025030e-02       9.697497e-01
## 314         High      4.288205e-01       5.711795e-01
## 315          Low      9.615043e-01       3.849566e-02
## 316         High      9.936174e-01       6.382574e-03
##################################
# Reporting the independent evaluation results
# for the test set
##################################
FDA_Test_ROC <- roc(response = FDA_Test$FDA_Observed,
             predictor = FDA_Test$FDA_Predicted.High,
             levels = rev(levels(FDA_Test$FDA_Observed)))

(FDA_Test_ROCCurveAUC <- auc(FDA_Test_ROC)[1])
## [1] 0.9593355

1.5.4 Mixture Discriminant Analysis (MDA)


[A] The mixture discriminant analysis model from the mda package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] subclasses = number of subclasses per class made to vary across a range of values equal to 1 to 8

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves subclasses=1
     [C.2] ROC Curve AUC = 0.90659

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.92138
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_MDA <- PMA_PreModelling_Train
PMA_PreModelling_Test_MDA <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_MDA$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
MDA_Grid = expand.grid(subclasses = 1:8)

##################################
# Running the mixture discriminant analysis model
# by setting the caret method to 'mda'
##################################
set.seed(12345678)
MDA_Tune <- train(x = PMA_PreModelling_Train_MDA[,!names(PMA_PreModelling_Train_MDA) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_MDA$Log_Solubility_Class,
                 method = "mda",
                 tuneGrid = MDA_Grid,
                 tries = 40,
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
MDA_Tune
## Mixture Discriminant Analysis 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   subclasses  ROC        Sens       Spec     
##   1           0.9065884  0.8216362  0.8381713
##   2           0.9061159  0.8009413  0.8356313
##   3           0.8990602  0.7688261  0.8595791
##   4           0.9018378  0.7868217  0.8642507
##   5           0.9053039  0.8010105  0.8642961
##   6           0.9064374  0.7924972  0.8688770
##   7           0.9054071  0.8012182  0.8618922
##   8           0.8961314  0.7866833  0.8618922
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was subclasses = 1.
MDA_Tune$finalModel
## Call:
## mda::mda(formula = as.formula(".outcome ~ ."), data = dat, subclasses = param$subclasses, 
##     tries = 40)
## 
## Dimension: 1 
## 
## Percent Between-Group Variance Explained:
##  v1 
## 100 
## 
## Degrees of Freedom (per dimension): 221 
## 
## Training Misclassification Error: 0.06309 ( N = 951 )
## 
## Deviance: 274.654
MDA_Tune$results
##   subclasses       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1          1 0.9065884 0.8216362 0.8381713 0.03141234 0.06913201 0.05860299
## 2          2 0.9061159 0.8009413 0.8356313 0.02183807 0.06191089 0.04609250
## 3          3 0.8990602 0.7688261 0.8595791 0.02739762 0.07985827 0.02857108
## 4          4 0.9018378 0.7868217 0.8642507 0.02721217 0.08855550 0.02797936
## 5          5 0.9053039 0.8010105 0.8642961 0.02369782 0.06038734 0.03748632
## 6          6 0.9064374 0.7924972 0.8688770 0.02150088 0.07067420 0.04319700
## 7          7 0.9054071 0.8012182 0.8618922 0.02223467 0.04285442 0.04280862
## 8          8 0.8961314 0.7866833 0.8618922 0.02455558 0.05138028 0.04538396
(MDA_Train_ROCCurveAUC <- MDA_Tune$results[MDA_Tune$results$subclasses==MDA_Tune$bestTune$subclasses,
                              c("ROC")])
## [1] 0.9065884
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
MDA_Test <- data.frame(MDA_Observed = PMA_PreModelling_Test_MDA$Log_Solubility_Class,
                      MDA_Predicted = predict(MDA_Tune,
                      PMA_PreModelling_Test_MDA[,!names(PMA_PreModelling_Test_MDA) %in% c("Log_Solubility_Class")],
                      type = "prob"))

MDA_Test
##     MDA_Observed MDA_Predicted.Low MDA_Predicted.High
## 1           High      5.951955e-06       9.999940e-01
## 2           High      5.713468e-04       9.994287e-01
## 3           High      8.213523e-04       9.991786e-01
## 4           High      1.263688e-02       9.873631e-01
## 5           High      2.314122e-03       9.976859e-01
## 6           High      9.220012e-07       9.999991e-01
## 7           High      2.782574e-05       9.999722e-01
## 8           High      2.010542e-05       9.999799e-01
## 9           High      9.758039e-06       9.999902e-01
## 10          High      2.389943e-02       9.761006e-01
## 11          High      3.530722e-02       9.646928e-01
## 12          High      1.990229e-02       9.800977e-01
## 13          High      5.703342e-05       9.999430e-01
## 14          High      6.719888e-05       9.999328e-01
## 15          High      1.544650e-02       9.845535e-01
## 16          High      2.579946e-04       9.997420e-01
## 17          High      6.067952e-06       9.999939e-01
## 18          High      1.976728e-05       9.999802e-01
## 19          High      6.733053e-02       9.326695e-01
## 20          High      1.113397e-03       9.988866e-01
## 21          High      1.831952e-04       9.998168e-01
## 22          High      1.494558e-05       9.999851e-01
## 23          High      6.670111e-04       9.993330e-01
## 24          High      3.563783e-03       9.964362e-01
## 25          High      1.515700e-03       9.984843e-01
## 26          High      1.021011e-03       9.989790e-01
## 27          High      3.626444e-04       9.996374e-01
## 28          High      2.369801e-07       9.999998e-01
## 29          High      2.134831e-01       7.865169e-01
## 30          High      4.852152e-02       9.514785e-01
## 31          High      9.182902e-04       9.990817e-01
## 32          High      3.032715e-04       9.996967e-01
## 33          High      1.898153e-04       9.998102e-01
## 34          High      9.296987e-06       9.999907e-01
## 35          High      8.668665e-06       9.999913e-01
## 36          High      4.309249e-02       9.569075e-01
## 37          High      1.886567e-05       9.999811e-01
## 38          High      4.029474e-04       9.995971e-01
## 39          High      2.531711e-04       9.997468e-01
## 40          High      1.981306e-03       9.980187e-01
## 41          High      4.372638e-04       9.995627e-01
## 42          High      1.551033e-01       8.448967e-01
## 43          High      3.352395e-03       9.966476e-01
## 44          High      4.294659e-04       9.995705e-01
## 45          High      4.080769e-04       9.995919e-01
## 46          High      1.911073e-03       9.980889e-01
## 47          High      8.133671e-03       9.918663e-01
## 48          High      1.590491e-03       9.984095e-01
## 49          High      1.904877e-03       9.980951e-01
## 50          High      5.853310e-04       9.994147e-01
## 51          High      9.964262e-01       3.573778e-03
## 52          High      5.762096e-04       9.994238e-01
## 53          High      4.317109e-03       9.956829e-01
## 54          High      1.259092e-02       9.874091e-01
## 55          High      3.204033e-02       9.679597e-01
## 56          High      7.455973e-02       9.254403e-01
## 57          High      8.724997e-03       9.912750e-01
## 58          High      2.224575e-03       9.977754e-01
## 59          High      9.053715e-03       9.909463e-01
## 60          High      2.599400e-01       7.400600e-01
## 61          High      2.069318e-05       9.999793e-01
## 62          High      2.297180e-03       9.977028e-01
## 63          High      8.231492e-04       9.991769e-01
## 64          High      3.248051e-04       9.996752e-01
## 65          High      5.251957e-03       9.947480e-01
## 66          High      2.358948e-03       9.976411e-01
## 67          High      9.618518e-01       3.814822e-02
## 68          High      2.398737e-01       7.601263e-01
## 69          High      2.864777e-01       7.135223e-01
## 70          High      2.469523e-02       9.753048e-01
## 71          High      9.874125e-04       9.990126e-01
## 72          High      5.524765e-02       9.447523e-01
## 73          High      3.543586e-02       9.645641e-01
## 74          High      3.937939e-01       6.062061e-01
## 75          High      2.328621e-02       9.767138e-01
## 76          High      3.750440e-01       6.249560e-01
## 77          High      4.575989e-01       5.424011e-01
## 78          High      2.259496e-02       9.774050e-01
## 79          High      7.330761e-03       9.926692e-01
## 80          High      9.644748e-02       9.035525e-01
## 81          High      1.093132e-03       9.989069e-01
## 82          High      5.693822e-01       4.306178e-01
## 83          High      6.202541e-01       3.797459e-01
## 84          High      4.555510e-02       9.544449e-01
## 85          High      1.241886e-01       8.758114e-01
## 86          High      5.898924e-03       9.941011e-01
## 87          High      9.865488e-01       1.345124e-02
## 88          High      1.722366e-01       8.277634e-01
## 89          High      4.407062e-01       5.592938e-01
## 90          High      2.742146e-02       9.725785e-01
## 91          High      2.659197e-02       9.734080e-01
## 92          High      1.067431e-01       8.932569e-01
## 93          High      1.700958e-01       8.299042e-01
## 94          High      2.464723e-02       9.753528e-01
## 95          High      8.348761e-05       9.999165e-01
## 96          High      9.082263e-02       9.091774e-01
## 97          High      1.386971e-01       8.613029e-01
## 98          High      9.974008e-01       2.599196e-03
## 99          High      6.689601e-02       9.331040e-01
## 100         High      3.602462e-02       9.639754e-01
## 101         High      2.273387e-01       7.726613e-01
## 102         High      1.297410e-01       8.702590e-01
## 103         High      3.268170e-01       6.731830e-01
## 104         High      4.099839e-02       9.590016e-01
## 105         High      7.143862e-01       2.856138e-01
## 106         High      5.210268e-01       4.789732e-01
## 107         High      6.922482e-01       3.077518e-01
## 108         High      1.228162e-01       8.771838e-01
## 109         High      8.432105e-01       1.567895e-01
## 110         High      9.998218e-01       1.781737e-04
## 111         High      1.288525e-01       8.711475e-01
## 112         High      9.912964e-01       8.703569e-03
## 113         High      2.033310e-01       7.966690e-01
## 114         High      9.956523e-01       4.347713e-03
## 115         High      3.134576e-02       9.686542e-01
## 116         High      9.955981e-01       4.401873e-03
## 117         High      9.956122e-01       4.387830e-03
## 118         High      8.409891e-01       1.590109e-01
## 119          Low      4.152477e-02       9.584752e-01
## 120          Low      9.935430e-01       6.457021e-03
## 121          Low      4.656995e-01       5.343005e-01
## 122          Low      2.358800e-01       7.641200e-01
## 123          Low      9.982924e-01       1.707646e-03
## 124          Low      3.230362e-01       6.769638e-01
## 125          Low      5.678009e-01       4.321991e-01
## 126          Low      5.063489e-01       4.936511e-01
## 127          Low      9.442039e-01       5.579606e-02
## 128          Low      9.729902e-01       2.700979e-02
## 129          Low      6.247727e-01       3.752273e-01
## 130          Low      8.743611e-03       9.912564e-01
## 131          Low      9.169153e-01       8.308473e-02
## 132          Low      9.774487e-01       2.255128e-02
## 133          Low      9.872931e-01       1.270690e-02
## 134          Low      9.164012e-01       8.359884e-02
## 135          Low      8.819447e-01       1.180553e-01
## 136          Low      2.314772e-01       7.685228e-01
## 137          Low      4.315735e-01       5.684265e-01
## 138          Low      5.440008e-01       4.559992e-01
## 139          Low      6.325926e-01       3.674074e-01
## 140          Low      1.952269e-01       8.047731e-01
## 141          Low      1.976665e-01       8.023335e-01
## 142          Low      9.988160e-01       1.183998e-03
## 143          Low      9.984391e-01       1.560875e-03
## 144          Low      7.574433e-02       9.242557e-01
## 145          Low      4.762099e-04       9.995238e-01
## 146          Low      8.012744e-01       1.987256e-01
## 147          Low      1.718014e-01       8.281986e-01
## 148          Low      5.854084e-01       4.145916e-01
## 149          Low      8.327356e-01       1.672644e-01
## 150          Low      9.872171e-01       1.278293e-02
## 151          Low      1.789792e-01       8.210208e-01
## 152          Low      1.136154e-01       8.863846e-01
## 153          Low      3.034809e-01       6.965191e-01
## 154          Low      9.675198e-01       3.248020e-02
## 155          Low      3.923836e-02       9.607616e-01
## 156          Low      3.683737e-02       9.631626e-01
## 157          Low      9.946931e-01       5.306933e-03
## 158          Low      9.946025e-01       5.397522e-03
## 159          Low      7.745520e-01       2.254480e-01
## 160          Low      9.998964e-01       1.035736e-04
## 161          Low      9.998615e-01       1.384901e-04
## 162          Low      9.938421e-01       6.157950e-03
## 163          Low      8.271678e-01       1.728322e-01
## 164          Low      9.996947e-01       3.052518e-04
## 165          Low      9.981781e-01       1.821852e-03
## 166          Low      9.437218e-01       5.627824e-02
## 167          Low      9.140566e-01       8.594340e-02
## 168          Low      2.267051e-01       7.732949e-01
## 169          Low      9.989877e-01       1.012282e-03
## 170          Low      9.997307e-01       2.693237e-04
## 171          Low      9.842439e-01       1.575607e-02
## 172          Low      9.713839e-01       2.861612e-02
## 173          Low      9.955267e-01       4.473263e-03
## 174          Low      9.997374e-01       2.626470e-04
## 175          Low      9.999297e-01       7.026426e-05
## 176          Low      9.982773e-01       1.722738e-03
## 177          Low      9.428830e-01       5.711703e-02
## 178          Low      9.999580e-01       4.204178e-05
## 179          Low      9.982440e-01       1.756006e-03
## 180          Low      7.830798e-01       2.169202e-01
## 181          Low      9.946668e-01       5.333174e-03
## 182          Low      6.451619e-01       3.548381e-01
## 183          Low      9.979180e-01       2.082031e-03
## 184          Low      9.996102e-01       3.897725e-04
## 185          Low      9.985155e-01       1.484480e-03
## 186          Low      9.983529e-01       1.647117e-03
## 187          Low      9.985082e-01       1.491805e-03
## 188          Low      9.999119e-01       8.813479e-05
## 189          Low      9.984831e-01       1.516860e-03
## 190          Low      9.358504e-01       6.414963e-02
## 191          Low      9.997113e-01       2.886933e-04
## 192          Low      9.590523e-01       4.094766e-02
## 193          Low      9.680753e-01       3.192470e-02
## 194          Low      9.991944e-01       8.056029e-04
## 195          Low      9.876599e-01       1.234013e-02
## 196          Low      9.989884e-01       1.011637e-03
## 197          Low      9.981449e-01       1.855071e-03
## 198          Low      9.980565e-01       1.943496e-03
## 199          Low      9.999903e-01       9.707877e-06
## 200          Low      9.998801e-01       1.199198e-04
## 201          Low      9.960167e-01       3.983322e-03
## 202          Low      9.992855e-01       7.145471e-04
## 203          Low      9.975322e-01       2.467801e-03
## 204          Low      9.993515e-01       6.484959e-04
## 205          Low      9.992446e-01       7.553985e-04
## 206          Low      9.988068e-01       1.193204e-03
## 207          Low      9.999716e-01       2.839298e-05
## 208          Low      9.998702e-01       1.297674e-04
## 209          Low      9.999414e-01       5.862898e-05
## 210          Low      9.998057e-01       1.942915e-04
## 211          Low      9.995195e-01       4.804619e-04
## 212          Low      9.992821e-01       7.178783e-04
## 213          Low      9.999093e-01       9.069227e-05
## 214          Low      9.999366e-01       6.338236e-05
## 215          Low      9.999156e-01       8.435098e-05
## 216          Low      9.994635e-01       5.364985e-04
## 217         High      1.835047e-03       9.981650e-01
## 218         High      1.056214e-04       9.998944e-01
## 219         High      6.532868e-02       9.346713e-01
## 220         High      4.639815e-05       9.999536e-01
## 221         High      4.020849e-04       9.995979e-01
## 222         High      2.968479e-04       9.997032e-01
## 223         High      7.369414e-04       9.992631e-01
## 224         High      2.624848e-04       9.997375e-01
## 225         High      9.326770e-01       6.732305e-02
## 226         High      4.128925e-03       9.958711e-01
## 227         High      1.438331e-03       9.985617e-01
## 228         High      9.129359e-04       9.990871e-01
## 229         High      2.940323e-04       9.997060e-01
## 230         High      1.205627e-04       9.998794e-01
## 231         High      3.099878e-02       9.690012e-01
## 232         High      1.114553e-02       9.888545e-01
## 233         High      1.573992e-03       9.984260e-01
## 234         High      2.885098e-04       9.997115e-01
## 235         High      8.000140e-02       9.199986e-01
## 236         High      1.523715e-03       9.984763e-01
## 237         High      8.999726e-01       1.000274e-01
## 238         High      1.388060e-02       9.861194e-01
## 239         High      4.317109e-03       9.956829e-01
## 240         High      1.448576e-03       9.985514e-01
## 241         High      4.458825e-04       9.995541e-01
## 242         High      4.518787e-01       5.481213e-01
## 243         High      1.530779e-02       9.846922e-01
## 244         High      9.531528e-01       4.684717e-02
## 245         High      9.384748e-02       9.061525e-01
## 246         High      1.017028e-04       9.998983e-01
## 247         High      1.808904e-03       9.981911e-01
## 248         High      3.312725e-03       9.966873e-01
## 249         High      6.413311e-03       9.935867e-01
## 250         High      1.253207e-01       8.746793e-01
## 251         High      6.189014e-03       9.938110e-01
## 252         High      2.174498e-02       9.782550e-01
## 253         High      2.721382e-01       7.278618e-01
## 254         High      7.205129e-01       2.794871e-01
## 255         High      6.245045e-01       3.754955e-01
## 256         High      2.425365e-02       9.757464e-01
## 257         High      2.710299e-05       9.999729e-01
## 258         High      4.834763e-02       9.516524e-01
## 259         High      9.941067e-01       5.893310e-03
## 260         High      5.243045e-03       9.947570e-01
## 261         High      1.092202e-01       8.907798e-01
## 262         High      1.930498e-03       9.980695e-01
## 263         High      1.016188e-01       8.983812e-01
## 264         High      4.603085e-01       5.396915e-01
## 265         High      8.452192e-01       1.547808e-01
## 266         High      5.326075e-05       9.999467e-01
## 267         High      9.150808e-02       9.084919e-01
## 268         High      2.893323e-03       9.971067e-01
## 269          Low      4.564839e-01       5.435161e-01
## 270          Low      8.447240e-01       1.552760e-01
## 271          Low      7.404439e-01       2.595561e-01
## 272          Low      9.674239e-01       3.257607e-02
## 273          Low      9.949502e-01       5.049846e-03
## 274          Low      9.858089e-01       1.419107e-02
## 275          Low      1.118692e-01       8.881308e-01
## 276          Low      9.856425e-01       1.435745e-02
## 277          Low      9.817821e-01       1.821794e-02
## 278          Low      4.574698e-01       5.425302e-01
## 279          Low      9.994466e-01       5.534129e-04
## 280          Low      7.325491e-01       2.674509e-01
## 281          Low      5.530450e-01       4.469550e-01
## 282          Low      9.976892e-01       2.310791e-03
## 283          Low      9.755724e-01       2.442761e-02
## 284          Low      9.945903e-01       5.409739e-03
## 285          Low      9.899981e-01       1.000186e-02
## 286          Low      3.918359e-01       6.081641e-01
## 287          Low      9.066885e-01       9.331152e-02
## 288          Low      1.523227e-03       9.984768e-01
## 289          Low      9.963746e-01       3.625410e-03
## 290          Low      9.982671e-01       1.732919e-03
## 291          Low      9.721318e-01       2.786816e-02
## 292          Low      9.951540e-01       4.845979e-03
## 293          Low      8.428514e-01       1.571486e-01
## 294          Low      9.978111e-01       2.188882e-03
## 295          Low      9.987152e-01       1.284783e-03
## 296          Low      2.431630e-01       7.568370e-01
## 297          Low      9.993188e-01       6.811659e-04
## 298          Low      9.982270e-01       1.772993e-03
## 299          Low      9.993535e-01       6.464756e-04
## 300          Low      9.984542e-01       1.545823e-03
## 301          Low      9.999416e-01       5.843052e-05
## 302          Low      9.990798e-01       9.202490e-04
## 303          Low      9.971585e-01       2.841456e-03
## 304          Low      9.968735e-01       3.126512e-03
## 305          Low      9.999924e-01       7.612488e-06
## 306          Low      9.984110e-01       1.588970e-03
## 307          Low      9.996863e-01       3.137007e-04
## 308          Low      9.999531e-01       4.685983e-05
## 309          Low      9.999947e-01       5.262522e-06
## 310          Low      9.999975e-01       2.495649e-06
## 311          Low      9.999770e-01       2.303644e-05
## 312          Low      9.989621e-01       1.037861e-03
## 313         High      4.651832e-03       9.953482e-01
## 314         High      6.383425e-02       9.361657e-01
## 315          Low      8.833661e-01       1.166339e-01
## 316         High      9.992679e-01       7.320644e-04
##################################
# Reporting the independent evaluation results
# for the test set
##################################
MDA_Test_ROC <- roc(response = MDA_Test$MDA_Observed,
             predictor = MDA_Test$MDA_Predicted.High,
             levels = rev(levels(MDA_Test$MDA_Observed)))

(MDA_Test_ROCCurveAUC <- auc(MDA_Test_ROC)[1])
## [1] 0.9213792

1.5.5 Naive Bayes (NB)


[A] The naive bayes model from the klaR package was implemented through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] fL = laplace correction held constant at a value of 2
     [B.2] adjust = bandwidth adjustment held constant at a value of FALSE
     [B.3] usekernel = distribution type made to vary across a range of levels equal to TRUE and FALSE

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves fL=2, adjust=FALSE and usekernel=FALSE
     [C.2] ROC Curve AUC = 0.88182

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.88561
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_NB <- PMA_PreModelling_Train
PMA_PreModelling_Test_NB <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_NB$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
NB_Grid = data.frame(usekernel = c(TRUE, FALSE), fL = 2, adjust = FALSE)

##################################
# Running the naive bayes model
# by setting the caret method to 'nb'
##################################
set.seed(12345678)
NB_Tune <- train(x = PMA_PreModelling_Train_NB[,!names(PMA_PreModelling_Train_NB) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_NB$Log_Solubility_Class,
                 method = "nb",
                 tuneGrid = NB_Grid,
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
NB_Tune
## Naive Bayes 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   usekernel  ROC        Sens       Spec     
##   FALSE      0.8818276  0.7772979  0.8072932
##    TRUE            NaN        NaN        NaN
## 
## Tuning parameter 'fL' was held constant at a value of 2
## Tuning
##  parameter 'adjust' was held constant at a value of FALSE
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were fL = 2, usekernel = FALSE and adjust
##  = FALSE.
NB_Tune$finalModel
## $apriori
## grouping
##       Low      High 
## 0.4490011 0.5509989 
## 
## $tables
## $tables$FP001
##         var
## grouping         0         1
##     Low  0.5313225 0.4686775
##     High 0.4867424 0.5132576
## 
## $tables$FP002
##         var
## grouping         0         1
##     Low  0.3225058 0.6774942
##     High 0.5738636 0.4261364
## 
## $tables$FP003
##         var
## grouping         0         1
##     Low  0.5591647 0.4408353
##     High 0.5662879 0.4337121
## 
## $tables$FP004
##         var
## grouping         0         1
##     Low  0.4477958 0.5522042
##     High 0.3901515 0.6098485
## 
## $tables$FP005
##         var
## grouping        0        1
##     Low  0.287703 0.712297
##     High 0.530303 0.469697
## 
## $tables$FP006
##         var
## grouping         0         1
##     Low  0.6774942 0.3225058
##     High 0.5340909 0.4659091
## 
## $tables$FP007
##         var
## grouping         0         1
##     Low  0.6194896 0.3805104
##     High 0.6477273 0.3522727
## 
## $tables$FP008
##         var
## grouping         0         1
##     Low  0.6055684 0.3944316
##     High 0.7272727 0.2727273
## 
## $tables$FP009
##         var
## grouping         0         1
##     Low  0.5777262 0.4222738
##     High 0.8333333 0.1666667
## 
## $tables$FP010
##         var
## grouping         0         1
##     Low  0.8538283 0.1461717
##     High 0.7897727 0.2102273
## 
## $tables$FP011
##         var
## grouping         0         1
##     Low  0.8399072 0.1600928
##     High 0.7367424 0.2632576
## 
## $tables$FP012
##         var
## grouping         0         1
##     Low  0.8283063 0.1716937
##     High 0.8143939 0.1856061
## 
## $tables$FP013
##         var
## grouping         0         1
##     Low  0.7006961 0.2993039
##     High 0.9375000 0.0625000
## 
## $tables$FP014
##         var
## grouping        0        1
##     Low  0.712297 0.287703
##     High 0.937500 0.062500
## 
## $tables$FP015
##         var
## grouping          0          1
##     Low  0.21113689 0.78886311
##     High 0.08712121 0.91287879
## 
## $tables$FP016
##         var
## grouping         0         1
##     Low  0.8399072 0.1600928
##     High 0.8598485 0.1401515
## 
## $tables$FP017
##         var
## grouping         0         1
##     Low  0.8051044 0.1948956
##     High 0.8920455 0.1079545
## 
## $tables$FP018
##         var
## grouping          0          1
##     Low  0.81902552 0.18097448
##     High 0.90340909 0.09659091
## 
## $tables$FP019
##         var
## grouping         0         1
##     Low  0.8770302 0.1229698
##     High 0.8731061 0.1268939
## 
## $tables$FP020
##         var
## grouping         0         1
##     Low  0.8909513 0.1090487
##     High 0.8655303 0.1344697
## 
## $tables$FP021
##         var
## grouping         0         1
##     Low  0.8584687 0.1415313
##     High 0.8901515 0.1098485
## 
## $tables$FP022
##         var
## grouping         0         1
##     Low  0.8932715 0.1067285
##     High 0.8920455 0.1079545
## 
## $tables$FP023
##         var
## grouping          0          1
##     Low  0.83758701 0.16241299
##     High 0.90340909 0.09659091
## 
## $tables$FP024
##         var
## grouping         0         1
##     Low  0.8886311 0.1113689
##     High 0.8806818 0.1193182
## 
## $tables$FP025
##         var
## grouping         0         1
##     Low  0.8955916 0.1044084
##     High 0.8693182 0.1306818
## 
## $tables$FP026
##         var
## grouping         0         1
##     Low  0.8932715 0.1067285
##     High 0.9280303 0.0719697
## 
## $tables$FP027
##         var
## grouping          0          1
##     Low  0.93039443 0.06960557
##     High 0.87310606 0.12689394
## 
## $tables$FP028
##         var
## grouping          0          1
##     Low  0.90023202 0.09976798
##     High 0.88257576 0.11742424
## 
## $tables$FP029
##         var
## grouping          0          1
##     Low  0.88631090 0.11368910
##     High 0.90151515 0.09848485
## 
## $tables$FP030
##         var
## grouping         0         1
##     Low  0.9187935 0.0812065
##     High 0.8901515 0.1098485
## 
## $tables$FP031
##         var
## grouping          0          1
##     Low  0.89791183 0.10208817
##     High 0.91477273 0.08522727
## 
## $tables$FP032
##         var
## grouping          0          1
##     Low  0.94199536 0.05800464
##     High 0.90719697 0.09280303
## 
## $tables$FP033
##         var
## grouping          0          1
##     Low  0.94199536 0.05800464
##     High 0.91477273 0.08522727
## 
## $tables$FP034
##         var
## grouping         0         1
##     Low  0.9025522 0.0974478
##     High 0.9280303 0.0719697
## 
## $tables$FP035
##         var
## grouping          0          1
##     Low  0.87935035 0.12064965
##     High 0.96022727 0.03977273
## 
## $tables$FP036
##         var
## grouping          0          1
##     Low  0.95359629 0.04640371
##     High 0.89393939 0.10606061
## 
## $tables$FP037
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     High 0.94128788 0.05871212
## 
## $tables$FP038
##         var
## grouping          0          1
##     Low  0.92343387 0.07656613
##     High 0.89962121 0.10037879
## 
## $tables$FP039
##         var
## grouping          0          1
##     Low  0.87470998 0.12529002
##     High 0.96022727 0.03977273
## 
## $tables$FP040
##         var
## grouping          0          1
##     Low  0.94895592 0.05104408
##     High 0.91098485 0.08901515
## 
## $tables$FP041
##         var
## grouping          0          1
##     Low  0.89559165 0.10440835
##     High 0.96401515 0.03598485
## 
## $tables$FP042
##         var
## grouping          0          1
##     Low  0.94663573 0.05336427
##     High 0.93371212 0.06628788
## 
## $tables$FP043
##         var
## grouping          0          1
##     Low  0.91415313 0.08584687
##     High 0.94318182 0.05681818
## 
## $tables$FP044
##         var
## grouping          0          1
##     Low  0.87238979 0.12761021
##     High 0.98863636 0.01136364
## 
## $tables$FP045
##         var
## grouping          0          1
##     Low  0.91415313 0.08584687
##     High 0.96212121 0.03787879
## 
## $tables$FP046
##         var
## grouping         0         1
##     Low  0.5939675 0.4060325
##     High 0.7556818 0.2443182
## 
## $tables$FP047
##         var
## grouping         0         1
##     Low  0.6867749 0.3132251
##     High 0.7689394 0.2310606
## 
## $tables$FP048
##         var
## grouping         0         1
##     Low  0.8607889 0.1392111
##     High 0.8825758 0.1174242
## 
## $tables$FP049
##         var
## grouping         0         1
##     Low  0.7865429 0.2134571
##     High 0.9469697 0.0530303
## 
## $tables$FP050
##         var
## grouping          0          1
##     Low  0.85614849 0.14385151
##     High 0.90719697 0.09280303
## 
## $tables$FP051
##         var
## grouping          0          1
##     Low  0.85150812 0.14849188
##     High 0.91666667 0.08333333
## 
## $tables$FP052
##         var
## grouping          0          1
##     Low  0.91415313 0.08584687
##     High 0.89772727 0.10227273
## 
## $tables$FP053
##         var
## grouping          0          1
##     Low  0.83990719 0.16009281
##     High 0.95454545 0.04545455
## 
## $tables$FP054
##         var
## grouping          0          1
##     Low  0.87703016 0.12296984
##     High 0.95643939 0.04356061
## 
## $tables$FP055
##         var
## grouping          0          1
##     Low  0.95591647 0.04408353
##     High 0.93181818 0.06818182
## 
## $tables$FP056
##         var
## grouping          0          1
##     Low  0.88863109 0.11136891
##     High 0.96590909 0.03409091
## 
## $tables$FP057
##         var
## grouping         0         1
##     Low  0.8631090 0.1368910
##     High 0.8882576 0.1117424
## 
## $tables$FP058
##         var
## grouping         0         1
##     Low  0.8793503 0.1206497
##     High 0.8863636 0.1136364
## 
## $tables$FP059
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     High 0.96969697 0.03030303
## 
## $tables$FP060
##         var
## grouping         0         1
##     Low  0.5846868 0.4153132
##     High 0.4640152 0.5359848
## 
## $tables$FP061
##         var
## grouping         0         1
##     Low  0.5591647 0.4408353
##     High 0.5473485 0.4526515
## 
## $tables$FP062
##         var
## grouping         0         1
##     Low  0.5962877 0.4037123
##     High 0.5340909 0.4659091
## 
## $tables$FP063
##         var
## grouping         0         1
##     Low  0.6148492 0.3851508
##     High 0.5397727 0.4602273
## 
## $tables$FP064
##         var
## grouping         0         1
##     Low  0.6055684 0.3944316
##     High 0.5643939 0.4356061
## 
## $tables$FP065
##         var
## grouping         0         1
##     Low  0.2320186 0.7679814
##     High 0.5511364 0.4488636
## 
## $tables$FP066
##         var
## grouping         0         1
##     Low  0.3921114 0.6078886
##     High 0.3901515 0.6098485
## 
## $tables$FP067
##         var
## grouping         0         1
##     Low  0.6380510 0.3619490
##     High 0.6041667 0.3958333
## 
## $tables$FP068
##         var
## grouping         0         1
##     Low  0.6519722 0.3480278
##     High 0.6250000 0.3750000
## 
## $tables$FP069
##         var
## grouping         0         1
##     Low  0.6171694 0.3828306
##     High 0.6534091 0.3465909
## 
## $tables$FP070
##         var
## grouping         0         1
##     Low  0.4872390 0.5127610
##     High 0.7708333 0.2291667
## 
## $tables$FP071
##         var
## grouping         0         1
##     Low  0.5382831 0.4617169
##     High 0.7803030 0.2196970
## 
## $tables$FP072
##         var
## grouping         0         1
##     Low  0.4640371 0.5359629
##     High 0.2443182 0.7556818
## 
## $tables$FP073
##         var
## grouping         0         1
##     Low  0.7517401 0.2482599
##     High 0.6363636 0.3636364
## 
## $tables$FP074
##         var
## grouping         0         1
##     Low  0.6960557 0.3039443
##     High 0.6553030 0.3446970
## 
## $tables$FP075
##         var
## grouping         0         1
##     Low  0.6937355 0.3062645
##     High 0.6325758 0.3674242
## 
## $tables$FP076
##         var
## grouping         0         1
##     Low  0.4385151 0.5614849
##     High 0.8598485 0.1401515
## 
## $tables$FP077
##         var
## grouping         0         1
##     Low  0.6450116 0.3549884
##     High 0.7045455 0.2954545
## 
## $tables$FP078
##         var
## grouping         0         1
##     Low  0.6844548 0.3155452
##     High 0.7026515 0.2973485
## 
## $tables$FP079
##         var
## grouping         0         1
##     Low  0.1531323 0.8468677
##     High 0.4412879 0.5587121
## 
## $tables$FP080
##         var
## grouping         0         1
##     Low  0.7215777 0.2784223
##     High 0.6742424 0.3257576
## 
## $tables$FP081
##         var
## grouping         0         1
##     Low  0.6844548 0.3155452
##     High 0.7481061 0.2518939
## 
## $tables$FP082
##         var
## grouping         0         1
##     Low  0.1368910 0.8631090
##     High 0.4109848 0.5890152
## 
## $tables$FP083
##         var
## grouping         0         1
##     Low  0.7865429 0.2134571
##     High 0.6742424 0.3257576
## 
## $tables$FP084
##         var
## grouping         0         1
##     Low  0.7262181 0.2737819
##     High 0.7007576 0.2992424
## 
## $tables$FP085
##         var
## grouping         0         1
##     Low  0.6102088 0.3897912
##     High 0.8503788 0.1496212
## 
## $tables$FP086
##         var
## grouping         0         1
##     Low  0.6821346 0.3178654
##     High 0.7670455 0.2329545
## 
## $tables$FP087
##         var
## grouping         0         1
##     Low  0.1415313 0.8584687
##     High 0.3844697 0.6155303
## 
## $tables$FP088
##         var
## grouping         0         1
##     Low  0.7819026 0.2180974
##     High 0.6969697 0.3030303
## 
## $tables$FP089
##         var
## grouping         0         1
##     Low  0.5707657 0.4292343
##     High 0.8977273 0.1022727
## 
## $tables$FP090
##         var
## grouping         0         1
##     Low  0.7030162 0.2969838
##     High 0.7859848 0.2140152
## 
## $tables$FP091
##         var
## grouping         0         1
##     Low  0.7703016 0.2296984
##     High 0.7746212 0.2253788
## 
## $tables$FP092
##         var
## grouping         0         1
##     Low  0.6032483 0.3967517
##     High 0.8768939 0.1231061
## 
## $tables$FP093
##         var
## grouping         0         1
##     Low  0.6821346 0.3178654
##     High 0.8125000 0.1875000
## 
## $tables$FP094
##         var
## grouping         0         1
##     Low  0.7656613 0.2343387
##     High 0.7670455 0.2329545
## 
## $tables$FP095
##         var
## grouping         0         1
##     Low  0.7958237 0.2041763
##     High 0.7632576 0.2367424
## 
## $tables$FP096
##         var
## grouping         0         1
##     Low  0.7587007 0.2412993
##     High 0.7973485 0.2026515
## 
## $tables$FP097
##         var
## grouping         0         1
##     Low  0.6380510 0.3619490
##     High 0.8636364 0.1363636
## 
## $tables$FP098
##         var
## grouping         0         1
##     Low  0.7842227 0.2157773
##     High 0.7405303 0.2594697
## 
## $tables$FP099
##         var
## grouping         0         1
##     Low  0.6983759 0.3016241
##     High 0.8295455 0.1704545
## 
## $tables$FP100
##         var
## grouping         0         1
##     Low  0.7958237 0.2041763
##     High 0.7424242 0.2575758
## 
## $tables$FP101
##         var
## grouping        0        1
##     Low  0.774942 0.225058
##     High 0.750000 0.250000
## 
## $tables$FP102
##         var
## grouping         0         1
##     Low  0.7424594 0.2575406
##     High 0.8390152 0.1609848
## 
## $tables$FP103
##         var
## grouping         0         1
##     Low  0.7285383 0.2714617
##     High 0.8200758 0.1799242
## 
## $tables$FP104
##         var
## grouping         0         1
##     Low  0.7308585 0.2691415
##     High 0.8106061 0.1893939
## 
## $tables$FP105
##         var
## grouping         0         1
##     Low  0.7146172 0.2853828
##     High 0.8371212 0.1628788
## 
## $tables$FP106
##         var
## grouping         0         1
##     Low  0.7703016 0.2296984
##     High 0.8352273 0.1647727
## 
## $tables$FP107
##         var
## grouping         0         1
##     Low  0.6728538 0.3271462
##     High 0.8787879 0.1212121
## 
## $tables$FP108
##         var
## grouping         0         1
##     Low  0.7935035 0.2064965
##     High 0.7916667 0.2083333
## 
## $tables$FP109
##         var
## grouping         0         1
##     Low  0.7819026 0.2180974
##     High 0.8522727 0.1477273
## 
## $tables$FP110
##         var
## grouping         0         1
##     Low  0.8190255 0.1809745
##     High 0.7689394 0.2310606
## 
## $tables$FP111
##         var
## grouping         0         1
##     Low  0.7911833 0.2088167
##     High 0.8087121 0.1912879
## 
## $tables$FP112
##         var
## grouping         0         1
##     Low  0.6496520 0.3503480
##     High 0.9280303 0.0719697
## 
## $tables$FP113
##         var
## grouping         0         1
##     Low  0.8329466 0.1670534
##     High 0.7765152 0.2234848
## 
## $tables$FP114
##         var
## grouping         0         1
##     Low  0.8190255 0.1809745
##     High 0.8598485 0.1401515
## 
## $tables$FP115
##         var
## grouping         0         1
##     Low  0.8074246 0.1925754
##     High 0.8276515 0.1723485
## 
## $tables$FP116
##         var
## grouping         0         1
##     Low  0.8167053 0.1832947
##     High 0.7954545 0.2045455
## 
## $tables$FP117
##         var
## grouping         0         1
##     Low  0.7772622 0.2227378
##     High 0.8522727 0.1477273
## 
## $tables$FP118
##         var
## grouping         0         1
##     Low  0.8259861 0.1740139
##     High 0.7878788 0.2121212
## 
## $tables$FP119
##         var
## grouping         0         1
##     Low  0.8422274 0.1577726
##     High 0.8276515 0.1723485
## 
## $tables$FP120
##         var
## grouping         0         1
##     Low  0.8515081 0.1484919
##     High 0.8143939 0.1856061
## 
## $tables$FP121
##         var
## grouping         0         1
##     Low  0.8167053 0.1832947
##     High 0.8901515 0.1098485
## 
## $tables$FP122
##         var
## grouping         0         1
##     Low  0.8306265 0.1693735
##     High 0.8352273 0.1647727
## 
## $tables$FP123
##         var
## grouping         0         1
##     Low  0.7726218 0.2273782
##     High 0.8768939 0.1231061
## 
## $tables$FP124
##         var
## grouping         0         1
##     Low  0.8468677 0.1531323
##     High 0.8257576 0.1742424
## 
## $tables$FP125
##         var
## grouping         0         1
##     Low  0.8515081 0.1484919
##     High 0.8333333 0.1666667
## 
## $tables$FP126
##         var
## grouping         0         1
##     Low  0.8491879 0.1508121
##     High 0.8484848 0.1515152
## 
## $tables$FP127
##         var
## grouping         0         1
##     Low  0.8793503 0.1206497
##     High 0.8390152 0.1609848
## 
## $tables$FP128
##         var
## grouping         0         1
##     Low  0.8700696 0.1299304
##     High 0.8314394 0.1685606
## 
## $tables$FP129
##         var
## grouping         0         1
##     Low  0.8143852 0.1856148
##     High 0.8939394 0.1060606
## 
## $tables$FP130
##         var
## grouping          0          1
##     Low  0.87006961 0.12993039
##     High 0.90909091 0.09090909
## 
## $tables$FP131
##         var
## grouping         0         1
##     Low  0.8677494 0.1322506
##     High 0.8731061 0.1268939
## 
## $tables$FP132
##         var
## grouping          0          1
##     Low  0.91183295 0.08816705
##     High 0.83901515 0.16098485
## 
## $tables$FP133
##         var
## grouping         0         1
##     Low  0.8770302 0.1229698
##     High 0.8655303 0.1344697
## 
## $tables$FP134
##         var
## grouping         0         1
##     Low  0.8352668 0.1647332
##     High 0.8977273 0.1022727
## 
## $tables$FP135
##         var
## grouping         0         1
##     Low  0.8677494 0.1322506
##     High 0.8731061 0.1268939
## 
## $tables$FP136
##         var
## grouping         0         1
##     Low  0.8793503 0.1206497
##     High 0.8731061 0.1268939
## 
## $tables$FP137
##         var
## grouping          0          1
##     Low  0.85150812 0.14849188
##     High 0.90530303 0.09469697
## 
## $tables$FP138
##         var
## grouping          0          1
##     Low  0.86078886 0.13921114
##     High 0.90530303 0.09469697
## 
## $tables$FP139
##         var
## grouping          0          1
##     Low  0.90487239 0.09512761
##     High 0.92234848 0.07765152
## 
## $tables$FP140
##         var
## grouping         0         1
##     Low  0.9025522 0.0974478
##     High 0.8712121 0.1287879
## 
## $tables$FP141
##         var
## grouping          0          1
##     Low  0.83990719 0.16009281
##     High 0.91287879 0.08712121
## 
## $tables$FP142
##         var
## grouping         0         1
##     Low  0.8770302 0.1229698
##     High 0.8958333 0.1041667
## 
## $tables$FP143
##         var
## grouping          0          1
##     Low  0.90255220 0.09744780
##     High 0.92613636 0.07386364
## 
## $tables$FP144
##         var
## grouping          0          1
##     Low  0.91647332 0.08352668
##     High 0.87310606 0.12689394
## 
## $tables$FP145
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     High 0.88068182 0.11931818
## 
## $tables$FP146
##         var
## grouping          0          1
##     Low  0.83062645 0.16937355
##     High 0.94507576 0.05492424
## 
## $tables$FP147
##         var
## grouping         0         1
##     Low  0.8979118 0.1020882
##     High 0.8863636 0.1136364
## 
## $tables$FP148
##         var
## grouping          0          1
##     Low  0.91879350 0.08120650
##     High 0.90151515 0.09848485
## 
## $tables$FP149
##         var
## grouping          0          1
##     Low  0.83526682 0.16473318
##     High 0.96401515 0.03598485
## 
## $tables$FP150
##         var
## grouping          0          1
##     Low  0.92111369 0.07888631
##     High 0.91477273 0.08522727
## 
## $tables$FP151
##         var
## grouping          0          1
##     Low  0.94431555 0.05568445
##     High 0.93750000 0.06250000
## 
## $tables$FP152
##         var
## grouping         0         1
##     Low  0.8979118 0.1020882
##     High 0.9280303 0.0719697
## 
## $tables$FP153
##         var
## grouping          0          1
##     Low  0.89791183 0.10208817
##     High 0.93560606 0.06439394
## 
## $tables$FP155
##         var
## grouping          0          1
##     Low  0.87935035 0.12064965
##     High 0.96590909 0.03409091
## 
## $tables$FP156
##         var
## grouping          0          1
##     Low  0.90487239 0.09512761
##     High 0.94318182 0.05681818
## 
## $tables$FP157
##         var
## grouping          0          1
##     Low  0.93039443 0.06960557
##     High 0.93750000 0.06250000
## 
## $tables$FP158
##         var
## grouping          0          1
##     Low  0.95823666 0.04176334
##     High 0.92992424 0.07007576
## 
## $tables$FP159
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     High 0.94128788 0.05871212
## 
## $tables$FP160
##         var
## grouping          0          1
##     Low  0.92575406 0.07424594
##     High 0.92992424 0.07007576
## 
## $tables$FP161
##         var
## grouping          0          1
##     Low  0.97215777 0.02784223
##     High 0.89583333 0.10416667
## 
## $tables$FP162
##         var
## grouping         0         1
##     Low  0.3805104 0.6194896
##     High 0.6060606 0.3939394
## 
## $tables$FP163
##         var
## grouping         0         1
##     Low  0.5591647 0.4408353
##     High 0.4943182 0.5056818
## 
## $tables$FP164
##         var
## grouping         0         1
##     Low  0.2250580 0.7749420
##     High 0.4943182 0.5056818
## 
## $tables$FP165
##         var
## grouping         0         1
##     Low  0.6658933 0.3341067
##     High 0.6363636 0.3636364
## 
## $tables$FP166
##         var
## grouping         0         1
##     Low  0.5893271 0.4106729
##     High 0.7310606 0.2689394
## 
## $tables$FP167
##         var
## grouping         0         1
##     Low  0.6890951 0.3109049
##     High 0.6553030 0.3446970
## 
## $tables$FP168
##         var
## grouping         0         1
##     Low  0.1786543 0.8213457
##     High 0.4640152 0.5359848
## 
## $tables$FP169
##         var
## grouping          0          1
##     Low  0.68445476 0.31554524
##     High 0.91477273 0.08522727
## 
## $tables$FP170
##         var
## grouping         0         1
##     Low  0.7679814 0.2320186
##     High 0.8503788 0.1496212
## 
## $tables$FP171
##         var
## grouping         0         1
##     Low  0.8631090 0.1368910
##     High 0.7992424 0.2007576
## 
## $tables$FP172
##         var
## grouping          0          1
##     Low  0.71693735 0.28306265
##     High 0.95075758 0.04924242
## 
## $tables$FP173
##         var
## grouping         0         1
##     Low  0.8027842 0.1972158
##     High 0.8977273 0.1022727
## 
## $tables$FP174
##         var
## grouping         0         1
##     Low  0.8399072 0.1600928
##     High 0.8882576 0.1117424
## 
## $tables$FP175
##         var
## grouping         0         1
##     Low  0.8584687 0.1415313
##     High 0.8655303 0.1344697
## 
## $tables$FP176
##         var
## grouping       0       1
##     Low  0.87471 0.12529
##     High 0.87500 0.12500
## 
## $tables$FP177
##         var
## grouping         0         1
##     Low  0.8677494 0.1322506
##     High 0.8825758 0.1174242
## 
## $tables$FP178
##         var
## grouping          0          1
##     Low  0.83526682 0.16473318
##     High 0.90909091 0.09090909
## 
## $tables$FP179
##         var
## grouping          0          1
##     Low  0.87935035 0.12064965
##     High 0.91477273 0.08522727
## 
## $tables$FP180
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     High 0.87500000 0.12500000
## 
## $tables$FP181
##         var
## grouping          0          1
##     Low  0.84454756 0.15545244
##     High 0.95075758 0.04924242
## 
## $tables$FP182
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     High 0.89015152 0.10984848
## 
## $tables$FP183
##         var
## grouping          0          1
##     Low  0.93735499 0.06264501
##     High 0.90719697 0.09280303
## 
## $tables$FP184
##         var
## grouping          0          1
##     Low  0.83990719 0.16009281
##     High 0.97159091 0.02840909
## 
## $tables$FP185
##         var
## grouping          0          1
##     Low  0.87006961 0.12993039
##     High 0.94507576 0.05492424
## 
## $tables$FP186
##         var
## grouping          0          1
##     Low  0.92575406 0.07424594
##     High 0.91477273 0.08522727
## 
## $tables$FP187
##         var
## grouping          0          1
##     Low  0.92111369 0.07888631
##     High 0.92613636 0.07386364
## 
## $tables$FP188
##         var
## grouping          0          1
##     Low  0.94663573 0.05336427
##     High 0.91287879 0.08712121
## 
## $tables$FP189
##         var
## grouping         0         1
##     Low  0.8979118 0.1020882
##     High 0.9375000 0.0625000
## 
## $tables$FP190
##         var
## grouping          0          1
##     Low  0.86774942 0.13225058
##     High 0.96969697 0.03030303
## 
## $tables$FP191
##         var
## grouping          0          1
##     Low  0.93039443 0.06960557
##     High 0.92234848 0.07765152
## 
## $tables$FP192
##         var
## grouping          0          1
##     Low  0.91415313 0.08584687
##     High 0.95265152 0.04734848
## 
## $tables$FP193
##         var
## grouping          0          1
##     Low  0.87238979 0.12761021
##     High 0.98484848 0.01515152
## 
## $tables$FP194
##         var
## grouping          0          1
##     Low  0.94199536 0.05800464
##     High 0.93371212 0.06628788
## 
## $tables$FP195
##         var
## grouping          0          1
##     Low  0.96983759 0.03016241
##     High 0.90719697 0.09280303
## 
## $tables$FP196
##         var
## grouping          0          1
##     Low  0.89095128 0.10904872
##     High 0.97916667 0.02083333
## 
## $tables$FP197
##         var
## grouping          0          1
##     Low  0.90023202 0.09976798
##     High 0.97916667 0.02083333
## 
## $tables$FP198
##         var
## grouping          0          1
##     Low  0.95823666 0.04176334
##     High 0.92424242 0.07575758
## 
## $tables$FP201
##         var
## grouping          0          1
##     Low  0.95823666 0.04176334
##     High 0.93181818 0.06818182
## 
## $tables$FP202
##         var
## grouping         0         1
##     Low  0.6728538 0.3271462
##     High 0.7954545 0.2045455
## 
## $tables$FP203
##         var
## grouping         0         1
##     Low  0.8793503 0.1206497
##     High 0.8844697 0.1155303
## 
## $tables$FP204
##         var
## grouping          0          1
##     Low  0.86774942 0.13225058
##     High 0.92234848 0.07765152
## 
## $tables$FP205
##         var
## grouping          0          1
##     Low  0.87470998 0.12529002
##     High 0.95454545 0.04545455
## 
## $tables$FP206
##         var
## grouping          0          1
##     Low  0.91183295 0.08816705
##     High 0.95643939 0.04356061
## 
## $tables$FP207
##         var
## grouping          0          1
##     Low  0.89095128 0.10904872
##     High 0.97916667 0.02083333
## 
## $tables$FP208
##         var
## grouping         0         1
##     Low  0.8793503 0.1206497
##     High 0.8882576 0.1117424
## 
## $tables$MolWeight
##            [,1]      [,2]
## Low   0.6447051 0.8127549
## High -0.5253608 0.8139447
## 
## $tables$NumBonds
##            [,1]      [,2]
## Low   0.5260887 0.9212852
## High -0.4287020 0.8455727
## 
## $tables$NumMultBonds
##            [,1]      [,2]
## Low   0.4454402 1.0735331
## High -0.3629828 0.7640112
## 
## $tables$NumRotBonds
##            [,1]      [,2]
## Low   0.2155584 1.1862560
## High -0.1756554 0.7754882
## 
## $tables$NumDblBonds
##             [,1]      [,2]
## Low   0.07217700 1.1166156
## High -0.05881599 0.8905851
## 
## $tables$NumCarbon
##            [,1]      [,2]
## Low   0.6263249 0.8520677
## High -0.5103830 0.8023791
## 
## $tables$NumNitrogen
##             [,1]      [,2]
## Low  -0.02976857 1.0250998
## High  0.02425798 0.9793858
## 
## $tables$NumOxygen
##             [,1]      [,2]
## Low  -0.03406840 1.0954990
## High  0.02776184 0.9149808
## 
## $tables$NumSulfer
##             [,1]      [,2]
## Low   0.11971764 1.2230290
## High -0.09755617 0.7594935
## 
## $tables$NumChlorine
##            [,1]      [,2]
## Low   0.3118792 1.3422891
## High -0.2541458 0.4524838
## 
## $tables$NumHalogen
##            [,1]      [,2]
## Low   0.3385013 1.3025157
## High -0.2758398 0.5145567
## 
## $tables$NumRings
##            [,1]      [,2]
## Low   0.4841073 1.0815485
## High -0.3944921 0.7185989
## 
## $tables$HydrophilicFactor
##            [,1]      [,2]
## Low  -0.2459915 0.7233875
## High  0.2004549 1.1404141
## 
## $tables$SurfaceArea1
##             [,1]      [,2]
## Low  -0.09225436 1.0302674
## High  0.07517674 0.9691477
## 
## $tables$SurfaceArea2
##             [,1]      [,2]
## Low  -0.04168274 1.0668148
## High  0.03396666 0.9417302
## 
## 
## $levels
## [1] "Low"  "High"
## 
## $call
## NaiveBayes.default(x = x, grouping = y, usekernel = FALSE, fL = param$fL)
## 
## $x
##       FP001 FP002 FP003 FP004 FP005 FP006 FP007 FP008 FP009 FP010 FP011 FP012
## X661      0     1     0     0     1     0     0     1     0     0     0     0
## X662      0     1     0     1     1     1     1     1     0     0     1     0
## X663      1     1     1     1     1     0     0     1     0     1     0     0
## X665      0     0     1     0     0     0     1     0     0     0     0     0
## X668      0     0     1     1     1     1     0     0     1     0     0     0
## X669      1     0     1     1     0     0     0     0     1     0     0     1
## X670      0     1     0     1     1     0     0     1     1     0     0     0
## X671      1     0     1     1     0     0     1     0     0     0     0     1
## X672      1     0     1     1     0     1     1     0     1     0     1     0
## X673      1     1     1     1     1     1     1     0     0     0     0     0
## X674      1     1     1     1     1     0     0     1     0     0     0     0
## X676      1     0     1     1     0     1     1     0     0     0     1     0
## X677      0     1     0     0     1     0     0     1     0     0     0     0
## X678      0     1     0     0     1     0     0     0     1     0     0     0
## X679      0     1     1     0     1     0     1     1     0     0     0     0
## X682      1     1     1     1     1     0     0     1     0     1     0     0
## X683      1     0     1     1     1     1     1     1     0     0     0     0
## X684      0     1     0     1     1     1     1     0     1     0     1     0
## X685      1     0     1     1     0     1     1     0     0     0     1     0
## X686      0     1     1     0     1     0     0     1     0     0     0     0
## X688      1     1     0     1     1     1     0     1     1     0     1     1
## X689      0     1     0     1     1     0     1     1     0     0     0     0
## X690      1     1     1     1     1     0     1     1     1     0     0     1
## X691      1     0     0     1     0     1     0     0     1     0     0     0
## X692      1     1     1     1     1     1     0     1     0     0     0     1
## X693      1     1     0     1     1     1     1     1     0     0     0     0
## X695      0     1     1     1     1     0     0     0     0     0     0     0
## X696      0     1     0     0     1     1     0     0     0     0     0     0
## X698      1     1     1     1     1     1     0     1     0     0     0     0
## X699      0     1     0     0     1     0     0     1     1     0     0     0
## X700      0     0     1     0     0     0     1     0     0     0     0     0
## X702      0     0     1     0     0     0     1     0     0     0     0     0
## X703      0     0     1     0     0     0     1     0     0     0     0     0
## X704      0     1     0     0     1     0     0     1     0     0     0     0
## X706      1     1     1     1     1     0     0     1     0     0     0     0
## X708      0     1     0     0     1     0     0     0     0     0     0     0
## X709      0     0     1     0     0     0     1     0     0     0     0     0
## X711      1     0     1     1     0     1     1     0     0     1     1     0
## X712      0     1     1     0     1     0     1     1     0     1     0     0
## X713      1     1     0     1     1     1     0     1     1     1     0     0
## X714      1     0     1     1     0     1     1     0     0     0     1     1
## X715      1     1     0     1     1     1     0     0     1     0     0     1
## X717      0     1     0     0     1     0     0     0     1     0     0     0
## X718      0     1     0     1     1     0     1     0     1     0     0     0
## X721      0     0     1     0     1     1     0     0     1     0     0     0
## X722      1     1     0     1     1     0     0     1     1     0     0     0
## X723      0     0     1     0     0     0     1     0     0     0     0     0
## X724      0     1     0     1     1     0     0     0     0     0     0     0
## X726      0     1     0     1     1     0     0     0     1     1     0     0
## X728      1     1     1     1     1     0     0     1     1     1     0     0
## X729      0     1     0     0     1     0     0     0     1     0     0     0
## X731      0     0     1     0     0     0     1     0     0     0     0     0
## X732      0     1     0     0     1     0     0     0     1     0     0     0
## X733      0     0     1     0     1     1     0     0     1     0     0     0
## X734      0     1     0     0     1     0     0     0     1     0     0     0
## X735      1     0     1     1     0     1     1     0     0     0     1     0
## X736      1     1     1     1     1     1     1     1     0     0     0     1
## X737      1     1     0     1     1     0     0     0     0     0     0     0
## X739      1     1     1     1     1     0     1     1     1     0     0     1
## X740      1     1     0     1     1     0     0     1     1     1     0     0
## X741      1     0     1     1     0     0     1     0     0     1     0     0
## X742      1     0     1     1     0     0     1     0     0     0     0     1
## X743      0     1     0     0     1     0     0     0     1     0     0     0
## X744      0     1     0     0     1     0     0     1     0     0     0     0
## X746      1     1     1     1     1     0     0     1     0     0     0     1
## X747      0     0     1     0     0     1     1     0     0     0     1     0
## X749      1     1     1     1     1     0     1     0     1     0     0     1
## X752      1     0     1     1     0     1     1     0     1     0     1     1
## X753      0     0     1     0     0     0     1     0     0     0     0     0
## X754      0     1     0     1     1     0     1     0     0     0     0     0
## X755      0     1     0     0     1     0     0     1     0     0     0     0
## X757      0     0     1     0     0     0     1     0     1     0     0     0
## X758      0     1     0     1     1     0     0     1     0     0     0     0
## X759      1     0     1     1     0     0     0     0     0     0     0     0
## X760      0     1     0     0     1     0     0     0     1     0     0     0
## X761      1     0     1     1     0     1     1     0     1     0     1     1
## X762      0     1     0     0     1     0     0     1     0     0     0     0
## X763      0     1     0     0     1     1     0     0     1     0     0     0
## X764      0     1     0     0     1     0     0     1     0     0     0     0
## X765      1     1     1     1     1     1     0     1     1     0     1     1
## X767      1     0     1     1     0     0     1     0     1     0     0     1
## X768      0     1     0     0     1     0     0     0     0     0     0     0
## X770      0     1     0     1     1     0     1     0     1     0     0     0
## X771      1     1     0     1     1     1     0     1     1     0     0     0
## X772      0     1     0     0     1     0     0     0     1     0     0     0
## X773      0     0     1     0     0     0     1     0     0     0     0     0
## X774      0     0     1     0     0     0     1     0     1     0     0     0
## X775      1     1     0     1     1     0     1     1     0     1     0     0
## X776      1     1     0     1     1     1     1     1     1     0     0     0
## X777      1     0     1     1     0     0     1     0     0     0     0     1
## X778      1     0     1     1     0     1     1     0     0     1     1     0
## X779      0     1     0     0     1     1     0     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     1     0     0     0
## X781      1     0     1     1     0     0     1     0     0     0     0     1
## X782      1     1     0     1     1     0     0     1     0     0     0     0
## X784      1     1     0     1     1     1     0     1     1     1     1     0
## X786      0     0     1     0     0     0     1     0     0     0     0     0
## X787      0     1     0     0     1     0     0     0     1     0     0     0
## X788      1     0     1     1     0     0     1     0     0     0     0     0
## X789      0     1     0     0     1     0     0     0     1     0     0     0
## X791      0     1     0     0     1     0     0     0     1     0     0     0
## X792      0     1     0     1     1     0     1     1     1     0     0     0
## X794      1     0     1     1     0     0     1     0     0     1     0     0
## X798      0     1     0     0     1     0     0     0     0     0     0     0
## X799      1     0     0     1     0     0     1     0     1     0     0     0
## X800      0     0     1     1     0     1     1     0     0     0     1     1
## X804      0     1     0     1     1     0     0     1     0     0     0     0
## X805      1     0     1     1     0     1     1     0     0     0     1     1
## X807      1     0     1     1     0     0     0     0     0     0     0     1
## X808      1     1     0     1     1     0     0     1     0     1     0     0
## X809      1     1     1     1     1     0     1     1     0     0     0     1
## X810      0     0     0     0     0     0     1     0     1     0     0     0
## X813      1     0     1     1     0     0     1     0     0     1     0     0
## X814      1     1     1     1     1     0     0     0     1     0     0     1
## X818      0     1     0     0     1     0     0     0     1     0     0     0
## X819      1     1     0     1     1     1     0     1     1     0     0     0
## X820      0     0     1     0     0     1     1     0     0     0     1     0
## X821      0     1     0     0     1     0     0     0     1     0     0     0
## X822      0     1     0     0     1     0     0     0     0     0     0     0
## X823      0     1     0     0     1     1     0     0     0     0     0     0
## X827      0     0     0     1     0     0     1     0     1     0     0     1
## X828      0     1     0     0     1     0     0     0     1     0     0     0
## X829      1     1     1     1     1     0     0     1     1     0     0     1
## X831      0     1     0     0     1     0     0     1     1     0     0     0
## X832      0     1     0     0     1     0     0     0     1     0     0     0
## X833      0     1     0     0     1     0     0     0     1     0     0     0
## X834      0     1     0     0     1     0     0     1     1     0     0     0
## X835      0     1     0     0     1     0     0     0     1     0     0     0
## X836      0     1     0     0     1     0     0     0     1     0     0     0
## X839      0     1     0     0     1     0     0     1     0     0     0     0
## X840      0     1     0     0     1     0     0     0     0     0     0     0
## X841      0     1     0     0     1     0     0     0     1     0     0     0
## X842      0     1     1     0     1     0     0     1     0     0     0     0
## X843      0     1     0     0     1     0     0     1     1     0     0     0
## X846      0     1     0     0     1     0     0     0     0     0     0     0
## X848      0     1     0     0     1     0     0     0     1     0     0     0
## X849      0     1     0     0     1     0     0     0     1     0     0     0
## X851      0     0     1     1     0     1     1     0     0     0     1     1
## X854      0     1     0     0     1     0     0     0     1     0     0     0
## X855      0     1     0     0     1     0     0     0     0     0     0     0
## X856      0     1     0     0     1     0     0     0     1     0     0     0
## X857      0     1     0     0     1     0     0     0     1     0     0     0
## X858      0     1     0     0     1     0     0     0     1     0     0     0
## X859      0     1     0     0     1     0     0     0     1     0     0     0
## X860      0     1     0     0     1     0     0     0     1     0     0     0
## X862      0     1     0     0     1     0     0     0     1     0     0     0
## X863      0     1     0     0     1     0     0     0     1     0     0     0
## X864      0     1     0     0     1     0     0     1     0     0     0     0
## X865      0     1     0     0     1     0     0     0     0     0     0     0
## X866      0     1     0     0     1     0     0     0     1     0     0     0
## X867      0     1     0     0     1     0     0     0     0     0     0     0
## X869      0     1     0     0     1     0     0     1     1     0     0     0
## X870      0     1     0     0     1     0     0     0     1     0     0     0
## X871      0     1     0     0     1     0     0     0     1     0     0     0
## X872      0     1     0     0     1     0     0     0     1     0     0     0
## X873      0     1     0     0     1     0     0     0     0     0     0     0
## X875      0     1     0     0     1     0     0     0     1     0     0     0
## X876      0     1     0     0     1     0     0     0     1     0     0     0
## X877      0     0     0     0     1     0     0     0     1     0     0     0
## X1190     0     1     0     1     1     0     0     0     0     0     0     0
## X1191     0     0     1     0     0     0     1     0     1     0     0     0
## X1192     1     0     1     1     0     1     1     0     0     0     1     0
## X1193     0     1     0     0     1     0     0     1     0     0     0     0
## X1194     1     0     1     1     0     1     1     0     0     0     1     1
## X1195     0     1     0     0     1     0     0     0     1     0     0     0
## X1197     0     1     1     0     1     0     1     1     0     0     0     0
## X1198     0     1     0     0     1     0     0     0     1     0     0     0
## X1199     0     0     1     1     1     1     0     0     0     0     0     0
## X1200     1     0     1     1     0     0     0     0     0     0     0     1
## X1201     1     1     0     1     1     0     0     1     0     0     0     1
## X1202     1     0     1     1     0     1     1     0     1     0     1     1
## X1203     0     0     0     0     0     0     1     0     0     0     0     0
## X1204     1     1     0     1     1     1     0     1     0     1     0     0
## X1205     1     1     0     1     1     1     0     1     1     1     0     0
## X1206     0     0     0     0     0     0     0     0     1     0     0     0
## X1207     0     1     1     1     1     0     0     0     0     0     0     0
## X1208     1     0     1     1     0     0     1     0     0     0     0     1
## X1209     0     0     0     0     1     0     0     0     1     1     0     0
## X1210     1     0     1     1     0     1     1     0     0     1     1     0
## X1212     0     1     1     0     1     1     1     1     0     1     1     0
## X1213     0     1     0     1     1     0     1     0     0     0     0     0
## X1215     1     0     1     1     0     1     1     0     1     0     1     1
## X1216     0     1     0     0     1     0     0     0     0     0     0     0
## X1217     0     1     0     0     1     1     0     1     1     0     1     0
## X1219     0     1     1     0     1     0     1     1     0     1     0     0
## X1220     1     1     0     1     1     1     1     1     1     0     1     0
## X1221     0     0     1     0     0     0     1     0     1     0     0     0
## X1222     0     1     0     0     1     0     1     1     0     0     0     0
## X1226     0     1     0     1     1     0     1     1     1     0     0     0
## X1228     1     1     0     1     1     0     0     1     0     0     0     1
## X1229     1     0     1     1     0     1     1     0     0     0     1     1
## X1230     1     1     0     1     1     0     0     1     0     0     0     1
## X1231     0     1     0     0     1     0     0     1     0     0     0     0
## X1233     1     0     1     1     0     1     1     0     0     0     1     0
## X1234     0     1     0     0     1     0     0     1     0     0     0     0
## X1236     1     0     1     1     0     0     1     0     0     0     0     1
## X1237     1     1     0     1     1     0     0     0     1     0     0     1
## X1239     1     0     1     1     0     0     0     0     1     0     0     1
## X1242     0     0     0     0     0     0     0     0     1     0     0     0
## X1244     0     1     0     0     1     0     0     0     1     0     0     0
## X1245     0     1     1     0     1     0     1     1     0     0     0     0
## X1246     1     1     1     1     1     0     1     1     0     1     0     0
## X1247     1     1     1     1     1     0     0     1     0     0     0     1
## X1249     1     1     1     1     1     0     0     1     1     0     0     1
## X1250     0     0     0     0     0     1     0     0     1     0     1     0
## X1251     0     0     0     0     1     0     0     1     1     0     0     0
## X1253     1     1     1     1     1     0     0     0     1     0     0     1
## X1254     0     1     0     0     1     0     0     0     1     0     0     0
## X1255     0     1     0     0     1     0     0     1     0     0     0     0
## X1256     0     1     0     0     1     0     1     1     0     0     0     0
## X1257     0     1     0     0     1     0     0     0     1     0     0     0
## X1259     0     0     0     1     0     0     1     0     1     0     0     1
## X1260     0     1     0     0     1     0     0     0     1     0     0     0
## X1262     1     1     1     1     1     0     0     1     1     0     0     1
## X1264     0     0     0     0     0     0     0     0     1     0     0     0
## X1265     0     1     0     0     1     0     0     0     1     0     0     0
## X1266     0     1     0     0     1     0     0     1     1     0     0     0
## X1267     1     1     0     1     1     0     0     1     0     1     0     0
## X1268     1     0     1     1     0     0     1     0     0     1     0     0
## X1273     0     1     0     0     1     0     0     0     1     0     0     0
## X1274     0     0     1     0     0     1     1     0     0     0     1     0
## X1275     0     0     0     0     0     0     1     0     1     0     0     0
## X1276     0     1     0     0     1     0     0     0     0     0     0     0
## X1277     0     1     0     0     1     0     0     0     1     0     0     0
## X1278     0     1     0     0     1     0     0     1     0     0     0     0
## X1279     0     1     0     0     1     0     0     0     0     0     0     0
## X1281     0     1     0     0     1     0     0     0     1     0     0     0
## X1282     0     1     0     0     1     0     0     0     1     0     0     0
## X1283     0     1     0     0     1     0     0     0     0     0     0     0
## X1284     0     1     0     0     1     0     0     0     0     0     0     0
## X1285     0     1     0     0     1     0     0     0     1     0     0     0
## X1288     0     1     0     0     1     0     0     0     1     0     0     0
## X1299     1     1     0     1     1     1     0     1     0     0     0     0
## X1301     1     0     1     1     0     1     1     0     0     0     1     0
## X1302     0     0     0     0     0     0     0     0     1     0     0     0
## X1307     1     1     1     1     1     0     0     0     1     0     0     1
## X1309     0     1     0     0     1     0     0     1     1     0     0     0
## X1310     0     0     0     0     0     0     1     0     1     0     0     0
## X447      1     1     0     1     1     0     0     0     1     1     0     0
## X448      1     1     0     1     1     1     1     1     1     1     1     0
## X451      0     0     1     0     0     0     1     0     0     0     0     0
## X452      0     1     0     0     1     0     0     1     1     0     0     0
## X453      0     1     0     0     1     0     0     0     0     1     0     0
## X454      1     1     0     1     1     1     0     1     0     0     0     0
## X455      1     1     1     1     1     0     0     1     1     1     0     0
## X456      1     1     1     1     1     1     1     0     0     0     0     1
## X458      1     1     0     1     1     1     0     1     0     0     0     0
## X459      1     0     1     1     0     0     1     0     0     0     0     0
## X460      0     0     0     0     0     0     1     0     0     0     0     0
## X461      1     1     0     1     1     0     0     1     1     1     0     0
## X462      0     1     1     0     1     0     0     0     0     0     0     0
## X463      0     1     0     1     1     1     0     1     0     0     0     0
## X464      0     0     0     0     0     0     0     0     1     0     0     0
## X465      0     1     0     1     1     1     1     1     0     0     1     0
## X466      1     1     0     1     1     0     0     0     1     1     0     0
## X468      1     0     1     1     0     1     1     0     0     0     1     1
## X471      1     1     1     1     1     1     1     1     0     0     0     0
## X472      0     0     1     0     0     0     1     0     1     0     0     0
## X473      0     0     0     0     0     0     1     0     0     0     0     0
## X476      1     1     0     1     1     0     0     1     0     1     0     0
## X477      1     1     1     1     1     1     0     1     0     0     0     0
## X478      0     0     0     0     0     0     1     0     0     0     0     0
## X479      0     0     1     0     0     0     1     0     0     0     0     0
## X480      0     1     0     0     1     0     0     0     0     0     0     0
## X482      0     0     1     0     0     0     0     0     1     0     0     0
## X483      0     0     1     0     0     0     0     0     1     0     0     0
## X484      0     1     0     0     1     1     0     0     0     0     0     0
## X486      1     0     1     1     0     0     1     0     0     0     0     1
## X487      1     1     1     1     1     0     0     1     0     0     0     1
## X488      1     1     1     1     1     0     1     1     0     1     0     1
## X489      1     1     0     1     1     0     0     1     1     1     0     0
## X490      1     1     1     1     1     0     0     1     1     0     0     1
## X491      0     0     1     0     0     0     1     0     1     0     0     0
## X492      1     0     1     1     0     1     1     0     0     0     0     0
## X493      1     0     1     1     0     0     1     0     0     1     0     0
## X494      1     0     0     1     1     1     0     0     1     1     0     0
## X495      0     1     0     1     1     1     1     1     0     0     1     0
## X496      1     0     0     1     1     1     0     0     0     0     0     0
## X497      0     1     0     0     1     0     0     0     0     0     0     0
## X498      0     1     0     0     1     0     0     1     1     1     0     0
## X499      0     1     0     0     1     0     0     1     0     0     0     0
## X501      1     1     0     1     1     0     0     0     1     0     0     0
## X502      0     1     0     0     1     0     0     1     0     0     0     0
## X503      0     1     1     1     1     1     1     1     0     0     1     0
## X505      1     1     1     1     1     1     0     0     1     0     0     0
## X506      1     1     0     1     1     1     0     1     0     0     0     0
## X507      0     1     0     1     1     1     0     1     0     0     0     0
## X508      1     1     0     1     1     1     0     1     1     1     1     0
## X509      1     1     1     1     1     1     0     1     0     1     1     0
## X510      1     1     0     1     1     1     0     0     1     0     1     0
## X513      0     0     1     0     0     0     1     0     1     0     0     0
## X514      1     1     0     1     1     1     0     1     0     0     0     0
## X515      0     1     0     0     1     0     0     0     0     1     0     0
## X516      0     1     0     1     1     0     0     1     0     0     0     0
## X518      1     1     1     1     1     1     0     0     0     0     0     0
## X521      1     1     0     1     1     1     0     1     0     0     0     0
## X523      1     1     1     1     1     0     0     1     0     0     0     1
## X524      1     1     1     1     1     1     1     0     1     0     0     0
## X525      1     0     1     1     0     1     1     0     0     0     0     0
## X526      0     0     1     0     0     1     1     0     0     0     1     0
## X530      0     1     1     1     1     0     0     0     0     0     0     0
## X531      1     1     1     1     1     1     0     1     0     1     0     0
## X532      0     0     1     1     1     1     0     0     0     0     0     0
## X533      1     1     0     1     1     1     0     1     1     0     1     0
## X534      1     1     1     1     1     1     1     1     0     0     0     0
## X535      0     1     0     0     1     0     0     0     1     0     0     0
## X536      0     1     0     0     1     1     1     1     0     0     1     0
## X538      1     1     0     1     1     0     0     1     0     1     0     0
## X539      0     1     0     0     1     1     1     1     0     0     1     0
## X542      1     0     1     1     0     1     1     0     0     0     1     0
## X543      0     0     1     0     0     0     1     0     1     0     0     0
## X544      1     1     1     1     1     1     1     1     0     1     1     0
## X545      0     0     1     0     0     0     1     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     1     0     0     0
## X548      0     1     1     1     1     0     0     1     0     0     0     0
## X549      0     1     0     0     1     0     0     0     1     0     0     0
## X551      0     0     0     0     0     0     0     0     1     0     0     0
## X552      1     1     0     1     1     0     0     1     0     0     0     1
## X553      1     1     1     1     1     1     0     0     0     0     0     1
## X554      0     0     1     0     1     1     0     0     1     0     0     0
## X556      1     1     0     1     1     0     0     1     0     1     0     0
## X557      1     1     1     1     1     1     0     1     1     0     0     0
## X558      0     1     0     1     1     0     0     0     0     0     0     0
## X559      0     0     1     0     0     0     1     0     0     0     0     0
## X560      0     1     0     0     1     0     0     1     0     0     0     0
## X561      0     1     0     0     1     0     0     0     1     0     0     0
## X562      0     1     1     0     1     0     0     1     0     0     0     0
## X563      1     1     0     1     1     0     0     1     0     1     0     0
## X565      0     0     1     0     0     0     1     0     0     0     0     0
## X566      0     1     0     0     1     1     0     0     1     0     0     0
## X567      1     1     1     1     1     1     0     1     1     0     0     0
## X568      1     1     1     1     1     1     0     0     1     0     0     0
## X569      1     1     1     1     1     0     0     1     1     0     0     1
## X571      1     1     0     1     1     1     0     1     1     0     0     1
## X572      1     1     1     1     1     1     1     1     0     0     0     1
## X574      0     0     1     0     0     0     1     0     0     0     0     0
## X576      1     1     0     1     1     1     0     1     0     0     0     0
## X577      1     1     0     1     1     1     0     0     0     0     0     0
## X579      1     1     0     1     1     1     0     1     0     0     0     0
## X580      1     1     0     1     1     0     0     1     1     1     0     0
## X582      1     0     1     1     0     0     1     0     0     0     0     0
## X583      0     1     0     0     1     0     0     1     0     0     0     0
## X584      1     1     0     1     1     0     1     1     0     0     0     1
## X586      1     1     1     1     1     0     0     1     0     0     0     1
## X587      0     1     0     0     1     0     0     0     0     0     0     0
## X588      1     0     1     1     0     1     1     0     0     0     0     0
## X589      1     0     1     1     0     1     1     0     0     1     1     0
## X591      0     1     0     1     1     1     1     1     0     0     1     0
## X592      0     1     1     0     1     0     1     1     0     0     0     0
## X593      0     1     0     0     1     1     0     1     1     0     1     0
## X594      1     0     1     1     0     0     1     0     0     0     0     1
## X595      1     0     1     1     0     0     0     0     1     0     0     1
## X596      1     1     1     1     1     1     1     1     0     0     0     0
## X597      0     1     0     1     1     0     1     1     0     0     0     0
## X598      1     0     0     1     0     0     1     0     0     1     0     0
## X599      0     1     0     0     1     0     0     1     0     0     0     0
## X600      1     1     1     1     1     0     0     1     0     0     0     1
## X603      1     0     1     1     0     0     1     0     0     1     0     0
## X604      1     0     1     1     0     1     1     0     0     0     0     0
## X605      1     0     1     1     0     0     1     0     0     0     0     0
## X606      1     1     1     1     1     0     1     1     0     0     0     1
## X608      0     1     0     0     1     0     0     0     1     0     0     0
## X609      1     1     0     1     1     1     0     1     0     0     0     0
## X611      0     0     0     0     0     0     1     0     0     0     0     0
## X612      1     1     0     1     1     1     0     0     1     0     0     0
## X613      0     1     0     0     1     0     0     1     1     0     0     0
## X614      0     1     0     0     1     0     0     1     1     0     0     0
## X616      0     0     1     0     0     0     1     0     0     0     0     0
## X617      1     1     1     1     1     0     0     0     0     0     0     0
## X619      1     1     0     1     1     1     0     1     1     0     1     0
## X620      0     1     0     0     1     0     0     0     1     0     0     0
## X621      1     1     0     1     1     1     0     1     0     1     0     0
## X622      0     1     0     0     1     0     0     0     0     0     0     0
## X623      1     1     0     1     1     1     0     1     1     0     1     0
## X625      1     1     1     1     1     0     0     0     1     0     0     0
## X628      1     0     1     1     0     1     1     0     1     0     1     0
## X629      1     0     1     1     0     1     1     0     0     1     1     0
## X630      0     1     0     1     1     1     1     1     0     0     0     0
## X631      0     0     1     0     0     0     1     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     1     0     0     0
## X633      1     1     0     1     1     0     1     0     1     1     0     0
## X635      1     1     0     1     1     1     1     1     0     0     0     0
## X636      1     0     1     1     0     1     1     0     1     0     1     0
## X637      1     0     1     1     0     0     1     0     0     0     0     0
## X638      1     1     1     1     1     0     0     1     0     1     0     0
## X639      1     1     0     1     1     1     0     1     0     0     0     0
## X641      1     1     1     1     1     0     1     0     0     1     0     0
## X648      1     1     0     1     1     1     0     1     1     1     1     0
## X650      1     1     1     1     1     1     0     0     0     0     1     0
## X651      1     1     1     1     1     0     1     0     0     0     0     0
## X653      1     0     1     1     0     1     1     0     0     1     1     0
## X654      1     1     1     1     1     0     1     1     0     0     0     1
## X655      0     1     1     0     1     0     1     1     0     0     0     0
## X656      0     1     0     0     1     0     0     0     1     0     0     0
## X657      1     1     1     1     1     1     1     1     0     0     0     1
## X1082     0     0     1     0     0     0     1     0     1     0     0     0
## X1083     0     1     0     0     1     1     0     1     0     0     1     0
## X1084     0     0     1     0     0     1     1     0     0     0     1     0
## X1086     0     1     0     0     1     0     0     0     1     0     0     0
## X1088     1     1     0     1     1     1     0     0     1     0     0     0
## X1089     0     1     1     0     1     1     1     1     0     0     1     0
## X1090     1     1     0     1     1     1     0     1     0     1     1     0
## X1091     0     1     1     0     1     0     1     1     0     1     0     0
## X1092     1     0     1     1     0     0     1     0     0     0     0     0
## X1093     1     0     1     1     0     0     0     0     1     0     0     0
## X1094     1     1     0     1     1     0     0     1     0     1     0     0
## X1095     1     1     0     1     1     1     0     1     0     0     0     0
## X1097     0     0     1     0     0     0     1     0     1     0     0     0
## X1098     1     0     1     1     0     1     1     0     0     0     0     0
## X1101     1     1     0     1     1     1     0     1     1     0     1     0
## X1103     1     1     0     1     1     1     1     1     0     1     1     0
## X1104     1     1     0     1     1     1     0     1     0     0     0     0
## X1105     1     0     0     1     1     1     0     0     0     0     0     0
## X1106     0     0     1     0     0     1     1     0     0     0     1     0
## X1108     0     1     0     0     1     0     0     1     0     0     0     0
## X1110     0     1     0     0     1     0     0     0     1     0     0     0
## X1112     1     1     0     1     1     1     0     1     0     0     0     0
## X1113     0     1     1     0     1     0     0     1     0     1     0     0
## X1115     1     1     0     1     1     1     0     1     0     0     1     0
## X1116     0     1     0     1     1     0     0     1     1     0     0     0
## X1117     1     1     0     1     1     1     0     1     0     1     0     0
## X1119     1     1     0     1     1     0     0     0     1     1     0     0
## X1120     1     0     1     1     0     1     1     0     0     0     1     0
## X1121     1     0     1     1     1     1     0     1     0     1     0     0
## X1122     1     0     1     1     0     1     1     0     0     0     1     0
## X1124     1     1     1     1     1     0     0     1     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     1     0     0     0
## X1126     0     1     0     0     1     0     0     0     1     0     0     0
## X1127     0     1     0     0     1     0     1     1     0     0     0     0
## X1128     1     1     1     1     1     1     0     0     1     0     0     0
## X1129     0     1     0     0     1     0     0     1     1     0     0     0
## X1130     1     1     0     1     1     0     0     1     1     1     0     0
## X1131     0     0     0     0     0     0     1     0     0     0     0     0
## X1133     1     1     0     1     1     1     0     0     1     0     1     0
## X1135     1     0     1     1     0     0     1     0     0     0     0     0
## X1136     0     1     0     0     1     0     0     1     1     0     0     0
## X1138     1     0     1     1     0     1     1     0     0     1     1     1
## X1139     1     0     1     1     0     1     1     0     0     0     1     0
## X1141     0     0     1     0     0     0     1     0     0     0     0     0
## X1142     0     1     0     0     1     0     0     0     1     0     0     0
## X1143     1     1     1     1     1     0     1     0     0     0     0     0
## X1144     0     1     0     1     1     1     1     1     0     1     1     0
## X1145     1     1     1     1     1     1     1     1     1     0     1     0
## X1146     1     0     1     1     0     1     1     0     0     0     1     1
## X1147     1     0     1     1     0     0     1     0     0     0     0     1
## X1149     1     1     1     1     1     1     0     0     1     0     0     1
## X1150     1     0     1     1     0     0     1     0     0     0     0     1
## X1151     1     0     1     1     0     0     1     0     0     0     0     1
## X1152     1     1     0     1     1     0     1     1     0     0     0     0
## X1153     0     0     0     0     1     0     0     0     1     0     0     0
## X1156     1     0     1     1     0     0     1     0     0     1     0     0
## X1158     1     1     0     1     1     0     1     1     0     1     0     0
## X1159     1     1     0     1     1     0     0     1     0     0     0     0
## X1160     1     1     1     1     1     0     0     1     0     1     0     1
##       FP013 FP014 FP015 FP016 FP017 FP018 FP019 FP020 FP021 FP022 FP023 FP024
## X661      0     0     1     0     0     0     1     0     0     0     0     1
## X662      0     0     1     1     0     1     0     0     0     0     0     0
## X663      0     0     1     0     1     0     0     0     0     0     0     0
## X665      0     0     1     0     1     0     0     0     0     0     1     0
## X668      1     0     1     1     0     0     1     0     0     0     0     1
## X669      0     0     1     1     0     0     0     0     1     0     0     0
## X670      1     1     1     0     0     0     1     0     0     0     0     0
## X671      0     0     1     1     0     0     0     0     0     0     0     0
## X672      0     0     1     0     1     0     0     0     1     0     1     0
## X673      0     0     1     0     1     0     0     0     0     1     0     0
## X674      0     0     1     0     1     0     0     0     0     0     0     0
## X676      0     0     1     0     1     0     0     0     0     0     1     0
## X677      0     0     1     0     0     0     0     0     0     0     0     0
## X678      1     1     0     0     0     0     0     0     0     0     0     0
## X679      0     0     1     0     0     0     0     0     0     0     0     0
## X682      0     0     1     0     0     1     0     1     0     0     0     0
## X683      0     0     1     0     0     0     1     0     0     0     0     1
## X684      1     1     1     1     0     1     0     0     0     0     0     0
## X685      0     0     1     0     1     0     0     0     0     0     0     0
## X686      0     0     1     0     0     0     0     0     0     0     0     0
## X688      1     1     1     0     0     0     0     1     0     0     0     0
## X689      0     0     1     1     0     1     0     0     0     0     0     0
## X690      0     0     1     1     0     1     0     0     1     0     0     0
## X691      0     0     1     0     0     0     0     0     1     0     0     0
## X692      0     0     1     1     0     0     0     0     0     0     0     0
## X693      0     0     1     0     0     0     0     0     0     0     0     0
## X695      0     0     1     1     1     1     0     1     0     0     0     0
## X696      0     0     0     0     0     0     1     0     0     1     0     1
## X698      0     0     1     0     0     1     0     0     0     0     0     0
## X699      1     1     1     0     0     0     0     0     0     0     0     0
## X700      0     0     1     0     0     0     0     0     0     0     0     0
## X702      0     0     1     0     1     0     0     0     0     0     0     0
## X703      0     0     1     0     1     0     0     0     0     0     0     0
## X704      0     0     1     0     0     0     0     0     0     0     0     0
## X706      0     0     1     0     0     1     0     1     0     0     1     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     1     0     1     0     0     0     0     0     0     0
## X711      0     0     1     0     1     0     0     0     0     0     0     0
## X712      0     0     1     0     0     0     0     0     0     0     0     0
## X713      0     0     1     0     0     0     0     0     1     1     0     0
## X714      0     0     1     1     1     0     0     0     0     0     1     0
## X715      1     1     1     1     0     0     0     0     1     1     0     0
## X717      1     1     0     0     0     0     0     0     0     0     0     0
## X718      1     1     1     1     0     1     0     0     0     0     0     0
## X721      1     0     1     0     0     0     1     0     0     0     0     1
## X722      0     0     1     0     0     0     0     1     1     0     0     0
## X723      0     0     1     0     0     0     0     0     0     0     1     0
## X724      0     0     0     0     0     1     0     0     0     0     0     0
## X726      1     1     0     0     0     1     0     0     0     0     0     0
## X728      1     1     1     0     0     0     0     0     0     0     0     0
## X729      1     1     0     0     0     0     0     0     0     0     0     0
## X731      0     0     1     0     0     0     0     0     0     0     0     0
## X732      1     1     0     0     0     0     0     0     0     0     0     0
## X733      1     0     1     0     0     0     1     0     0     0     0     1
## X734      1     1     0     0     0     0     0     0     0     0     0     0
## X735      0     0     1     0     1     0     0     0     0     0     1     0
## X736      0     0     1     1     0     0     0     0     0     1     0     0
## X737      0     0     1     0     0     1     0     0     0     0     0     0
## X739      1     1     1     0     1     1     0     1     0     0     1     0
## X740      1     1     1     0     0     1     1     1     0     0     0     0
## X741      0     0     1     0     0     0     0     0     0     0     0     0
## X742      0     0     1     0     0     0     0     1     0     0     0     0
## X743      1     1     0     0     0     0     0     0     0     0     0     0
## X744      0     0     1     0     0     0     0     0     0     0     0     0
## X746      0     0     1     1     1     0     0     0     0     0     0     0
## X747      0     0     1     0     0     0     0     0     0     0     0     0
## X749      1     1     1     1     0     1     0     0     0     0     0     0
## X752      0     0     1     0     1     0     0     0     1     0     1     0
## X753      0     0     1     0     1     0     0     0     0     0     0     0
## X754      0     0     1     1     1     1     0     0     0     0     0     0
## X755      0     0     1     0     0     0     0     0     0     0     0     0
## X757      0     0     1     0     0     0     0     0     1     0     0     0
## X758      0     0     1     0     0     1     0     0     0     0     0     0
## X759      0     0     1     1     0     0     0     0     0     0     0     0
## X760      1     1     0     0     0     0     0     0     0     0     0     0
## X761      0     0     1     0     1     0     0     0     1     0     1     0
## X762      0     0     1     0     0     0     0     0     0     0     0     0
## X763      1     1     0     0     0     0     0     0     0     1     0     0
## X764      0     0     1     0     0     0     0     0     0     0     0     0
## X765      1     1     1     0     0     0     0     0     0     0     0     0
## X767      0     0     1     0     1     0     0     0     1     0     1     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      1     1     1     1     0     1     0     0     0     0     0     0
## X771      0     0     1     0     0     0     0     0     1     0     0     0
## X772      1     1     0     0     0     0     0     0     0     0     0     0
## X773      0     0     1     0     0     0     0     0     0     0     1     0
## X774      0     0     1     0     0     0     0     0     1     0     0     0
## X775      0     0     1     0     0     0     0     0     0     0     0     0
## X776      1     1     1     0     0     1     0     1     0     0     0     0
## X777      0     0     1     1     0     0     0     0     0     0     0     0
## X778      0     0     1     0     1     0     0     0     0     0     0     0
## X779      0     0     0     0     0     0     0     0     0     1     0     0
## X780      0     0     1     0     0     0     0     0     1     0     0     0
## X781      0     0     1     0     1     0     0     1     0     0     1     0
## X782      0     0     1     0     0     0     0     0     0     0     0     0
## X784      1     1     1     0     0     1     0     0     0     0     0     0
## X786      0     0     1     0     0     0     0     0     0     0     0     0
## X787      1     1     0     0     0     0     0     0     0     0     0     0
## X788      0     0     1     0     1     0     0     0     0     0     1     0
## X789      1     1     0     0     0     0     0     0     0     0     0     0
## X791      1     1     0     0     0     0     0     0     0     0     0     0
## X792      0     0     1     1     0     1     0     0     1     0     0     0
## X794      0     0     1     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     0     0     1     0     0     0     0     1
## X799      0     0     1     0     1     0     0     0     1     0     1     0
## X800      0     0     1     0     1     0     0     0     0     0     0     0
## X804      0     0     1     0     0     1     0     1     0     0     0     0
## X805      0     0     1     1     1     0     0     0     0     0     1     0
## X807      0     0     1     1     0     0     0     0     0     0     0     0
## X808      0     0     1     0     0     1     1     1     0     0     1     0
## X809      0     0     1     1     0     0     0     0     0     0     0     0
## X810      0     0     1     0     1     0     0     0     1     0     1     0
## X813      0     0     1     0     0     0     0     0     0     0     0     0
## X814      1     1     1     0     0     1     0     0     0     0     0     0
## X818      1     1     0     0     0     0     0     0     0     0     0     0
## X819      1     1     1     0     0     0     0     0     0     1     0     0
## X820      0     0     1     0     0     0     0     0     0     0     0     0
## X821      1     1     0     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     1     0     0
## X827      0     0     1     0     1     0     0     0     1     0     0     0
## X828      1     1     0     0     0     0     0     0     0     0     0     0
## X829      0     0     1     1     0     0     0     0     1     0     0     0
## X831      1     1     1     0     0     0     0     0     1     0     0     0
## X832      1     1     0     0     0     0     0     0     0     0     0     0
## X833      1     1     0     0     0     0     0     0     0     0     0     0
## X834      1     1     1     0     0     0     0     0     1     0     0     0
## X835      1     1     0     0     0     0     0     0     0     0     0     0
## X836      1     1     0     0     0     0     0     0     0     0     0     0
## X839      0     0     1     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      1     1     0     0     0     0     0     0     0     0     0     0
## X842      0     0     1     0     0     0     0     0     0     0     0     0
## X843      1     1     1     0     0     0     0     0     1     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      1     1     0     0     0     0     0     0     0     0     0     0
## X849      1     1     0     0     0     0     0     0     0     0     0     0
## X851      0     0     1     1     1     0     0     0     0     0     1     0
## X854      1     1     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      1     1     0     0     0     0     0     0     0     0     0     0
## X857      1     1     0     0     0     0     0     0     0     0     0     0
## X858      1     1     0     0     0     0     0     0     0     0     0     0
## X859      1     1     0     0     0     0     0     0     0     0     0     0
## X860      1     1     0     0     0     0     0     0     0     0     0     0
## X862      1     1     0     0     0     0     0     0     0     0     0     0
## X863      1     1     0     0     0     0     0     0     0     0     0     0
## X864      0     0     1     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      1     1     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     1     0     0     0     1     0     1     0     0     1
## X870      1     1     0     0     0     0     0     0     0     0     0     0
## X871      1     1     0     0     0     0     0     0     0     0     0     0
## X872      1     1     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      1     1     0     0     0     0     0     0     0     0     0     0
## X876      1     1     0     0     0     0     0     0     0     0     0     0
## X877      1     1     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     1     0     0     0     0     0     0
## X1191     0     0     1     0     0     0     0     0     1     0     0     0
## X1192     0     0     1     0     1     0     0     0     0     0     1     0
## X1193     0     0     1     0     0     0     0     0     0     0     0     0
## X1194     0     0     1     1     1     0     0     0     0     0     1     0
## X1195     1     1     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     1     0     0     0     0     0     0     0     0     0
## X1198     1     1     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     1     0     0     0     1     1     0     0     0     1
## X1200     0     0     1     1     0     0     0     0     0     0     0     0
## X1201     0     0     1     0     0     1     0     1     0     0     0     0
## X1202     0     0     1     1     1     0     0     0     1     0     1     0
## X1203     0     0     1     0     0     0     0     0     0     0     0     0
## X1204     0     0     1     0     0     0     1     1     0     0     0     1
## X1205     0     0     1     0     0     0     1     0     1     1     0     1
## X1206     0     0     1     0     0     0     0     0     1     0     1     0
## X1207     0     0     1     1     0     1     0     0     0     0     0     0
## X1208     0     0     1     0     1     0     0     0     0     0     1     0
## X1209     1     1     0     0     0     0     0     0     0     0     0     0
## X1210     0     0     1     0     1     0     0     0     0     0     0     0
## X1212     0     0     1     0     1     0     0     0     0     0     0     0
## X1213     0     0     1     1     0     1     0     0     0     0     0     0
## X1215     0     0     1     0     1     0     0     0     1     0     1     0
## X1216     0     0     0     0     0     0     1     0     0     0     0     1
## X1217     1     1     1     0     0     0     1     0     0     0     0     1
## X1219     0     0     1     0     0     0     0     0     0     0     0     0
## X1220     1     1     1     0     0     0     0     0     0     0     0     0
## X1221     0     0     1     0     0     0     0     0     1     0     0     0
## X1222     0     0     1     0     0     0     0     0     0     0     1     0
## X1226     0     0     1     1     0     1     0     0     1     0     0     0
## X1228     0     0     1     0     0     1     0     1     0     0     0     0
## X1229     0     0     1     1     1     0     0     0     0     0     1     0
## X1230     0     0     1     0     0     1     0     0     0     0     0     0
## X1231     0     0     1     0     0     0     0     0     0     0     0     0
## X1233     0     0     1     0     1     0     0     0     0     0     1     0
## X1234     0     0     1     0     0     0     0     0     0     0     0     0
## X1236     0     0     1     0     1     0     0     0     0     0     1     0
## X1237     1     1     1     0     0     0     1     1     0     0     0     1
## X1239     0     0     1     1     0     0     0     0     1     0     0     0
## X1242     0     0     1     0     0     0     0     0     1     0     0     0
## X1244     1     1     0     0     0     0     0     0     0     0     0     0
## X1245     0     0     1     0     0     0     0     0     0     0     0     0
## X1246     0     0     1     0     0     0     0     0     0     0     0     0
## X1247     0     0     1     0     1     1     0     0     0     0     1     0
## X1249     0     0     1     1     0     1     0     0     1     0     0     0
## X1250     0     0     1     0     1     0     0     0     1     0     1     0
## X1251     1     1     1     0     0     0     0     0     0     0     0     0
## X1253     1     1     1     1     0     1     0     0     0     0     0     0
## X1254     1     1     0     0     0     0     0     0     0     0     0     0
## X1255     0     0     1     0     0     0     0     0     0     0     0     0
## X1256     0     0     1     0     0     0     0     0     0     0     0     0
## X1257     1     1     0     0     0     0     0     0     0     0     0     0
## X1259     0     0     1     0     1     0     0     0     1     0     0     0
## X1260     1     1     0     0     0     0     0     0     0     0     0     0
## X1262     0     0     1     0     1     1     0     0     1     0     1     0
## X1264     0     0     1     0     1     0     0     0     1     0     1     0
## X1265     1     1     0     0     0     0     0     0     0     0     0     0
## X1266     1     1     1     0     0     0     0     0     1     0     0     0
## X1267     0     0     1     0     0     1     0     0     0     0     0     0
## X1268     0     0     1     0     0     0     0     0     0     0     0     0
## X1273     1     1     0     0     0     0     0     0     0     0     0     0
## X1274     0     0     1     0     0     0     0     0     0     0     0     0
## X1275     0     0     1     0     1     0     0     0     1     0     1     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     1     1     0     0     0     0     0     0     0     0     0     0
## X1278     0     0     1     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     1     1     0     0     0     0     0     0     0     0     0     0
## X1282     1     1     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     1     1     0     0     0     0     0     0     0     0     0     0
## X1288     1     1     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     1     0     0     0     0     0     0     0     0     0
## X1301     0     0     1     0     1     0     0     0     0     0     1     0
## X1302     0     0     1     0     0     0     0     0     1     0     0     0
## X1307     1     1     1     1     0     0     1     0     0     0     0     1
## X1309     1     1     1     0     0     0     0     0     1     0     0     0
## X1310     0     0     1     0     1     0     0     0     1     0     0     0
## X447      1     1     1     1     0     1     0     0     0     0     0     0
## X448      1     1     1     0     1     0     0     0     0     0     0     0
## X451      0     0     1     0     0     0     0     0     0     0     1     0
## X452      1     1     1     0     0     0     0     0     1     0     0     0
## X453      0     0     0     0     0     0     1     0     0     0     0     1
## X454      0     0     1     0     0     0     1     1     0     1     0     1
## X455      1     1     1     0     0     1     0     0     0     0     0     0
## X456      0     0     1     1     0     0     0     0     0     1     0     0
## X458      0     0     1     0     0     1     1     1     0     1     0     1
## X459      0     0     1     0     0     0     0     0     0     0     0     0
## X460      0     0     1     0     0     0     0     0     0     0     1     0
## X461      1     1     1     0     0     0     0     0     0     0     0     0
## X462      0     0     1     0     0     0     1     0     0     0     0     1
## X463      0     0     1     1     0     1     0     0     0     0     0     0
## X464      0     0     1     0     0     0     0     0     1     0     0     0
## X465      0     0     1     0     1     1     1     1     0     0     0     1
## X466      1     1     1     1     0     1     0     0     0     0     0     0
## X468      0     0     1     1     0     0     0     0     0     0     0     0
## X471      0     0     1     0     0     0     0     0     0     1     0     0
## X472      0     0     1     0     0     0     0     0     1     0     0     0
## X473      0     0     1     0     0     0     0     0     0     0     0     0
## X476      0     0     1     0     0     0     0     0     0     0     0     0
## X477      0     0     1     0     0     0     0     0     0     1     0     0
## X478      0     0     1     0     0     0     0     0     0     0     1     0
## X479      0     0     1     0     0     0     0     0     0     0     1     0
## X480      0     0     0     0     0     0     1     0     0     0     0     1
## X482      0     0     1     0     0     0     0     0     1     0     0     0
## X483      0     0     1     0     0     0     0     0     1     0     0     0
## X484      0     0     0     0     0     0     0     0     0     1     0     0
## X486      0     0     1     1     0     0     0     0     0     0     0     0
## X487      0     0     1     1     0     1     0     0     0     0     0     0
## X488      0     0     1     1     0     0     0     0     0     0     0     0
## X489      1     1     1     0     0     0     0     0     0     0     0     0
## X490      0     0     1     1     0     1     0     1     1     0     0     0
## X491      0     0     1     0     0     0     0     0     1     0     0     0
## X492      0     0     1     0     0     0     0     1     0     0     1     0
## X493      0     0     1     0     0     0     0     0     0     0     0     0
## X494      1     1     1     0     0     0     1     0     0     1     0     1
## X495      0     0     1     0     1     1     1     1     0     0     1     1
## X496      0     0     1     0     0     0     1     0     0     0     0     1
## X497      0     0     0     0     0     0     1     0     0     0     0     1
## X498      1     1     1     0     0     0     0     0     0     0     0     0
## X499      0     0     1     0     0     0     0     0     0     0     0     0
## X501      1     1     1     0     0     1     0     1     0     0     0     0
## X502      0     0     1     0     0     0     0     0     0     0     0     0
## X503      0     0     1     0     1     1     0     1     0     0     0     0
## X505      1     1     1     0     0     0     0     0     0     1     0     0
## X506      0     0     1     0     0     0     1     0     0     1     0     1
## X507      0     0     1     0     0     1     1     1     0     0     0     1
## X508      1     1     1     0     0     0     0     0     0     0     0     0
## X509      0     0     1     0     1     0     0     0     0     0     0     0
## X510      0     0     1     0     0     1     0     0     1     0     0     0
## X513      0     0     1     0     1     0     0     0     1     0     0     0
## X514      0     0     1     0     0     0     1     0     0     1     0     0
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     1     0     0     1     0     1     0     0     1     0
## X518      0     0     1     0     0     1     0     1     0     1     0     0
## X521      0     0     1     0     0     0     1     1     0     1     0     1
## X523      0     0     1     1     0     0     0     0     0     0     1     0
## X524      1     1     1     0     0     0     0     0     0     1     0     0
## X525      0     0     1     0     0     0     0     0     0     0     1     0
## X526      0     0     1     0     0     0     0     0     0     0     0     0
## X530      0     0     1     1     0     1     0     0     0     0     0     0
## X531      0     0     1     0     1     0     0     0     0     0     0     0
## X532      0     0     1     0     0     0     1     1     0     0     0     1
## X533      1     1     1     0     0     1     0     0     0     0     0     0
## X534      0     0     1     0     0     0     0     0     0     0     0     0
## X535      1     1     0     0     0     0     0     0     0     0     0     0
## X536      0     0     1     0     1     0     1     0     0     0     1     1
## X538      0     0     1     0     0     1     0     0     0     0     0     0
## X539      0     0     1     0     1     0     1     0     0     0     1     1
## X542      0     0     1     0     1     0     0     0     0     0     1     0
## X543      0     0     1     0     0     0     0     0     1     0     0     0
## X544      0     0     1     0     1     0     0     0     0     0     0     0
## X545      0     0     1     0     0     0     0     0     0     0     0     0
## X546      0     0     1     0     0     0     0     0     1     0     0     0
## X548      0     0     1     0     0     1     0     1     0     0     1     0
## X549      1     1     0     0     0     0     0     0     0     0     0     0
## X551      0     0     1     0     0     0     0     0     1     0     0     0
## X552      0     0     1     0     0     1     0     1     0     0     0     0
## X553      0     0     1     1     0     0     0     0     0     1     0     0
## X554      1     0     1     0     0     0     1     0     0     0     0     1
## X556      0     0     1     0     0     1     0     0     0     0     0     0
## X557      1     1     1     0     0     1     0     1     0     1     0     0
## X558      0     0     0     0     0     0     1     0     0     0     0     1
## X559      0     0     1     0     0     0     0     0     0     0     0     0
## X560      0     0     1     0     0     0     0     0     0     0     0     0
## X561      1     1     0     0     0     0     0     0     0     0     0     0
## X562      0     0     1     0     0     0     0     0     0     0     0     0
## X563      0     0     1     0     0     0     0     0     0     0     0     0
## X565      0     0     1     0     0     0     0     0     0     0     1     0
## X566      1     1     0     0     0     0     0     0     0     1     0     0
## X567      0     0     1     0     0     0     0     0     1     1     0     0
## X568      1     1     1     0     0     0     0     0     0     1     0     0
## X569      0     0     1     0     0     1     0     1     1     0     0     0
## X571      1     1     1     0     0     0     0     1     0     1     0     0
## X572      0     0     1     1     0     0     0     0     0     1     0     0
## X574      0     0     1     0     0     0     0     0     0     0     1     0
## X576      0     0     1     0     0     0     1     1     0     1     0     0
## X577      0     0     1     0     0     1     0     0     0     0     0     0
## X579      0     0     1     0     0     0     1     0     0     1     0     1
## X580      1     1     1     0     0     0     0     0     0     0     0     0
## X582      0     0     1     0     0     0     0     0     0     0     0     0
## X583      0     0     1     0     0     0     0     0     0     0     0     0
## X584      0     0     1     1     1     1     0     0     0     0     1     0
## X586      0     0     1     1     0     0     0     0     0     0     0     0
## X587      0     0     0     0     0     0     1     0     0     0     0     1
## X588      0     0     1     0     1     0     0     0     0     0     0     0
## X589      0     0     1     0     1     0     0     0     0     0     0     0
## X591      0     0     1     0     1     1     1     1     0     0     1     1
## X592      0     0     1     0     0     0     0     0     0     0     0     0
## X593      1     1     1     0     0     0     1     0     0     0     0     1
## X594      0     0     1     0     0     0     0     1     0     0     0     0
## X595      0     0     1     1     0     0     0     0     1     0     0     0
## X596      0     0     1     0     0     0     0     0     0     0     0     0
## X597      0     0     1     0     0     1     0     0     0     0     1     0
## X598      0     0     1     0     0     0     0     0     0     0     1     0
## X599      0     0     1     0     0     0     0     0     0     0     0     0
## X600      0     0     1     1     0     1     0     0     0     0     0     0
## X603      0     0     1     0     0     0     0     0     0     0     0     0
## X604      0     0     1     0     1     0     0     0     0     0     1     0
## X605      0     0     1     0     1     0     0     0     0     0     1     0
## X606      0     0     1     1     0     0     0     0     0     0     0     0
## X608      1     1     0     0     0     0     0     0     0     0     0     0
## X609      0     0     1     0     0     0     1     0     0     1     0     1
## X611      0     0     1     0     0     0     0     0     0     0     0     0
## X612      1     1     1     0     0     0     0     1     0     1     0     0
## X613      1     1     1     0     0     0     0     0     0     0     0     0
## X614      1     1     1     0     0     0     0     0     0     0     0     0
## X616      0     0     1     0     0     0     0     0     0     0     0     0
## X617      0     0     1     1     0     1     0     0     0     0     0     0
## X619      0     0     1     0     0     0     0     0     1     1     0     0
## X620      1     1     0     0     0     0     0     0     0     0     0     0
## X621      0     0     1     0     0     0     0     0     0     1     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      1     1     1     0     0     0     0     0     0     1     0     0
## X625      1     1     1     0     0     1     1     0     0     0     0     1
## X628      0     0     1     0     1     0     0     0     1     0     1     0
## X629      0     0     1     0     1     0     0     0     0     0     0     0
## X630      0     0     1     1     0     1     0     0     0     0     0     0
## X631      0     0     1     0     0     0     0     0     0     0     0     0
## X632      0     0     1     0     0     0     0     0     1     0     0     0
## X633      1     1     1     1     0     1     0     0     0     0     0     0
## X635      0     0     1     1     0     0     0     0     0     0     0     0
## X636      0     0     1     0     1     0     0     0     1     0     1     0
## X637      0     0     1     0     1     0     0     0     0     0     1     0
## X638      0     0     1     0     0     0     0     0     0     0     0     0
## X639      0     0     1     0     0     0     1     0     0     1     0     1
## X641      0     0     1     0     1     1     0     0     0     0     0     0
## X648      1     1     1     0     0     0     0     0     0     1     0     0
## X650      0     0     1     1     0     1     1     0     0     0     0     1
## X651      0     0     1     0     1     1     0     0     0     0     0     0
## X653      0     0     1     0     1     0     0     0     0     0     0     0
## X654      0     0     1     1     0     1     0     0     0     0     0     0
## X655      0     0     1     0     0     0     0     0     0     0     0     0
## X656      1     1     0     0     0     0     0     0     0     0     0     0
## X657      0     0     1     1     0     0     0     0     0     1     0     0
## X1082     0     0     1     0     0     0     0     0     1     0     0     0
## X1083     0     0     1     0     0     0     0     0     0     0     0     0
## X1084     0     0     1     0     1     0     0     0     0     0     0     0
## X1086     1     1     0     0     0     0     0     0     0     0     0     0
## X1088     1     1     1     0     0     0     0     1     0     1     0     0
## X1089     0     0     1     0     0     0     0     0     0     0     0     0
## X1090     0     0     1     0     0     0     0     0     0     0     0     0
## X1091     0     0     1     0     0     0     0     0     0     0     0     0
## X1092     0     0     1     0     0     0     0     0     0     0     0     0
## X1093     0     0     1     0     0     0     0     0     0     0     0     0
## X1094     0     0     1     0     0     0     0     0     0     0     0     0
## X1095     0     0     1     0     0     0     0     0     0     0     0     0
## X1097     0     0     1     0     0     0     0     0     1     0     0     0
## X1098     0     0     1     0     1     0     0     0     0     0     1     0
## X1101     1     1     1     0     0     0     0     0     1     1     0     0
## X1103     0     0     1     1     0     1     0     0     0     0     1     0
## X1104     0     0     1     0     0     0     1     0     0     1     0     1
## X1105     0     0     1     0     0     1     1     0     0     0     0     1
## X1106     0     0     1     0     0     0     0     0     0     0     0     0
## X1108     0     0     1     0     0     0     0     0     0     0     0     0
## X1110     1     1     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     1     0     0     0     1     0     0     1     0     1
## X1113     0     0     1     0     0     0     0     0     0     0     0     0
## X1115     0     0     1     0     0     0     0     0     0     0     0     0
## X1116     1     1     1     0     0     1     0     1     0     0     0     0
## X1117     0     0     1     0     0     0     0     0     0     1     0     0
## X1119     1     1     1     1     0     1     0     0     0     0     0     0
## X1120     0     0     1     0     1     0     0     0     0     0     1     0
## X1121     0     0     1     1     0     0     1     0     0     0     0     1
## X1122     0     0     1     0     1     0     0     0     0     0     1     0
## X1124     0     0     1     0     0     0     0     0     0     0     1     0
## X1125     0     0     1     0     0     0     0     0     1     0     0     0
## X1126     1     1     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     1     0     0     0     0     0     0     0     0     0
## X1128     1     1     1     0     0     0     0     0     0     1     0     0
## X1129     1     1     1     0     0     0     0     0     0     0     0     0
## X1130     1     1     1     0     0     0     0     0     0     0     0     0
## X1131     0     0     1     0     0     0     0     0     0     0     0     0
## X1133     0     0     1     0     0     1     0     0     1     0     0     0
## X1135     0     0     1     0     0     0     0     0     0     0     0     0
## X1136     1     1     1     0     0     0     0     0     0     0     0     0
## X1138     0     0     1     0     1     0     0     0     0     0     1     0
## X1139     0     0     1     0     1     0     0     0     0     0     1     0
## X1141     0     0     1     0     1     0     0     0     0     0     1     0
## X1142     1     1     0     0     0     0     0     0     0     0     0     0
## X1143     0     0     1     0     1     1     0     0     0     0     0     0
## X1144     0     0     1     0     1     1     0     0     0     0     1     0
## X1145     1     1     1     0     0     0     0     0     0     1     0     0
## X1146     0     0     1     1     0     0     0     0     0     0     0     0
## X1147     0     0     1     1     0     0     0     0     0     0     0     0
## X1149     1     1     1     0     0     0     0     0     0     1     0     0
## X1150     0     0     1     1     0     0     0     0     0     0     0     0
## X1151     0     0     1     1     0     0     0     0     0     0     0     0
## X1152     0     0     1     1     0     1     0     0     0     0     1     0
## X1153     1     1     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     1     0     0     0     0     0     0     0     0     0
## X1158     0     0     1     0     0     1     0     0     0     0     0     0
## X1159     0     0     1     0     0     1     1     1     0     0     1     1
## X1160     0     0     1     1     1     1     0     0     0     0     0     0
##       FP025 FP026 FP027 FP028 FP029 FP030 FP031 FP032 FP033 FP034 FP035 FP036
## X661      0     1     0     0     0     0     0     0     0     0     0     0
## X662      0     0     0     1     0     0     0     0     0     0     0     0
## X663      1     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     0     0     0     0     0     0     0     0     0
## X668      0     0     0     0     0     1     0     0     0     1     0     0
## X669      0     0     0     0     0     0     0     0     0     0     0     0
## X670      0     1     0     0     0     0     0     0     0     0     0     0
## X671      0     0     0     0     0     0     1     0     0     0     0     0
## X672      0     0     0     1     0     0     0     0     0     0     1     0
## X673      0     0     1     1     0     0     0     0     0     1     0     0
## X674      0     0     0     0     0     0     0     0     0     0     1     0
## X676      0     0     0     1     0     0     0     0     0     0     1     0
## X677      0     1     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     0     0     0     0
## X682      1     0     0     0     1     0     0     0     0     0     0     0
## X683      0     1     0     0     1     1     0     0     0     1     0     0
## X684      0     0     0     0     0     1     0     0     0     0     0     0
## X685      0     0     0     1     0     0     0     0     0     0     1     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     0     0     0     1     0     0     0     0     0
## X689      0     0     0     0     0     0     0     0     0     0     0     0
## X690      0     0     0     0     0     0     1     0     0     0     0     0
## X691      0     0     1     0     0     0     0     0     0     0     0     0
## X692      0     0     1     0     0     1     0     0     0     0     0     0
## X693      0     1     1     1     0     0     0     0     0     0     0     0
## X695      0     0     0     0     1     0     0     0     0     0     0     0
## X696      0     0     0     0     0     0     0     0     0     0     0     0
## X698      0     0     1     0     1     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     1     0     0     0     0     0     0     0     0     0     0
## X706      0     0     0     0     1     0     1     0     0     0     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      1     0     0     1     0     0     0     0     0     0     1     0
## X712      0     0     0     0     0     0     0     1     1     0     0     0
## X713      1     0     0     0     0     0     0     0     0     0     0     0
## X714      0     0     0     1     0     0     1     0     0     0     1     0
## X715      0     0     0     0     0     0     0     0     0     1     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      0     0     0     0     0     0     0     0     0     0     0     0
## X721      0     0     0     1     0     0     0     0     0     1     0     0
## X722      0     0     0     0     0     0     0     0     0     0     0     0
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     0     0     0     0     0     0     1     1     0     0     0
## X728      1     0     0     0     0     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     0     0     0     0     0     0     0     0
## X733      0     0     0     0     0     1     0     0     0     1     0     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     0     0     0     0     0     0     0     0     0     1     0
## X736      0     0     0     0     0     0     0     0     0     0     0     0
## X737      0     0     0     0     0     0     0     0     0     0     0     0
## X739      0     0     0     0     1     0     0     0     0     0     0     0
## X740      1     1     0     0     1     0     0     0     0     0     0     0
## X741      1     0     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     0     0     0     1     0     0     0     0     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      0     0     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     1     0     0     0     0     0     0
## X749      0     0     0     0     0     0     1     0     0     0     0     0
## X752      0     0     0     1     0     1     1     0     0     0     1     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     0     0     0     0     0     0     0     0     0     0     0
## X755      0     1     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     1     0     0     0     0     0     0     0     0     0     0
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      0     0     0     0     0     0     0     0     0     0     0     0
## X761      0     0     0     1     0     1     1     0     0     0     1     0
## X762      0     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     0     0     0     0     0     0     0     0
## X764      0     1     0     0     0     0     0     0     0     0     0     0
## X765      0     0     0     0     0     0     1     0     0     0     0     0
## X767      0     0     0     0     0     0     1     0     0     0     1     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      0     0     0     0     0     0     0     0     0     0     0     0
## X771      0     0     1     0     0     0     0     0     0     0     0     1
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      1     0     0     0     0     0     0     0     0     0     0     0
## X776      0     0     1     1     1     1     0     0     0     0     0     0
## X777      0     0     0     0     0     0     0     0     0     0     0     0
## X778      1     0     1     1     0     1     0     0     0     0     1     1
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      0     0     0     0     0     0     1     0     0     0     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     0
## X784      1     0     0     1     0     0     0     1     1     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     0     0     0     0     0     0     0     0
## X788      0     0     0     0     0     0     0     0     0     0     1     0
## X789      0     0     0     0     0     0     0     0     0     0     0     0
## X791      0     0     0     0     0     0     0     0     0     0     0     0
## X792      0     0     0     0     0     0     0     0     0     0     0     0
## X794      1     0     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     0     0     0     0     0     0     0     0
## X799      0     0     0     0     0     0     1     0     0     0     0     0
## X800      0     0     0     1     0     0     0     0     0     0     1     0
## X804      0     1     0     0     0     0     0     0     0     0     0     0
## X805      0     0     0     1     0     0     1     0     0     0     1     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      1     1     0     0     1     0     0     0     0     0     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      1     0     0     0     0     0     0     0     0     0     0     0
## X814      0     0     0     0     1     0     1     0     0     0     1     0
## X818      0     0     0     0     0     0     0     0     0     0     0     0
## X819      0     0     1     0     0     0     0     0     0     1     0     0
## X820      0     0     0     0     0     1     0     0     0     0     0     0
## X821      0     0     0     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     0     0     0     0     0     0     0     0     0     0
## X829      0     0     0     0     0     0     0     0     0     0     0     0
## X831      0     0     0     0     0     0     0     0     0     0     0     0
## X832      0     0     0     0     0     0     0     0     0     0     0     0
## X833      0     0     0     0     0     0     0     0     0     0     0     0
## X834      0     0     0     0     0     0     0     0     0     0     0     0
## X835      0     0     0     0     0     0     0     0     0     0     0     0
## X836      0     0     0     0     0     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     0     0     0     0     0     0     0     0
## X849      0     0     0     0     0     0     0     0     0     0     0     0
## X851      0     0     0     1     0     0     0     0     0     0     1     0
## X854      0     0     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     0     0
## X857      0     0     0     0     0     0     0     0     0     0     0     0
## X858      0     0     0     0     0     0     0     0     0     0     0     0
## X859      0     0     0     0     0     0     0     0     0     0     0     0
## X860      0     0     0     0     0     0     0     0     0     0     0     0
## X862      0     0     0     0     0     0     0     0     0     0     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     1     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     0     0     0     0     0     0     0     0     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      0     0     0     0     0     0     0     0     0     0     0     0
## X872      0     0     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     0     0     0     0     0     0     0     1     0
## X1193     0     1     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     0     0     0     1     0     0     0     1     0
## X1195     0     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     1     1     0     0     0     0     1     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     0     1     0     0     0     0     0     0     0
## X1202     0     0     0     1     0     0     1     0     0     0     1     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     0     0     0     0     0     0     0     0     1     0     1
## X1205     1     0     0     0     0     0     0     0     0     0     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     0     0     0     0     0     0     0     0     0     0
## X1208     0     0     0     0     0     0     1     0     0     0     1     0
## X1209     0     0     0     0     0     0     0     1     1     0     0     0
## X1210     1     0     0     1     0     0     0     0     0     0     1     0
## X1212     0     0     0     0     0     0     0     1     1     0     1     0
## X1213     0     0     0     0     0     0     0     0     0     0     0     0
## X1215     0     0     0     1     0     1     0     0     0     0     1     0
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     0     0     0     0     0     0     0     0     0     0
## X1219     0     0     0     0     0     0     0     1     1     0     0     0
## X1220     0     0     0     0     0     0     0     0     0     0     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     0     0     0     0     0     0     0     0     0     0     0
## X1226     0     0     0     0     0     0     0     0     0     0     0     0
## X1228     0     1     0     0     1     0     0     0     0     0     0     0
## X1229     0     0     0     1     0     0     1     0     0     0     1     0
## X1230     0     0     0     0     0     0     0     0     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     0     1     0     0     0     0     0     0     1     0
## X1234     0     1     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     0     0     0     0     1     0     0     0     1     0
## X1237     0     0     0     0     1     0     0     0     0     0     0     0
## X1239     0     0     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     1     1     0     1     0
## X1247     0     0     0     0     0     0     1     0     0     0     1     0
## X1249     0     0     0     0     1     0     1     0     0     0     0     0
## X1250     0     0     0     1     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     1     0     0     0     0     0     0     0
## X1254     0     0     0     0     0     0     0     0     0     0     0     0
## X1255     0     1     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     0     0     0     0     0     0     0     0
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     0     0     0     0     0     0     0     0     0     0
## X1262     0     0     0     0     0     0     1     0     0     0     1     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     0     0     0     0     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     0     0     0
## X1267     0     1     0     0     1     0     0     1     1     0     0     0
## X1268     1     0     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     0     0     0     0     0     0     0     0     0     0
## X1274     0     0     0     0     0     1     0     0     0     0     0     0
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     0     0
## X1282     0     0     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     1     0     0     0     0     0     0     0     0     1
## X1301     0     0     0     1     0     0     0     0     0     0     1     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     1     0     0     0     0     0     0     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      1     0     0     0     1     0     0     0     0     0     0     0
## X448      1     0     0     0     0     0     0     1     1     0     0     1
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     0     1     1     0     0     0
## X454      0     1     0     0     1     0     0     0     0     1     0     0
## X455      1     1     0     0     1     0     0     0     0     0     0     0
## X456      0     0     0     0     0     0     0     0     0     1     0     1
## X458      0     0     0     0     1     0     0     0     0     1     0     0
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      1     0     0     0     0     0     0     0     0     0     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     1     0     0     1     0     0     0     0     0     1
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     1     0     0     0     0     0     0     0
## X466      1     0     0     0     1     0     0     0     0     0     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      1     0     0     0     0     0     0     0     0     0     0     0
## X477      0     0     0     0     0     0     0     0     0     1     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     0     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     1     0     0     0     0     0
## X487      0     0     0     0     1     0     0     0     0     0     0     0
## X488      0     0     0     0     0     0     0     1     1     0     0     0
## X489      1     0     0     0     0     0     0     0     0     0     0     0
## X490      0     1     0     0     0     0     1     0     0     0     0     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     0     1     0     0     0     1     0     0     0     1     1
## X493      1     0     0     0     0     0     0     0     0     0     0     0
## X494      1     0     0     0     0     0     0     0     0     0     0     0
## X495      0     0     0     0     1     0     0     0     0     0     0     0
## X496      0     0     1     0     0     0     0     0     0     0     0     0
## X497      0     0     0     0     0     0     0     0     0     0     0     0
## X498      0     1     0     0     0     0     0     1     1     0     0     0
## X499      0     1     0     0     0     0     0     0     0     0     0     0
## X501      0     0     0     0     0     0     0     0     0     0     0     0
## X502      0     1     0     0     0     0     0     0     0     0     0     0
## X503      0     0     0     1     0     0     0     0     0     0     0     0
## X505      0     0     0     0     0     0     0     0     0     1     0     1
## X506      0     1     0     0     0     0     0     0     0     1     0     0
## X507      0     0     0     0     1     0     0     0     0     0     0     0
## X508      1     0     0     1     0     0     0     1     1     0     0     0
## X509      1     0     0     1     0     0     0     1     1     0     0     1
## X510      0     0     0     0     0     0     1     0     0     0     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     1     0     0     0     0     0     0     0     1     0     0
## X515      0     0     0     0     0     0     0     1     1     0     0     0
## X516      0     0     0     0     1     0     0     0     0     0     0     0
## X518      0     0     1     0     1     0     0     0     0     1     0     0
## X521      0     0     0     0     1     0     0     0     0     1     0     0
## X523      0     0     0     0     0     0     1     0     0     0     0     0
## X524      0     0     0     0     0     0     0     0     0     1     0     1
## X525      0     0     1     0     0     0     0     0     0     0     1     1
## X526      0     0     0     0     0     1     0     0     0     0     0     0
## X530      0     0     0     0     0     0     0     0     0     0     0     0
## X531      0     0     0     0     0     0     0     0     0     0     0     1
## X532      0     0     0     1     1     1     0     0     0     1     0     0
## X533      0     0     1     0     0     0     0     0     0     0     0     0
## X534      0     0     1     0     0     1     0     0     0     0     0     0
## X535      0     0     0     0     0     0     0     0     0     0     0     0
## X536      0     0     0     0     0     0     0     0     0     0     0     0
## X538      1     0     0     0     1     0     0     1     1     0     0     0
## X539      0     0     0     0     0     0     0     0     0     0     0     0
## X542      0     0     0     0     0     1     0     0     0     0     1     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      1     0     0     0     0     0     0     1     1     0     0     1
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     1     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     0     0     1     0     0     0     0     0     0     0
## X553      0     0     0     0     0     0     0     0     0     1     0     1
## X554      0     0     0     0     0     1     0     0     0     1     0     0
## X556      0     0     0     0     1     0     0     1     1     0     0     0
## X557      0     0     1     0     1     1     0     0     0     0     0     0
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     1     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     0     0
## X562      0     1     0     0     0     0     0     0     0     0     0     0
## X563      1     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     0     0
## X567      0     1     0     0     0     0     0     0     0     1     0     1
## X568      0     0     0     0     0     0     0     0     0     1     0     1
## X569      0     0     0     0     0     0     1     0     0     0     0     0
## X571      0     0     0     0     0     0     0     0     0     0     0     0
## X572      0     0     1     0     0     1     0     0     0     0     0     0
## X574      0     0     0     0     0     0     0     0     0     0     0     0
## X576      0     0     0     0     1     0     0     0     0     1     0     0
## X577      0     0     1     0     1     0     0     0     0     0     0     0
## X579      0     1     0     0     0     0     0     0     0     1     0     0
## X580      1     0     0     0     0     0     0     1     1     0     0     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     1     0     0     0     0     0     0     0     0     0     0
## X584      0     0     0     0     0     0     1     0     0     0     0     0
## X586      0     0     0     0     0     0     0     0     0     0     0     0
## X587      0     0     0     0     0     0     0     0     0     0     0     0
## X588      0     0     1     0     0     0     0     0     0     0     1     1
## X589      1     0     0     1     0     0     0     0     0     0     1     0
## X591      0     0     0     0     1     0     0     0     0     0     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     0     0     0     0     0     0     0     0     0     0
## X594      0     0     0     0     0     0     1     0     0     0     0     0
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     1     1     0     0     1     0     0     0     0     0     0
## X597      0     0     0     0     1     0     0     0     0     0     0     0
## X598      1     0     0     0     0     0     0     0     0     0     0     0
## X599      0     1     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     0     1     0     0     0     0     0     0     0
## X603      1     0     0     0     0     0     0     0     0     0     0     0
## X604      0     0     1     0     0     0     0     0     0     0     1     1
## X605      0     0     0     0     0     0     0     0     0     0     1     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     0     0     0     0     1     0     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     0     0     0     0     0     0     0     1     0     0
## X613      0     1     0     0     0     0     0     0     0     0     0     0
## X614      0     1     0     0     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     1     0
## X617      0     0     0     0     1     0     1     0     0     0     0     0
## X619      0     0     1     0     0     0     0     0     0     1     0     0
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     0     0     0     1     1     1     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     0     0     0     0     0     0     0     1     0     1
## X625      0     0     0     0     1     0     0     0     0     0     1     0
## X628      0     0     0     1     0     1     0     0     0     0     1     0
## X629      1     0     0     1     0     0     0     0     0     0     1     0
## X630      0     0     1     0     0     1     0     0     0     0     0     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      1     0     0     0     1     0     0     0     0     0     0     0
## X635      0     1     1     0     0     0     0     0     0     0     0     0
## X636      0     0     0     1     0     1     0     0     0     0     1     0
## X637      0     0     0     0     0     0     0     0     0     0     1     0
## X638      1     0     0     0     0     0     0     0     0     0     0     0
## X639      0     0     0     0     0     0     0     0     0     1     0     0
## X641      0     0     0     0     0     0     1     1     1     0     0     0
## X648      0     1     0     0     0     0     0     1     1     1     0     0
## X650      0     0     0     0     1     0     0     0     0     0     0     0
## X651      0     0     0     0     0     0     1     0     0     0     0     0
## X653      1     0     0     1     0     0     0     0     0     0     1     0
## X654      0     0     0     0     1     0     0     0     0     0     0     0
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     0     0     0     1     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     0     0     0     0     0     0     0     1     0     0
## X1089     0     0     0     1     0     0     0     0     0     0     0     0
## X1090     1     0     0     1     0     0     0     1     1     0     0     0
## X1091     0     0     0     0     0     0     0     1     1     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     0     0     0     0     0     0     1     0     0     0     0     0
## X1094     1     1     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     1     0     0     0     0     0     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     1     0     0     0     0     0     0     0     1     1
## X1101     0     0     1     0     0     0     0     0     0     1     0     0
## X1103     1     0     0     0     1     0     0     1     1     0     0     0
## X1104     0     0     0     0     0     0     0     0     0     1     0     0
## X1105     0     0     0     0     0     0     0     0     0     1     0     1
## X1106     0     0     0     0     0     1     0     0     0     0     0     0
## X1108     0     1     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     1     0     0     0     0     0     0     0     1     0     0
## X1113     0     0     0     0     0     0     0     1     1     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     0     1     0     0     0     0     0     0     0     0     0     0
## X1117     1     0     0     0     0     0     0     0     0     1     0     0
## X1119     1     0     0     0     1     0     0     0     0     0     0     0
## X1120     0     0     0     1     0     1     0     0     0     0     1     0
## X1121     1     0     1     0     0     1     0     0     0     0     0     0
## X1122     0     0     0     1     0     1     0     0     0     0     1     0
## X1124     0     0     0     0     0     0     0     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     0     0     1     0     1
## X1129     0     1     0     0     0     0     0     0     0     0     0     0
## X1130     1     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     0     0     1     0     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     1     0     0     0     0     0     0     0     0     0     0
## X1138     1     0     0     1     0     0     1     0     0     0     0     0
## X1139     0     0     0     1     0     1     0     0     0     0     1     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     0     0     0     0     0     0     1     0     0     0     0     0
## X1144     0     0     0     1     1     0     0     1     1     0     0     0
## X1145     0     0     1     0     0     0     0     0     0     1     0     0
## X1146     0     0     0     0     0     0     0     0     0     0     0     0
## X1147     0     0     0     0     0     0     0     0     0     0     0     0
## X1149     0     0     0     0     0     0     0     0     0     1     0     0
## X1150     0     0     0     0     0     0     1     0     0     0     0     0
## X1151     0     0     0     0     0     0     0     0     0     0     0     0
## X1152     0     0     0     0     1     0     1     0     0     0     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     1     0     0     0     0     0     0     0     0     0     0     0
## X1158     0     0     0     0     1     0     0     1     1     0     0     0
## X1159     0     0     0     0     1     0     1     0     0     0     0     0
## X1160     1     0     0     0     1     0     1     0     0     0     0     0
##       FP037 FP038 FP039 FP040 FP041 FP042 FP043 FP044 FP045 FP046 FP047 FP048
## X661      0     0     1     1     0     0     0     0     0     0     0     0
## X662      0     0     0     0     0     0     1     0     0     1     1     0
## X663      0     1     0     0     0     0     0     0     1     0     1     0
## X665      0     0     0     0     1     0     0     0     0     0     0     0
## X668      0     0     0     0     0     0     0     0     0     0     0     0
## X669      0     0     0     0     0     0     0     0     0     0     0     0
## X670      0     0     0     0     0     0     0     0     0     1     1     0
## X671      0     0     0     0     0     0     0     0     0     0     0     1
## X672      1     0     0     0     1     0     0     0     0     0     0     0
## X673      0     0     0     0     0     0     0     0     0     1     0     0
## X674      1     0     0     0     0     0     0     0     0     1     1     0
## X676      1     0     0     0     1     0     0     0     0     0     0     0
## X677      0     0     1     0     0     0     0     0     0     1     1     0
## X678      0     0     1     0     0     0     0     0     0     1     0     0
## X679      0     0     0     0     0     0     0     0     0     1     1     0
## X682      0     1     1     0     0     0     0     0     0     0     1     0
## X683      0     0     0     0     0     0     1     0     1     0     0     1
## X684      0     0     0     0     0     0     1     0     0     1     0     0
## X685      1     0     0     0     0     0     0     0     0     0     0     0
## X686      0     0     1     0     0     0     0     0     1     1     1     0
## X688      0     0     0     0     0     0     0     1     0     1     1     0
## X689      0     0     0     0     0     0     1     0     1     1     1     0
## X690      0     0     0     0     0     0     0     0     1     1     1     1
## X691      0     0     0     0     0     0     1     0     0     0     0     0
## X692      0     0     0     0     0     0     0     0     0     1     1     0
## X693      0     0     0     0     0     0     0     0     0     0     1     0
## X695      0     0     0     0     0     0     1     0     0     1     0     0
## X696      0     0     1     0     0     1     0     0     0     1     0     0
## X698      0     0     0     0     0     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     1     0     0     1     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     1
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     1     0     0     0     0     0     0     1     0     0
## X706      0     0     0     0     1     0     0     0     1     0     1     0
## X708      0     0     0     0     0     0     0     1     0     1     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     1     0     0     0     0     0     0     0     0     0     0
## X712      0     0     0     0     0     0     0     0     0     0     1     0
## X713      0     0     0     0     0     0     0     0     0     1     1     0
## X714      1     0     0     0     1     0     0     0     0     0     0     0
## X715      0     0     0     0     0     0     0     0     0     1     0     0
## X717      0     0     1     0     0     0     0     0     0     1     0     0
## X718      0     0     0     0     0     0     1     0     0     1     0     0
## X721      0     0     0     0     0     0     0     0     0     0     0     0
## X722      1     0     0     0     0     0     0     0     0     1     1     0
## X723      0     0     0     0     0     0     0     0     0     0     0     1
## X724      0     0     0     0     0     0     0     0     0     1     0     0
## X726      0     0     0     0     0     0     0     0     0     0     0     0
## X728      0     1     0     0     0     0     0     1     0     1     1     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     1
## X732      0     0     0     0     0     0     0     1     0     1     0     0
## X733      0     0     0     0     0     0     0     0     0     0     0     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      1     0     0     0     1     0     0     0     0     0     0     0
## X736      0     0     0     0     0     1     0     0     0     0     1     1
## X737      0     0     1     0     0     0     0     0     0     1     0     0
## X739      1     0     0     0     0     0     0     0     0     0     0     0
## X740      0     1     1     0     0     0     0     0     1     0     1     0
## X741      0     1     0     0     0     0     0     0     0     0     0     1
## X742      0     0     0     0     0     0     0     0     0     0     0     1
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     1     0     0     0     0     0     1     1     1     0
## X746      0     0     0     0     0     0     0     0     0     1     1     0
## X747      0     0     0     0     0     0     0     0     0     0     0     1
## X749      0     0     0     0     0     0     1     0     0     1     0     0
## X752      1     0     0     0     1     0     0     0     0     0     0     1
## X753      0     0     0     0     0     0     0     0     0     0     0     1
## X754      0     0     0     0     0     0     1     0     0     1     0     0
## X755      0     0     1     0     0     0     0     0     0     1     1     0
## X757      0     0     0     0     0     0     0     0     0     0     0     1
## X758      0     0     0     0     0     0     0     0     0     1     1     0
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      0     0     0     0     0     0     0     1     0     1     0     0
## X761      1     0     0     0     1     0     0     0     0     0     0     0
## X762      0     0     0     0     0     0     0     1     0     1     1     0
## X763      0     0     0     0     0     1     0     1     0     0     0     0
## X764      0     0     1     0     0     0     0     0     0     1     1     0
## X765      0     0     0     0     0     0     0     0     0     0     1     0
## X767      1     0     0     0     1     0     0     0     0     0     0     0
## X768      0     0     1     0     0     0     0     0     0     1     0     0
## X770      0     0     0     0     0     0     1     0     0     1     0     0
## X771      0     0     0     0     0     0     0     0     0     1     1     0
## X772      0     0     0     0     0     0     0     0     0     1     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     1
## X774      0     0     0     0     0     0     0     0     0     0     0     1
## X775      0     1     0     0     0     0     0     1     0     1     1     0
## X776      0     0     0     0     0     0     0     0     1     0     1     0
## X777      0     0     0     0     0     0     0     0     0     0     0     1
## X778      0     1     0     0     0     0     0     0     0     0     0     0
## X779      0     0     1     0     0     1     0     0     0     1     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      0     0     0     0     1     0     0     0     0     0     0     0
## X782      0     0     0     0     0     0     0     0     0     1     1     0
## X784      0     1     0     0     0     0     0     0     1     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     1
## X787      0     0     0     0     0     0     0     1     0     1     0     0
## X788      1     0     0     0     1     0     0     0     0     0     0     0
## X789      0     0     0     0     0     0     0     1     0     1     0     0
## X791      0     0     0     0     0     0     0     1     0     1     0     0
## X792      0     0     0     0     0     0     1     0     0     1     1     0
## X794      0     1     0     0     0     0     0     0     0     0     0     1
## X798      0     0     1     0     0     0     0     0     0     1     0     0
## X799      0     0     0     0     0     0     0     0     0     0     0     0
## X800      0     0     0     0     0     0     0     0     0     0     0     0
## X804      0     0     0     0     0     0     0     0     0     0     1     0
## X805      1     0     0     0     1     0     0     0     0     0     0     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     1     1     0     0     0     0     0     1     1     1     0
## X809      0     0     0     0     0     0     0     0     0     1     1     1
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     1     0     0     0     0     0     0     0     0     0     1
## X814      0     0     0     0     0     0     0     0     0     0     0     0
## X818      0     0     0     0     0     0     0     1     0     1     0     0
## X819      0     0     0     0     0     0     0     0     0     1     0     0
## X820      0     0     0     0     0     0     0     0     0     0     0     1
## X821      0     0     0     0     0     0     0     1     0     1     0     0
## X822      0     0     1     0     0     0     0     0     0     1     0     0
## X823      0     0     1     0     0     1     0     0     0     1     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     0     0     0     0     0     1     0     1     0     0
## X829      0     0     0     0     0     0     0     0     0     1     1     0
## X831      0     0     0     0     0     0     0     0     0     1     1     0
## X832      0     0     0     0     0     0     0     1     0     1     0     0
## X833      0     0     0     0     0     0     0     1     0     1     0     0
## X834      0     0     0     0     0     0     0     0     0     1     1     0
## X835      0     0     0     0     0     0     0     1     0     0     0     0
## X836      0     0     0     0     0     0     0     1     0     0     0     0
## X839      0     0     1     0     0     0     0     1     0     1     1     0
## X840      0     0     1     0     0     0     0     0     0     1     0     0
## X841      0     0     0     0     0     0     0     1     0     1     0     0
## X842      0     0     1     0     0     0     0     0     1     1     1     0
## X843      0     0     0     0     0     0     0     0     0     0     1     0
## X846      0     0     0     0     0     0     0     1     0     1     0     0
## X848      0     0     0     0     0     0     0     1     0     1     0     0
## X849      0     0     0     0     0     0     0     1     0     0     0     0
## X851      0     0     0     0     1     0     0     0     0     0     0     0
## X854      0     0     0     0     0     0     0     1     0     1     0     0
## X855      0     0     1     0     0     0     0     0     0     1     0     0
## X856      0     0     0     0     0     0     0     1     0     0     0     0
## X857      0     0     0     0     0     0     0     1     0     1     0     0
## X858      0     0     0     0     0     0     0     1     0     0     0     0
## X859      0     0     0     0     0     0     0     1     0     0     0     0
## X860      0     0     0     0     0     0     0     1     0     0     0     0
## X862      0     0     0     0     0     0     0     1     0     1     0     0
## X863      0     0     0     0     0     0     0     1     0     0     0     0
## X864      0     0     1     0     0     0     0     0     1     1     1     0
## X865      0     0     1     0     0     0     0     1     0     1     0     0
## X866      0     0     0     0     0     0     0     1     0     0     0     0
## X867      0     0     1     0     0     0     0     0     0     1     0     0
## X869      0     0     0     0     0     0     0     0     0     1     1     0
## X870      0     0     0     0     0     0     0     1     0     0     0     0
## X871      0     0     0     0     0     0     0     1     0     1     0     0
## X872      0     0     0     0     0     0     0     1     0     0     0     0
## X873      0     0     1     0     0     0     0     0     0     1     0     0
## X875      0     0     0     0     0     0     0     1     0     0     0     0
## X876      0     0     0     0     0     0     0     1     0     0     0     0
## X877      0     0     0     0     0     0     0     1     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     1     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     1
## X1192     1     0     0     0     1     0     0     0     0     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     1     0     0     0     1     0     0     0     0     0     0     0
## X1195     0     0     0     0     0     0     0     0     0     1     0     0
## X1197     0     0     0     0     0     0     0     0     1     1     1     1
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     0     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     0     0     0     1     0     1     0     1     0
## X1202     1     0     0     0     1     0     0     0     0     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     0     0     1     0     0     0     0     0     1     1     0
## X1205     0     0     0     1     0     0     0     0     0     1     1     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     0     0     0     0     1     0     0     1     0     0
## X1208     1     0     0     0     1     0     0     0     0     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     1     0     0     0     0     0     0     0     0     0     0
## X1212     0     0     0     0     0     0     0     0     1     0     1     0
## X1213     0     0     0     0     0     0     1     0     0     1     0     0
## X1215     1     0     0     0     1     0     0     0     0     0     0     0
## X1216     0     0     1     0     0     0     0     0     0     1     0     0
## X1217     0     0     0     1     0     0     0     0     0     1     1     0
## X1219     0     0     0     0     0     0     0     0     0     0     1     0
## X1220     0     0     0     0     0     0     1     0     0     0     1     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     1
## X1222     0     0     0     0     0     0     1     0     1     1     1     0
## X1226     0     0     0     0     0     0     1     0     0     1     1     0
## X1228     0     0     0     0     0     0     0     0     0     0     0     0
## X1229     1     0     0     0     1     0     0     0     0     0     0     0
## X1230     0     0     0     0     0     0     0     0     0     1     1     0
## X1231     0     0     0     0     0     0     0     0     1     1     1     0
## X1233     1     0     0     0     1     0     0     0     0     0     0     0
## X1234     0     0     1     0     0     0     0     0     0     1     0     0
## X1236     1     0     0     0     1     0     0     0     0     0     0     0
## X1237     0     0     0     0     0     0     0     0     0     0     0     0
## X1239     0     0     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     1     0     1     0     0
## X1245     0     0     0     0     0     0     0     0     1     1     1     1
## X1246     1     0     1     0     0     0     0     0     1     0     1     0
## X1247     0     0     0     0     1     0     0     0     0     1     1     0
## X1249     0     0     0     0     0     0     0     0     0     0     1     0
## X1250     0     0     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     1     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     0     0     0     0     0
## X1254     0     0     0     0     0     0     0     1     0     1     0     0
## X1255     0     0     1     0     0     0     0     0     0     1     0     0
## X1256     0     0     1     0     0     0     0     0     1     0     1     0
## X1257     0     0     0     0     0     0     0     1     0     1     0     0
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     0     0     0     0     0     1     0     0     0     0
## X1262     0     0     0     0     0     0     0     0     0     1     1     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     0     0     0     1     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     1     1     0
## X1267     0     0     0     0     0     0     0     0     0     1     1     0
## X1268     0     1     0     0     0     0     0     0     0     0     0     1
## X1273     0     0     0     0     0     0     0     1     0     1     0     0
## X1274     0     0     0     0     0     0     0     0     0     0     0     1
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     1     0     0     0     0     0     0     1     0     0
## X1277     0     0     0     0     0     0     0     1     0     0     0     0
## X1278     0     0     1     0     0     0     0     1     0     1     1     0
## X1279     0     0     1     0     0     0     0     0     0     1     0     0
## X1281     0     0     0     0     0     0     0     1     0     0     0     0
## X1282     0     0     0     0     0     0     0     1     0     1     0     0
## X1283     0     0     1     0     0     0     0     1     0     1     0     0
## X1284     0     0     1     0     0     0     0     0     0     1     0     0
## X1285     0     0     0     0     0     0     0     1     0     0     0     0
## X1288     0     0     0     0     0     0     0     1     0     0     0     0
## X1299     0     0     0     0     0     0     0     0     0     1     1     0
## X1301     1     0     0     0     1     0     0     0     0     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     0     0     0     0     0     0
## X1309     0     0     0     0     0     0     0     0     0     0     1     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      0     1     0     0     0     0     0     0     0     0     0     0
## X448      1     0     0     0     1     0     1     0     0     0     0     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     1     0
## X453      0     0     1     1     0     0     0     0     0     1     0     0
## X454      0     0     0     0     0     1     0     0     0     0     1     0
## X455      0     1     0     0     0     0     0     0     0     0     0     0
## X456      0     0     0     0     1     0     0     0     0     1     0     0
## X458      0     0     0     1     0     1     0     0     0     0     1     0
## X459      1     0     0     0     0     0     0     0     0     0     0     1
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     1     1     0
## X462      0     0     0     1     0     0     0     0     1     0     0     0
## X463      0     0     0     0     0     0     0     0     0     1     1     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     1     0     0     0     0     0     0     1     0
## X466      0     1     0     0     0     0     0     0     0     1     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     1
## X471      0     0     0     0     0     1     0     0     0     0     1     0
## X472      0     0     0     0     0     0     0     0     0     0     0     1
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     1     1     0     0     0     0     0     1     1     1     0
## X477      0     0     0     0     0     0     0     0     0     1     1     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     1
## X480      0     0     1     1     0     0     0     0     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     1     0     1     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     1
## X487      0     0     0     0     0     0     1     0     0     0     1     0
## X488      0     0     0     0     0     0     0     0     0     0     1     1
## X489      0     0     0     0     0     0     0     0     0     1     1     0
## X490      0     0     0     0     0     0     0     0     1     1     1     0
## X491      0     0     0     0     0     0     0     0     0     0     0     1
## X492      0     0     0     0     1     0     0     0     0     0     0     0
## X493      0     1     0     0     0     0     0     0     0     0     0     1
## X494      0     0     0     0     0     1     0     0     0     0     0     0
## X495      0     0     1     1     0     0     1     0     0     0     0     0
## X496      0     0     0     1     0     0     0     0     0     0     0     0
## X497      0     0     1     1     0     0     0     0     0     1     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     1     1     0
## X501      0     0     0     0     0     0     0     0     0     0     0     0
## X502      0     0     0     0     0     0     0     0     0     1     1     0
## X503      0     0     0     0     0     0     1     0     0     1     1     0
## X505      0     0     0     0     0     0     0     0     0     0     0     0
## X506      0     0     0     1     0     1     0     0     0     0     1     0
## X507      0     0     0     1     0     1     0     0     0     0     0     0
## X508      0     1     0     0     0     0     0     0     1     0     0     0
## X509      1     0     0     0     1     0     1     0     0     1     1     0
## X510      0     0     0     0     0     0     0     0     0     1     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     0     1     0     0     0     0     1     0
## X515      0     0     1     0     0     0     0     0     0     1     0     0
## X516      0     0     0     0     0     0     0     0     1     0     1     0
## X518      0     0     0     0     0     0     0     0     0     1     0     0
## X521      0     0     0     0     0     1     0     0     0     0     1     0
## X523      0     0     0     0     0     0     0     0     0     1     1     0
## X524      0     0     0     0     0     0     0     0     0     0     0     0
## X525      0     0     0     0     1     0     0     0     0     0     0     0
## X526      0     0     0     0     0     0     0     0     0     0     0     1
## X530      0     0     0     0     0     0     0     0     0     1     0     0
## X531      0     0     0     0     0     0     0     0     1     0     1     0
## X532      0     0     0     0     0     0     0     0     0     0     0     0
## X533      0     0     0     0     0     0     0     0     0     0     0     0
## X534      0     0     0     0     0     0     0     0     0     1     1     1
## X535      0     0     0     0     0     0     0     0     0     1     0     0
## X536      0     0     1     1     0     0     1     0     0     1     0     0
## X538      0     0     0     0     0     0     0     0     0     0     1     0
## X539      0     0     1     1     0     0     1     0     0     1     0     0
## X542      1     0     0     0     1     0     0     0     0     0     0     0
## X543      0     0     0     0     0     0     0     0     0     0     0     1
## X544      1     0     0     0     1     0     1     0     0     1     1     0
## X545      0     0     0     0     0     0     1     0     0     0     0     1
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     1     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     0     0     0     0     1     0     1     0     1     0
## X553      0     0     0     0     0     0     0     0     0     1     0     0
## X554      0     0     0     0     0     0     1     0     0     0     0     0
## X556      0     0     0     0     0     0     0     0     0     1     1     0
## X557      0     0     0     0     0     1     1     0     0     0     0     0
## X558      0     0     0     0     0     0     0     0     0     1     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     1
## X560      0     0     0     0     0     0     0     0     0     1     1     0
## X561      0     0     0     0     0     0     0     0     0     1     0     0
## X562      0     0     0     0     0     0     0     0     1     1     1     0
## X563      0     1     0     0     0     0     0     0     0     1     1     0
## X565      0     0     0     0     0     0     0     0     0     0     0     1
## X566      0     0     0     0     0     1     0     0     0     0     0     0
## X567      0     0     0     0     0     0     0     0     0     0     0     0
## X568      0     0     0     0     0     0     0     0     0     0     0     0
## X569      0     0     0     0     0     0     0     0     1     1     1     0
## X571      0     0     0     0     0     1     0     0     0     0     0     0
## X572      0     0     0     0     0     1     0     0     0     0     1     1
## X574      0     0     0     0     1     0     0     0     0     0     0     0
## X576      0     0     0     0     0     1     0     0     0     0     1     0
## X577      0     0     1     0     0     0     0     0     0     1     0     0
## X579      0     0     0     1     0     0     0     0     0     1     0     0
## X580      0     0     0     0     0     0     0     0     0     0     0     0
## X582      1     0     0     0     0     0     0     0     0     0     0     1
## X583      0     0     0     0     0     0     0     0     0     0     1     0
## X584      0     0     0     0     1     0     1     0     0     1     1     0
## X586      0     0     0     0     0     0     0     0     0     1     1     0
## X587      0     0     1     1     0     0     0     0     0     1     0     0
## X588      0     0     0     0     0     0     0     0     0     0     0     1
## X589      0     1     0     0     0     0     0     0     0     0     0     0
## X591      0     0     1     1     0     0     1     0     0     0     0     0
## X592      0     0     0     0     0     0     0     0     1     1     1     0
## X593      0     0     0     0     0     0     0     0     0     1     1     0
## X594      0     0     0     0     0     0     0     0     0     0     0     1
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     0     0     0     0     0     0     0     0     0     1     1
## X597      0     0     0     0     0     0     1     0     0     1     1     0
## X598      0     1     0     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     0     0     0     0     0     0     0     0     0
## X603      0     1     0     0     0     0     0     0     0     0     0     1
## X604      0     0     0     0     0     0     0     0     0     0     0     1
## X605      1     0     0     0     1     0     0     0     0     0     0     0
## X606      0     0     0     0     0     0     0     0     0     1     1     1
## X608      0     0     0     0     0     0     0     0     0     1     0     0
## X609      0     0     0     1     0     1     0     0     0     0     1     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     0     0     0     0     0     0     0     0     0     0
## X613      0     0     0     0     0     0     0     0     0     1     1     0
## X614      0     0     0     0     0     0     0     0     0     1     1     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     1     0     0     0     0     0     0     1     0     0
## X619      0     0     0     0     0     0     0     0     1     1     1     0
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     0     0     0     0     0     1     1     0
## X622      0     0     1     0     0     0     0     0     0     1     0     0
## X623      0     0     0     0     0     0     0     0     0     1     1     0
## X625      1     0     0     0     0     0     0     0     0     0     0     0
## X628      1     0     0     0     1     0     0     0     0     0     0     0
## X629      0     1     0     0     0     0     0     0     0     0     0     0
## X630      0     0     0     0     0     0     0     0     1     1     1     0
## X631      0     0     0     0     0     0     0     0     0     0     0     1
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     1     0     0     0     0     0     0     0     0     0     0
## X635      0     0     0     0     0     0     0     0     0     0     1     0
## X636      1     0     0     0     1     0     0     0     0     0     0     0
## X637      1     0     0     0     1     0     0     0     0     0     0     0
## X638      0     1     0     0     0     0     0     0     0     1     1     0
## X639      0     0     0     1     0     1     0     0     0     0     1     0
## X641      0     0     0     0     0     0     0     0     0     1     0     1
## X648      0     0     0     0     0     0     0     0     0     1     1     0
## X650      0     0     0     0     0     0     0     0     0     0     0     0
## X651      0     0     0     0     0     0     0     0     0     1     0     1
## X653      0     1     0     0     0     0     0     0     0     0     0     0
## X654      0     0     0     0     0     0     1     0     0     0     1     1
## X655      0     0     0     0     0     0     0     0     0     1     1     0
## X656      0     0     1     0     0     0     0     0     0     1     0     0
## X657      0     0     0     0     0     1     0     0     0     0     1     1
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     1     1     1     0
## X1084     0     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     1     0     0
## X1088     0     0     0     0     0     0     0     0     0     0     0     0
## X1089     0     0     1     0     0     0     0     0     1     1     0     0
## X1090     0     1     0     0     0     0     0     0     1     0     1     0
## X1091     0     0     0     0     0     0     0     0     1     0     1     1
## X1092     1     0     0     0     0     0     0     0     0     0     0     1
## X1093     0     0     0     0     0     0     0     0     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     1     0
## X1095     0     0     0     0     0     0     0     0     0     1     1     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     0     0     1     0     0     0     0     0     0     0
## X1101     0     0     0     0     0     0     0     0     0     0     0     0
## X1103     1     0     0     0     1     0     0     0     0     0     1     0
## X1104     0     0     0     1     0     1     0     0     0     1     1     0
## X1105     0     0     0     1     0     0     0     0     0     0     0     0
## X1106     0     0     0     0     0     0     0     0     0     0     0     1
## X1108     0     0     0     0     0     0     0     0     0     0     1     0
## X1110     0     0     0     0     0     0     0     0     0     1     0     0
## X1112     0     0     0     1     0     1     0     0     0     0     1     0
## X1113     0     0     0     0     0     0     0     0     0     0     1     0
## X1115     0     0     0     0     0     0     0     0     0     1     1     0
## X1116     0     0     0     0     0     0     0     0     0     0     0     0
## X1117     0     0     0     0     0     0     0     0     0     1     1     0
## X1119     0     1     0     0     0     0     0     0     0     0     0     0
## X1120     1     0     0     0     1     0     0     0     0     0     0     0
## X1121     0     1     0     1     1     0     0     0     0     0     0     0
## X1122     1     0     0     0     1     0     0     0     0     0     0     0
## X1124     0     0     0     0     1     0     0     0     0     1     1     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     1     0     0
## X1127     0     0     0     0     0     0     0     0     1     1     1     0
## X1128     0     0     0     0     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     1     0
## X1130     0     1     0     0     0     0     0     0     1     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     0     0     0     0     0     1     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     1
## X1136     0     0     0     0     0     0     0     0     0     0     1     0
## X1138     0     1     0     0     0     0     0     0     0     0     0     0
## X1139     1     0     0     0     1     0     0     0     0     0     0     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     1     0     0     0     0     0     0     0     0     1     0     0
## X1144     0     0     0     0     0     0     1     0     1     0     1     0
## X1145     0     0     0     0     0     0     0     0     0     0     0     0
## X1146     0     0     0     0     0     0     0     0     0     0     0     1
## X1147     0     0     0     0     0     0     0     0     0     0     0     1
## X1149     0     0     0     0     0     0     0     0     0     1     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     1
## X1151     0     0     0     0     0     0     0     0     0     0     0     0
## X1152     0     0     0     0     0     0     0     0     0     0     1     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     1     0     0     0     0     0     0     0     0     0     1
## X1158     0     0     0     0     0     0     0     0     0     0     1     0
## X1159     0     0     1     1     0     0     0     0     0     0     0     0
## X1160     0     0     0     0     1     0     0     0     0     1     1     0
##       FP049 FP050 FP051 FP052 FP053 FP054 FP055 FP056 FP057 FP058 FP059 FP060
## X661      0     0     0     0     0     0     0     1     0     0     0     0
## X662      0     0     1     0     0     0     0     0     0     0     0     1
## X663      0     0     0     0     0     0     0     0     0     0     0     1
## X665      0     0     0     0     0     1     0     0     0     0     0     0
## X668      0     0     0     0     0     0     0     0     0     0     0     0
## X669      0     0     0     0     0     0     0     0     0     0     0     0
## X670      1     0     0     0     1     0     0     0     1     0     0     0
## X671      0     1     0     0     0     0     0     0     0     0     1     1
## X672      0     0     0     0     0     1     0     0     0     0     0     1
## X673      0     1     0     1     0     1     0     0     0     1     0     0
## X674      0     0     0     0     0     0     0     0     1     0     0     0
## X676      0     0     0     0     0     1     0     0     0     0     0     1
## X677      0     0     0     0     0     0     0     1     0     0     0     0
## X678      1     0     0     0     1     0     0     1     0     0     0     0
## X679      0     0     0     0     0     0     0     0     1     1     0     0
## X682      0     0     1     0     0     0     0     1     0     0     0     1
## X683      0     0     0     0     0     0     0     0     0     0     0     1
## X684      1     0     1     0     1     0     0     0     0     0     0     1
## X685      0     0     0     0     0     1     0     0     0     0     0     1
## X686      0     0     0     0     0     0     0     1     0     0     0     0
## X688      1     0     0     0     1     0     0     0     1     0     0     1
## X689      0     0     1     0     0     0     0     0     1     0     0     0
## X690      0     0     0     0     0     0     0     0     0     0     0     1
## X691      0     0     0     0     0     0     0     0     0     0     0     0
## X692      0     0     0     0     0     0     0     0     1     1     0     1
## X693      0     1     0     0     0     0     0     0     0     0     1     0
## X695      0     0     1     0     0     0     0     0     0     0     0     1
## X696      0     0     0     1     0     0     0     1     0     0     0     0
## X698      0     0     0     0     0     0     0     0     0     0     0     1
## X699      1     0     0     0     0     0     0     0     0     0     0     0
## X700      0     1     0     0     0     0     0     0     0     0     1     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     1     0     0     0     1     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     1     0     0     0     0
## X706      0     0     1     0     0     0     0     0     0     0     0     1
## X708      0     0     0     0     0     0     0     0     0     1     0     0
## X709      0     1     0     0     0     1     0     0     0     0     0     0
## X711      0     0     0     0     0     1     0     0     0     0     0     1
## X712      0     0     0     0     0     0     1     0     0     0     0     1
## X713      0     0     0     1     0     0     0     0     1     0     0     1
## X714      0     0     0     0     0     1     0     0     0     0     0     1
## X715      1     0     0     1     1     0     0     0     0     0     0     1
## X717      1     0     0     0     1     0     0     1     0     0     0     0
## X718      1     0     1     0     1     0     0     0     0     0     0     0
## X721      0     0     0     0     0     0     0     0     0     0     0     0
## X722      0     0     0     0     0     0     0     0     1     1     0     0
## X723      0     1     0     0     0     0     0     0     0     0     1     0
## X724      0     0     1     0     0     0     0     0     0     1     0     0
## X726      1     0     1     0     1     0     0     0     0     0     0     1
## X728      0     0     0     0     0     0     0     0     0     1     0     1
## X729      1     0     0     0     1     0     0     0     0     0     0     0
## X731      0     1     0     0     0     0     0     0     0     0     1     0
## X732      1     0     0     0     0     0     0     0     0     1     0     0
## X733      0     0     0     0     0     0     0     0     0     0     0     0
## X734      1     0     0     0     0     0     0     0     0     0     0     0
## X735      0     0     0     0     0     1     0     0     0     0     0     1
## X736      0     1     0     1     0     0     0     0     0     0     1     1
## X737      0     0     1     0     0     0     0     1     0     0     0     0
## X739      0     0     0     0     0     0     0     0     0     0     0     1
## X740      1     0     1     0     1     0     0     0     0     0     0     1
## X741      0     1     0     0     0     0     0     0     0     0     1     1
## X742      0     1     0     0     0     0     0     0     0     0     1     1
## X743      0     0     0     0     1     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     1     0     0     0     0
## X746      0     0     0     0     0     0     0     0     1     0     0     1
## X747      0     1     0     0     0     0     0     0     0     0     1     1
## X749      1     0     1     0     1     0     0     0     0     0     0     1
## X752      0     1     0     0     0     1     0     0     0     0     0     1
## X753      0     1     0     0     0     1     0     0     0     0     0     0
## X754      0     0     1     0     0     1     0     0     0     0     0     0
## X755      0     0     0     0     0     0     0     1     0     0     0     0
## X757      0     1     0     0     0     0     0     0     0     0     1     0
## X758      0     0     1     0     0     0     0     0     0     0     0     1
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      1     0     0     0     1     0     0     0     0     1     0     0
## X761      0     0     0     0     0     1     0     0     0     0     0     1
## X762      0     0     0     0     0     0     0     0     1     0     0     0
## X763      0     0     0     1     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     1     0     0     0     0
## X765      1     0     0     0     1     0     0     0     0     0     0     1
## X767      0     0     0     0     0     1     0     0     0     0     0     1
## X768      0     0     0     0     0     0     0     1     0     0     0     0
## X770      1     0     1     0     1     0     0     0     0     0     0     0
## X771      0     0     0     0     0     0     0     0     1     0     0     0
## X772      1     0     0     0     0     0     0     0     0     0     0     0
## X773      0     1     0     0     0     0     0     0     0     0     1     0
## X774      0     1     0     0     0     0     0     0     0     0     1     0
## X775      0     0     0     0     0     0     0     0     0     1     0     1
## X776      1     1     1     0     1     0     0     0     0     0     1     1
## X777      0     0     0     0     0     0     0     0     0     0     0     0
## X778      0     0     0     0     0     1     0     0     0     0     0     1
## X779      0     0     0     1     0     0     0     1     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      0     1     0     0     0     1     0     0     0     0     0     1
## X782      0     0     0     0     0     0     0     0     1     0     0     0
## X784      0     0     1     0     0     0     1     0     0     0     0     1
## X786      0     1     0     0     0     0     0     0     0     0     1     0
## X787      1     0     0     0     1     0     0     0     0     1     0     0
## X788      0     0     0     0     0     1     0     0     0     0     0     0
## X789      1     0     0     0     0     0     0     0     0     0     0     0
## X791      1     0     0     0     1     0     0     0     0     0     0     0
## X792      0     0     1     0     0     0     0     0     0     0     0     0
## X794      0     1     0     0     0     0     0     0     0     0     1     1
## X798      0     0     0     0     0     0     0     1     0     0     0     0
## X799      0     0     0     0     0     0     0     0     0     0     0     0
## X800      0     0     0     0     0     1     0     0     0     0     0     1
## X804      0     0     1     0     0     0     0     0     0     0     0     0
## X805      0     0     0     0     0     1     0     0     0     0     0     1
## X807      0     0     0     0     0     0     0     0     0     0     0     1
## X808      0     0     1     0     0     0     0     0     1     1     0     1
## X809      0     0     0     0     0     0     0     0     1     1     0     1
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     1     0     0     0     0     0     0     0     0     1     1
## X814      0     0     0     0     0     0     0     0     0     0     0     1
## X818      1     0     0     0     1     0     0     0     0     0     0     0
## X819      1     0     0     1     1     0     0     0     0     0     0     0
## X820      0     1     0     0     0     0     0     0     0     0     1     1
## X821      0     0     0     0     1     0     0     0     0     1     0     0
## X822      0     0     0     0     0     0     0     1     0     0     0     0
## X823      0     0     0     0     0     0     0     1     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     1
## X828      1     0     0     0     0     0     0     0     0     0     0     0
## X829      0     0     0     0     0     0     0     0     1     0     0     1
## X831      1     0     0     0     1     0     0     0     1     0     0     0
## X832      1     0     0     0     0     0     0     0     0     1     0     0
## X833      1     0     0     0     1     0     0     0     0     0     0     0
## X834      1     0     0     0     1     0     0     0     1     0     0     0
## X835      1     0     0     0     1     0     0     0     0     0     0     0
## X836      1     0     0     0     1     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     1     1     0     0     0
## X840      0     0     0     0     0     0     0     1     0     0     0     0
## X841      1     0     0     0     1     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     1     0     0     0     0
## X843      1     0     0     0     1     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     1     0     0
## X848      1     0     0     0     0     0     0     0     0     0     0     0
## X849      1     0     0     0     1     0     0     0     0     0     0     0
## X851      0     0     0     0     0     1     0     0     0     0     0     1
## X854      1     0     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     1     0     0     0     0
## X856      1     0     0     0     1     0     0     0     0     0     0     0
## X857      1     0     0     0     0     0     0     0     0     0     0     0
## X858      1     0     0     0     0     0     0     0     0     0     0     0
## X859      1     0     0     0     1     0     0     0     0     0     0     0
## X860      1     0     0     0     1     0     0     0     0     0     0     0
## X862      0     0     0     0     0     0     0     0     0     1     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     1     0     0     0     0
## X865      0     0     0     0     0     0     0     1     0     0     0     0
## X866      1     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     1     0     0     0     0
## X869      0     0     0     0     0     0     0     0     1     1     0     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      1     0     0     0     0     0     0     0     0     0     0     0
## X872      0     0     0     0     1     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     1     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     1     0     0     0     0     0     0     1     0     1
## X1191     0     1     0     0     0     0     0     0     0     0     1     0
## X1192     0     0     0     0     0     1     0     0     0     0     0     1
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     0     0     1     0     0     0     0     0     1
## X1195     1     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     1     1     0     0
## X1198     1     0     0     0     1     0     0     0     0     0     0     0
## X1199     0     0     0     0     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     1
## X1201     0     0     1     0     0     0     0     0     0     0     0     1
## X1202     0     0     0     0     0     1     0     0     0     0     0     1
## X1203     0     1     0     0     0     0     0     0     0     0     1     0
## X1204     0     0     0     0     0     0     0     0     1     0     0     1
## X1205     0     0     0     1     0     0     0     0     0     0     0     1
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     1     0     0     0     0     0     0     0     0     0
## X1208     0     0     0     0     0     1     0     0     0     0     0     1
## X1209     0     0     0     0     0     0     0     0     0     0     0     1
## X1210     0     0     0     0     0     1     0     0     0     0     0     1
## X1212     0     0     0     0     0     1     1     0     0     0     0     1
## X1213     0     0     1     0     0     0     0     0     0     0     0     0
## X1215     0     0     0     0     0     1     0     0     0     0     0     1
## X1216     0     0     0     0     0     0     0     1     0     0     0     0
## X1217     1     0     0     0     1     0     0     0     1     0     0     1
## X1219     0     0     0     0     0     0     1     0     0     0     0     1
## X1220     1     0     0     0     1     0     0     0     0     0     0     1
## X1221     0     1     0     0     0     0     0     0     0     0     1     0
## X1222     0     0     0     0     0     0     0     0     1     0     0     0
## X1226     0     0     1     0     0     0     0     0     0     0     0     0
## X1228     0     0     1     0     0     0     0     0     0     0     0     1
## X1229     0     0     0     0     0     1     0     0     0     0     0     1
## X1230     0     0     1     0     0     0     0     0     1     1     0     1
## X1231     0     0     0     0     0     0     0     0     1     1     0     0
## X1233     0     0     0     0     0     1     0     0     0     0     0     1
## X1234     0     0     0     0     0     0     0     1     0     0     0     0
## X1236     0     0     0     0     0     1     0     0     0     0     0     1
## X1237     0     0     0     0     0     0     0     0     0     0     0     1
## X1239     0     0     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     1     0     0     0     1     0     0     0     0     1     0     0
## X1245     0     1     0     0     0     0     0     0     1     1     0     0
## X1246     0     0     0     0     0     0     1     1     0     0     0     1
## X1247     0     0     1     0     0     0     0     0     0     1     0     1
## X1249     0     0     1     0     0     0     0     0     0     0     0     1
## X1250     0     0     0     0     0     0     0     0     0     0     0     1
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     1     0     1     0     1     0     0     0     0     0     0     1
## X1254     1     0     0     0     1     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     1     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     1     0     0     0     1     0     0     0     0     0     0     0
## X1259     0     0     0     0     0     0     0     0     0     0     0     1
## X1260     1     0     0     0     1     0     0     0     0     0     0     0
## X1262     0     0     1     0     0     0     0     0     0     1     0     1
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     1     0     0     0     1     0     0     0     0     0     0     0
## X1266     1     0     0     0     1     0     0     0     1     0     0     0
## X1267     0     0     1     0     0     0     1     0     0     0     0     1
## X1268     0     1     0     0     0     0     0     0     0     0     1     1
## X1273     0     0     0     0     0     0     0     0     0     1     0     0
## X1274     0     1     0     0     0     0     0     0     0     0     1     1
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     1     0     0     0     0
## X1277     1     0     0     0     1     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     1     1     0     0     0
## X1279     0     0     0     0     0     0     0     1     0     0     0     0
## X1281     1     0     0     0     0     0     0     0     0     0     0     0
## X1282     1     0     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     1     0     0     0     0
## X1284     0     0     0     0     0     0     0     1     0     0     0     0
## X1285     1     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     0     0     0     0     0     0     1     1     0     0
## X1301     0     0     0     0     0     1     0     0     0     0     0     1
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     0     0     0     0     0     1
## X1309     1     0     0     0     1     0     0     0     0     0     0     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      1     0     1     0     1     0     0     0     0     0     0     1
## X448      1     0     0     0     0     0     1     0     0     0     0     1
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      1     0     0     0     1     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     1     1     0     0     0     1
## X454      0     0     0     1     0     0     0     0     0     0     0     1
## X455      1     0     1     0     1     0     0     0     0     0     0     1
## X456      0     0     0     1     0     0     0     0     0     1     0     1
## X458      0     0     0     1     0     0     0     0     0     0     0     1
## X459      0     1     0     0     0     0     0     0     0     0     1     0
## X460      0     1     0     0     0     0     0     0     0     0     0     0
## X461      1     0     0     0     1     0     0     0     0     0     0     1
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     1     0     0     0     0     0     1     1     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     1     0     0     1     0     0     0     0     0     1
## X466      1     0     1     0     0     0     0     0     0     0     0     1
## X468      0     1     0     0     0     0     0     0     0     0     1     1
## X471      0     0     0     1     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     1     0     0     0     0     0     0     0     0     1     0
## X476      0     0     0     0     0     0     0     1     0     0     0     1
## X477      0     0     0     1     0     0     0     0     1     0     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     1     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     1     0     0     0     0     0     0     0     0
## X486      0     1     0     0     0     0     0     0     0     0     1     1
## X487      0     0     1     0     0     0     0     0     0     0     0     1
## X488      0     0     0     0     0     0     1     0     0     0     0     1
## X489      1     0     0     0     0     0     0     0     1     0     0     1
## X490      0     0     0     0     0     0     0     0     0     0     0     1
## X491      0     1     0     0     0     0     0     0     0     0     0     0
## X492      0     1     0     0     0     0     0     0     0     0     0     0
## X493      0     1     0     0     0     0     0     0     0     0     1     1
## X494      0     0     0     0     0     0     0     0     0     0     0     1
## X495      0     0     1     0     0     0     0     0     0     0     0     1
## X496      0     0     0     0     0     0     0     0     0     0     0     0
## X497      0     0     0     0     0     0     0     1     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     1
## X499      0     0     0     0     0     0     0     0     1     0     0     0
## X501      1     0     1     0     0     0     0     0     0     0     0     1
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      0     0     1     0     0     0     0     0     1     0     0     1
## X505      1     0     0     1     1     0     0     0     0     0     0     0
## X506      0     0     0     1     0     0     0     0     0     0     0     0
## X507      0     0     0     0     0     0     0     0     0     0     0     1
## X508      0     0     0     0     0     0     0     0     0     0     0     1
## X509      0     0     0     0     0     0     1     0     0     0     0     1
## X510      0     0     1     0     0     0     0     0     0     1     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     1     0     0     0     0     0     0     0     0
## X515      0     0     0     0     0     0     1     1     0     0     0     1
## X516      0     0     1     0     0     0     0     0     0     0     0     1
## X518      0     0     1     1     0     0     0     0     0     0     0     1
## X521      0     0     0     1     0     0     0     0     0     0     0     1
## X523      0     0     0     0     0     0     0     0     1     1     0     1
## X524      1     0     0     1     0     0     0     0     0     0     0     0
## X525      0     1     0     0     0     0     0     0     0     0     1     0
## X526      0     1     0     0     0     0     0     0     0     0     1     1
## X530      0     0     1     0     0     0     0     0     0     1     0     0
## X531      0     0     0     0     0     0     0     0     0     0     0     0
## X532      0     0     0     0     0     0     0     0     0     0     0     0
## X533      0     0     0     0     0     0     0     0     0     0     0     0
## X534      0     0     0     0     0     0     0     0     1     1     0     0
## X535      1     0     0     0     0     0     0     0     0     0     0     0
## X536      0     0     0     0     0     0     0     1     0     0     0     1
## X538      0     0     0     0     0     0     1     0     0     0     0     1
## X539      0     0     0     0     0     0     0     1     0     0     0     1
## X542      0     0     0     0     0     1     0     0     0     0     0     1
## X543      0     1     0     0     0     0     0     0     0     0     0     0
## X544      0     0     0     0     0     0     1     0     0     0     0     1
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     1     0     0     0     0     0     0     0     0     1
## X549      1     0     0     0     1     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     1     0     0     0     0     0     0     0     0     1
## X553      0     0     0     1     0     0     0     0     0     1     0     1
## X554      0     0     0     0     0     0     0     0     0     0     0     0
## X556      0     0     1     0     0     0     1     0     1     1     0     1
## X557      0     0     0     0     0     0     0     0     0     0     0     1
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     1     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      1     0     0     0     1     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     1     0     0     0
## X563      0     0     0     0     0     0     0     0     1     1     0     1
## X565      0     1     0     0     0     0     0     0     0     0     0     0
## X566      1     0     0     1     0     0     0     0     0     0     0     0
## X567      0     0     0     0     0     0     0     0     0     0     0     0
## X568      1     0     0     1     1     0     0     0     0     0     0     0
## X569      0     0     0     0     0     0     0     0     0     0     0     1
## X571      0     0     0     0     1     0     0     0     0     0     0     1
## X572      0     1     0     1     0     0     0     0     0     0     0     1
## X574      0     1     0     0     0     0     0     0     0     0     0     0
## X576      0     0     0     1     0     0     0     0     0     0     0     1
## X577      0     0     1     0     0     0     0     1     0     0     0     1
## X579      0     0     0     1     0     0     0     0     0     1     0     0
## X580      0     0     0     0     1     0     0     0     0     0     0     1
## X582      0     1     0     0     0     0     0     0     0     0     1     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     0     1     0     0     0     0     0     1     0     0     1
## X586      0     0     0     0     0     0     0     0     1     0     0     1
## X587      0     0     0     0     0     0     0     1     0     0     0     0
## X588      0     0     0     0     0     1     0     0     0     0     0     0
## X589      0     0     0     0     0     1     0     0     0     0     0     1
## X591      0     0     1     0     0     0     0     0     0     0     0     1
## X592      0     0     0     0     0     0     0     0     1     1     0     0
## X593      1     0     0     0     1     0     0     0     1     0     0     1
## X594      0     1     0     0     0     0     0     0     0     0     1     1
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     0     0     0     0     0     0     0     0     0     0     0
## X597      0     0     1     0     0     0     0     0     1     0     0     1
## X598      0     1     0     0     0     0     0     0     0     0     1     1
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     1     0     0     0     0     0     0     0     0     1
## X603      0     1     0     0     0     0     0     0     0     0     1     1
## X604      0     0     0     0     0     1     0     0     0     0     0     0
## X605      0     0     0     0     0     1     0     0     0     0     0     0
## X606      0     0     0     0     0     0     0     0     1     1     0     1
## X608      1     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     1     0     0     0     0     0     0     0     0
## X611      0     1     0     0     0     0     0     0     0     0     1     0
## X612      1     0     0     1     0     0     0     0     0     0     0     1
## X613      1     0     0     0     1     0     0     0     0     0     0     0
## X614      1     0     0     0     0     0     0     0     1     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     1     0     0     0     0     1     0     0     0     1
## X619      0     0     0     0     0     0     0     0     1     1     0     0
## X620      1     0     0     0     1     0     0     0     0     0     0     0
## X621      0     0     0     1     0     0     1     0     1     1     0     1
## X622      0     0     0     0     0     0     0     1     0     0     0     0
## X623      1     0     0     1     1     0     0     0     1     0     0     1
## X625      1     0     1     0     1     0     0     0     0     0     0     1
## X628      0     0     0     0     0     1     0     0     0     0     0     1
## X629      0     0     0     0     0     1     0     0     0     0     0     1
## X630      0     0     1     0     0     0     0     0     1     0     0     0
## X631      0     1     0     0     0     0     0     0     0     0     1     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      1     0     1     0     1     0     0     0     0     0     0     1
## X635      0     1     0     0     0     0     0     0     0     0     0     0
## X636      0     0     0     0     0     1     0     0     0     0     0     1
## X637      0     0     0     0     0     1     0     0     0     0     0     0
## X638      0     0     0     0     0     0     0     0     1     1     0     1
## X639      0     0     0     1     0     0     0     0     0     0     0     0
## X641      0     1     1     0     0     1     1     0     0     1     0     1
## X648      0     0     0     0     0     0     0     0     0     0     0     1
## X650      0     0     1     0     0     0     0     0     0     0     0     1
## X651      0     1     1     0     0     1     0     0     0     1     0     0
## X653      0     0     0     0     0     1     0     0     0     0     0     1
## X654      0     0     1     0     0     0     0     0     0     0     0     1
## X655      0     0     0     0     0     0     0     0     1     1     0     0
## X656      1     0     0     0     0     0     0     1     0     0     0     0
## X657      0     1     0     1     0     0     0     0     0     0     0     1
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     1     1     0     1
## X1084     0     0     0     0     0     1     0     0     0     0     0     1
## X1086     1     0     0     0     1     0     0     0     0     1     0     0
## X1088     1     0     0     1     1     0     0     0     0     0     0     1
## X1089     0     0     0     0     0     0     0     1     0     0     0     0
## X1090     0     0     0     0     0     0     1     0     0     0     0     1
## X1091     0     1     0     0     0     0     1     0     0     0     0     1
## X1092     0     1     0     0     0     0     0     0     0     0     0     0
## X1093     0     0     0     0     0     0     0     0     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     1
## X1095     0     0     0     0     0     0     0     0     1     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     0     0     0     1     0     0     0     0     0     0
## X1101     0     0     0     0     0     0     0     0     0     0     0     0
## X1103     0     0     0     0     0     0     1     0     0     0     0     1
## X1104     0     0     0     1     0     0     0     0     0     0     0     0
## X1105     0     0     0     0     0     0     0     0     0     0     0     0
## X1106     0     1     0     0     0     0     0     0     0     0     1     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     1     0     0     0     1     0     0     0     0     1     0     0
## X1112     0     0     0     1     0     0     0     0     0     0     0     0
## X1113     0     0     0     0     0     0     1     0     0     0     0     1
## X1115     0     0     0     0     0     0     0     0     1     1     0     1
## X1116     1     0     1     0     1     0     0     0     0     0     0     0
## X1117     0     0     0     1     0     0     0     0     1     0     0     1
## X1119     0     0     0     0     0     0     0     0     0     0     0     1
## X1120     0     0     0     0     0     1     0     0     0     0     0     1
## X1121     0     0     0     0     0     0     0     0     0     0     0     1
## X1122     0     0     0     0     0     1     0     0     0     0     0     1
## X1124     0     0     0     0     0     0     0     0     1     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     1     0     0     0     1     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     1     0     0     0
## X1128     1     0     0     1     1     0     0     0     0     0     0     0
## X1129     1     0     0     0     1     0     0     0     0     0     0     0
## X1130     1     0     0     0     0     0     0     0     0     0     0     1
## X1131     0     1     0     0     0     0     0     0     0     0     1     0
## X1133     0     0     1     0     0     0     0     0     0     1     0     0
## X1135     0     1     0     0     0     0     0     0     0     0     1     0
## X1136     1     0     0     0     1     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     0     0     0     0     0     0     1
## X1139     0     0     0     0     0     1     0     0     0     0     0     1
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     1     0     0     0     1     0     0     0     0     0     0     0
## X1143     0     0     1     0     0     1     0     0     0     1     0     0
## X1144     0     0     0     0     0     0     1     0     0     0     0     1
## X1145     0     0     0     0     0     0     0     0     0     0     0     0
## X1146     0     1     0     0     0     0     0     0     0     0     1     1
## X1147     0     0     0     0     0     0     0     0     0     0     0     0
## X1149     1     0     0     1     1     0     0     0     0     0     0     1
## X1150     0     1     0     0     0     0     0     0     0     0     1     1
## X1151     0     1     0     0     0     0     0     0     0     0     1     0
## X1152     0     1     1     0     0     0     0     0     0     0     0     1
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     1     0     0     0     0     0     0     0     0     1     1
## X1158     0     0     0     0     0     0     1     0     0     0     0     1
## X1159     0     0     0     0     0     0     0     0     0     0     0     1
## X1160     0     0     1     0     0     0     0     0     1     0     0     1
##       FP061 FP062 FP063 FP064 FP065 FP066 FP067 FP068 FP069 FP070 FP071 FP072
## X661      0     0     1     0     1     1     1     0     1     1     0     0
## X662      0     0     1     1     1     0     1     1     0     1     0     1
## X663      1     1     0     1     0     1     0     0     1     0     0     1
## X665      0     0     0     0     0     1     0     0     1     1     0     0
## X668      0     0     1     1     1     1     1     1     1     0     0     0
## X669      0     1     1     1     0     1     1     1     1     0     0     1
## X670      0     0     1     0     1     1     1     1     0     1     1     0
## X671      1     1     0     1     0     1     0     0     1     0     0     1
## X672      1     1     0     0     1     1     0     0     1     1     1     1
## X673      0     1     1     0     1     1     1     1     0     0     1     1
## X674      1     1     0     0     1     1     0     0     1     1     1     1
## X676      1     1     0     0     1     1     0     0     1     1     1     1
## X677      0     0     0     0     1     1     0     0     1     0     0     0
## X678      0     0     0     0     1     0     0     0     0     0     0     0
## X679      0     0     0     1     0     1     0     0     1     0     0     0
## X682      1     1     0     0     1     1     0     0     1     0     0     1
## X683      1     0     1     1     1     1     1     1     1     1     1     1
## X684      0     0     1     1     1     0     1     1     0     1     0     1
## X685      1     1     0     0     1     1     0     0     1     1     1     1
## X686      0     0     0     1     1     1     0     0     0     0     0     0
## X688      1     1     0     0     1     1     0     0     0     1     0     1
## X689      0     0     1     1     1     1     1     1     1     0     0     0
## X690      1     1     1     1     1     1     1     1     1     1     1     1
## X691      1     1     1     0     1     0     1     1     0     1     0     1
## X692      1     0     1     1     1     1     1     1     1     1     0     1
## X693      1     1     1     0     1     1     1     1     0     1     0     1
## X695      0     0     1     1     1     1     1     1     1     1     0     1
## X696      0     0     1     0     1     0     1     1     0     0     0     0
## X698      1     1     1     0     1     1     1     1     1     1     0     1
## X699      0     0     1     0     1     0     0     0     0     0     1     0
## X700      0     0     0     1     0     1     0     0     0     0     0     0
## X702      0     0     0     1     0     1     0     0     1     0     0     0
## X703      0     0     0     0     0     1     0     0     1     0     1     0
## X704      0     0     0     0     1     1     0     0     1     0     0     0
## X706      1     1     0     1     1     1     0     0     1     1     1     1
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     1     0     0     1     0     1     0
## X711      1     1     0     1     1     1     0     0     1     1     1     1
## X712      1     0     0     1     1     1     0     0     1     0     0     1
## X713      1     1     1     0     1     0     1     1     0     0     1     1
## X714      1     1     0     1     1     1     0     0     1     1     1     1
## X715      1     1     1     1     1     0     1     1     0     0     0     1
## X717      0     0     0     0     1     0     0     0     0     0     0     0
## X718      0     0     1     1     1     1     1     1     0     1     0     0
## X721      0     0     1     0     1     1     1     1     1     1     0     0
## X722      0     1     1     0     0     1     0     1     0     1     1     1
## X723      0     0     0     1     0     1     0     0     0     0     0     0
## X724      0     0     1     0     1     0     1     1     0     0     0     0
## X726      1     0     0     0     1     0     0     0     0     0     1     1
## X728      1     1     0     0     1     1     0     0     0     0     1     1
## X729      0     0     0     0     1     0     0     0     0     0     1     0
## X731      0     0     0     1     0     1     0     0     1     0     0     0
## X732      0     0     0     0     1     0     0     0     0     0     1     0
## X733      0     0     1     1     1     1     1     1     1     0     0     0
## X734      0     0     0     0     1     0     0     0     0     0     1     0
## X735      1     1     0     0     1     1     0     0     0     1     1     1
## X736      1     1     1     1     1     1     1     1     0     0     0     1
## X737      0     0     1     0     1     0     1     1     0     0     0     0
## X739      1     1     0     0     1     1     0     0     1     1     1     1
## X740      1     1     1     1     1     1     1     1     1     1     1     1
## X741      1     1     0     1     0     1     0     0     0     0     0     1
## X742      1     1     0     1     0     1     0     0     1     0     0     1
## X743      0     0     0     0     1     0     0     0     0     0     1     0
## X744      0     0     0     0     1     0     0     0     0     0     0     0
## X746      1     1     0     1     0     1     0     0     1     1     1     1
## X747      0     0     0     1     0     1     0     0     0     0     0     1
## X749      1     1     1     1     1     1     1     1     0     1     0     1
## X752      1     1     0     1     1     1     0     0     1     1     1     1
## X753      0     0     0     1     0     1     0     0     0     0     0     0
## X754      0     0     1     1     1     1     1     1     0     1     0     0
## X755      0     0     0     0     1     1     0     0     1     0     0     0
## X757      0     0     0     1     0     1     0     0     0     0     0     0
## X758      0     0     0     0     1     1     0     0     1     0     0     1
## X759      0     0     1     1     0     1     1     1     1     0     0     0
## X760      0     0     0     0     1     0     0     0     0     0     0     0
## X761      1     1     0     1     1     1     0     0     1     1     1     1
## X762      0     0     0     0     1     0     0     0     0     0     0     0
## X763      0     0     1     0     1     0     1     1     0     0     1     0
## X764      0     0     0     0     1     1     0     0     1     1     0     0
## X765      1     1     0     0     1     1     0     0     1     1     0     1
## X767      1     1     0     0     1     1     0     0     1     1     1     1
## X768      0     0     1     0     1     0     1     0     0     0     0     0
## X770      0     0     1     1     1     1     1     1     1     1     0     0
## X771      1     1     1     0     1     0     1     1     0     1     1     1
## X772      0     0     0     0     1     0     0     0     0     0     1     0
## X773      0     0     0     1     0     1     0     0     0     0     0     0
## X774      0     0     0     1     0     1     0     0     0     0     0     0
## X775      1     1     0     1     0     0     0     0     0     0     0     1
## X776      1     1     1     1     1     1     1     1     0     1     1     1
## X777      0     0     0     1     0     1     0     0     1     1     0     1
## X778      1     1     1     1     1     1     1     1     1     1     1     1
## X779      0     0     1     0     1     0     1     1     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     1     1     0
## X781      1     1     0     1     0     1     0     0     1     1     0     1
## X782      1     1     0     0     1     0     0     0     0     1     0     1
## X784      1     1     1     1     1     0     1     1     0     1     1     1
## X786      0     0     0     1     0     1     0     0     1     0     0     0
## X787      0     0     0     0     1     0     0     0     0     0     1     0
## X788      1     1     0     0     1     1     0     0     1     1     1     1
## X789      0     0     0     0     1     0     0     0     0     0     1     0
## X791      0     0     0     0     1     0     0     0     0     0     1     0
## X792      0     0     1     1     1     1     1     1     1     1     0     0
## X794      1     1     0     1     0     1     0     0     0     0     0     1
## X798      0     0     1     0     1     0     1     0     0     0     0     0
## X799      1     1     1     0     1     0     1     1     0     1     1     1
## X800      0     0     0     0     1     1     0     0     1     1     1     1
## X804      0     0     1     0     1     1     1     1     1     0     1     0
## X805      1     1     0     1     1     1     0     0     1     1     1     1
## X807      1     0     0     1     0     1     0     0     1     1     0     1
## X808      1     1     1     1     1     1     1     1     1     1     1     1
## X809      1     1     0     1     0     1     0     0     0     1     1     1
## X810      0     0     0     0     1     0     0     0     0     1     1     0
## X813      1     1     0     1     0     1     0     0     0     0     0     1
## X814      1     1     1     0     1     1     1     1     1     1     1     1
## X818      0     0     0     0     1     0     0     0     0     0     1     0
## X819      1     1     1     0     1     0     1     1     0     1     1     1
## X820      0     0     0     1     0     1     0     0     0     0     0     1
## X821      0     0     0     0     1     0     0     0     0     1     1     0
## X822      0     0     0     0     1     0     0     0     0     1     0     0
## X823      0     0     1     0     1     0     1     1     0     1     0     0
## X827      0     0     0     0     1     0     0     0     0     1     1     1
## X828      0     0     0     0     1     0     0     0     0     0     1     0
## X829      1     1     1     1     1     1     1     1     1     1     1     1
## X831      0     0     0     0     1     0     0     0     0     1     1     0
## X832      0     0     0     0     1     0     0     0     0     0     1     0
## X833      0     0     0     0     1     0     0     0     0     1     1     0
## X834      0     0     0     0     1     0     0     0     0     1     1     0
## X835      0     0     0     0     1     0     0     0     0     0     0     0
## X836      0     0     0     0     1     0     0     0     0     1     1     0
## X839      0     0     0     0     1     0     0     0     0     1     0     0
## X840      0     0     0     0     1     0     0     0     0     1     0     0
## X841      0     0     0     0     1     0     0     0     0     1     1     0
## X842      0     0     0     1     1     1     0     0     0     0     0     0
## X843      0     0     0     0     1     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     1     0     0     0     0     1     1     0
## X849      0     0     0     0     1     0     0     0     0     0     1     0
## X851      1     0     0     0     1     1     0     0     1     1     0     1
## X854      0     0     0     0     1     0     0     0     0     1     1     0
## X855      0     0     1     0     1     0     1     0     0     1     0     0
## X856      0     0     0     0     1     0     0     0     0     1     1     0
## X857      0     0     0     0     1     0     0     0     0     1     1     0
## X858      0     0     0     0     1     0     0     0     0     1     1     0
## X859      0     0     0     0     1     0     0     0     0     1     1     0
## X860      0     0     0     0     1     0     0     0     0     0     1     0
## X862      0     0     0     0     1     0     0     0     0     1     1     0
## X863      0     0     0     0     1     0     0     0     0     1     1     0
## X864      0     0     0     0     1     1     0     0     0     1     0     0
## X865      0     0     0     0     1     0     0     0     0     1     0     0
## X866      0     0     0     0     1     0     0     0     0     1     1     0
## X867      0     0     0     0     1     0     0     0     0     1     0     0
## X869      0     0     1     0     1     0     1     1     0     1     0     0
## X870      0     0     0     0     1     0     0     0     0     1     1     0
## X871      0     0     0     0     1     0     0     0     0     1     1     0
## X872      0     0     0     0     1     0     0     0     0     1     1     0
## X873      0     0     0     0     1     0     0     0     0     1     0     0
## X875      0     0     0     0     1     0     0     0     0     1     1     0
## X876      0     0     0     0     1     0     0     0     0     1     1     0
## X877      0     0     0     0     1     0     0     0     0     1     1     0
## X1190     0     0     0     0     1     0     0     0     0     0     0     1
## X1191     0     0     0     1     0     1     0     0     0     0     0     0
## X1192     1     1     0     0     1     1     0     0     1     1     1     1
## X1193     0     0     0     0     0     1     0     0     1     1     1     0
## X1194     1     1     0     1     1     1     0     0     1     1     1     1
## X1195     0     0     0     0     1     0     0     0     0     0     1     0
## X1197     0     0     0     1     0     1     0     0     0     0     0     0
## X1198     0     0     0     0     1     0     0     0     0     0     0     0
## X1199     0     0     1     0     1     1     1     1     1     1     0     0
## X1200     1     0     0     1     0     1     0     0     1     1     0     1
## X1201     1     1     1     0     1     1     1     1     1     1     1     1
## X1202     1     1     0     1     1     1     0     0     1     1     1     1
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     1     1     0     1     1     1     1     0     1     1     1
## X1205     1     1     1     0     1     0     1     1     0     0     1     1
## X1206     0     0     0     0     0     0     0     0     0     1     0     0
## X1207     0     0     1     1     1     1     1     1     1     1     0     0
## X1208     1     1     0     0     1     1     0     0     1     1     0     1
## X1209     0     0     0     0     1     0     0     0     0     1     1     1
## X1210     1     1     0     1     1     1     0     0     1     1     1     1
## X1212     1     0     0     0     1     1     0     0     0     1     1     1
## X1213     0     0     1     1     1     1     1     1     1     1     0     0
## X1215     1     1     0     1     1     1     0     0     1     1     1     1
## X1216     0     0     0     0     1     0     0     0     0     0     0     0
## X1217     0     0     1     0     1     0     0     0     0     1     1     1
## X1219     1     0     0     1     1     1     0     0     1     0     0     1
## X1220     1     1     1     1     1     0     0     1     0     0     0     1
## X1221     0     0     0     1     0     1     0     0     0     0     0     0
## X1222     0     0     1     1     1     1     0     1     1     0     0     0
## X1226     0     0     1     1     1     1     1     1     0     1     0     0
## X1228     1     0     0     0     1     1     0     0     1     1     1     1
## X1229     1     1     0     1     1     1     0     0     1     1     1     1
## X1230     1     1     1     0     1     0     1     1     0     0     0     1
## X1231     0     0     0     1     0     0     0     0     0     0     0     0
## X1233     1     1     0     0     1     1     0     0     1     1     1     1
## X1234     0     0     0     0     1     1     0     0     1     0     1     0
## X1236     1     1     0     0     1     1     0     0     1     1     1     1
## X1237     1     0     1     0     1     1     1     0     1     1     1     1
## X1239     0     1     1     1     0     1     1     1     1     0     0     1
## X1242     0     0     0     0     0     0     0     0     0     1     0     0
## X1244     0     0     0     0     1     0     0     0     0     0     0     0
## X1245     0     0     0     1     0     1     0     0     0     0     0     0
## X1246     1     1     0     0     1     1     0     0     0     1     1     1
## X1247     1     1     0     1     1     1     0     0     1     1     1     1
## X1249     1     1     0     1     1     1     0     0     1     1     1     1
## X1250     0     0     0     0     1     0     0     0     0     1     1     1
## X1251     0     0     1     0     1     0     0     0     0     1     1     0
## X1253     1     0     0     1     1     1     0     0     1     1     0     1
## X1254     0     0     0     0     1     0     0     0     0     0     0     0
## X1255     0     0     0     0     1     1     0     0     0     1     0     0
## X1256     0     0     0     0     1     0     0     0     0     1     0     0
## X1257     0     0     0     0     1     0     0     0     0     0     1     0
## X1259     0     0     0     0     1     0     0     0     0     1     1     1
## X1260     0     0     0     0     1     0     0     0     0     0     1     0
## X1262     1     1     0     1     1     1     0     0     1     1     1     1
## X1264     0     0     0     0     1     0     0     0     0     1     1     0
## X1265     0     0     0     0     1     0     0     0     0     1     1     0
## X1266     0     0     0     0     1     0     0     0     0     1     1     0
## X1267     1     0     0     0     1     1     0     0     1     1     1     1
## X1268     1     1     0     1     0     1     0     0     0     0     0     1
## X1273     0     0     0     0     1     0     0     0     0     1     1     0
## X1274     0     0     0     1     0     1     0     0     0     0     0     1
## X1275     0     0     0     0     1     0     0     0     0     1     1     0
## X1276     0     0     0     0     1     0     0     0     0     1     0     0
## X1277     0     0     0     0     1     0     0     0     0     1     1     0
## X1278     0     0     0     0     1     0     0     0     0     1     0     0
## X1279     0     0     0     0     1     0     0     0     0     1     0     0
## X1281     0     0     0     0     1     0     0     0     0     1     1     0
## X1282     0     0     0     0     1     0     0     0     0     1     1     0
## X1283     0     0     0     0     1     0     0     0     0     1     0     0
## X1284     0     0     0     0     1     0     0     0     0     1     0     0
## X1285     0     0     0     0     1     0     0     0     0     1     1     0
## X1288     0     0     0     0     1     0     0     0     0     1     1     0
## X1299     1     1     1     0     1     0     1     1     0     1     1     1
## X1301     1     1     0     0     1     1     0     0     1     1     1     1
## X1302     0     0     0     0     0     0     0     0     0     1     1     0
## X1307     1     0     1     1     1     1     1     0     1     1     1     1
## X1309     0     0     0     0     1     0     0     0     0     1     0     0
## X1310     0     0     0     0     1     0     0     0     0     1     1     0
## X447      1     1     0     1     1     0     0     0     0     0     1     1
## X448      1     1     1     0     1     1     1     1     1     1     1     1
## X451      0     0     0     1     0     1     0     0     1     0     0     0
## X452      0     0     0     1     1     0     0     0     0     0     0     0
## X453      0     0     1     0     1     0     1     0     0     0     0     1
## X454      1     0     1     0     1     1     1     1     1     1     0     1
## X455      1     1     0     0     1     1     0     0     1     0     1     1
## X456      1     1     1     0     1     1     1     1     0     0     1     1
## X458      1     0     1     0     1     1     1     1     0     0     0     1
## X459      0     1     0     1     0     1     0     0     1     0     0     1
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      1     1     0     0     1     0     0     0     0     0     0     1
## X462      0     0     0     1     0     1     0     0     0     0     0     0
## X463      0     0     1     1     1     0     1     1     0     0     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      1     0     1     0     1     1     0     0     0     1     0     1
## X466      1     1     1     1     1     0     1     1     0     1     1     1
## X468      1     1     1     1     0     1     1     1     0     0     0     1
## X471      0     1     1     1     1     1     1     1     0     0     0     1
## X472      0     0     0     1     0     1     0     0     1     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      1     1     0     1     1     0     0     0     0     0     0     1
## X477      1     1     1     0     1     1     1     1     1     1     1     1
## X478      0     0     0     1     0     0     0     0     0     1     0     0
## X479      0     0     0     1     0     1     0     0     0     0     0     0
## X480      0     0     1     0     1     0     1     0     0     0     0     0
## X482      0     0     0     0     0     1     0     0     1     0     0     0
## X483      0     0     0     0     0     1     0     0     1     0     0     0
## X484      0     0     1     0     1     0     1     1     0     0     0     0
## X486      1     1     0     1     0     1     0     0     1     0     0     1
## X487      1     1     1     1     1     1     0     1     1     0     0     1
## X488      1     1     0     1     1     1     0     0     0     0     0     1
## X489      1     1     0     0     1     0     0     0     0     0     1     1
## X490      1     1     1     1     1     1     1     1     1     1     1     1
## X491      0     0     0     1     0     1     0     0     0     0     0     0
## X492      1     1     1     0     1     1     1     1     1     1     1     1
## X493      1     1     0     1     0     1     0     0     0     0     0     1
## X494      1     1     1     0     1     0     1     1     0     1     1     1
## X495      1     0     1     0     1     1     1     1     0     1     0     1
## X496      0     0     1     0     1     0     1     1     0     0     0     0
## X497      0     0     1     0     1     0     1     0     0     0     0     0
## X498      0     0     0     0     1     1     0     0     1     0     1     1
## X499      0     0     0     0     0     1     0     0     1     0     1     0
## X501      1     1     1     0     1     1     1     1     0     1     1     1
## X502      0     0     0     0     0     1     0     0     1     0     0     0
## X503      1     0     1     1     1     1     1     1     1     1     1     1
## X505      0     1     1     0     1     1     1     1     0     0     0     1
## X506      1     0     1     0     1     1     1     1     0     1     0     1
## X507      1     0     1     1     1     1     1     1     1     1     1     1
## X508      1     1     1     1     1     0     1     1     0     1     1     1
## X509      1     1     1     0     1     1     1     1     1     1     1     1
## X510      0     1     1     0     1     0     1     1     0     0     1     1
## X513      0     0     0     1     0     1     0     0     1     0     0     0
## X514      1     0     1     0     1     1     1     1     1     1     1     1
## X515      1     0     0     0     1     0     0     0     0     0     0     1
## X516      0     0     0     1     1     1     0     0     0     0     0     1
## X518      1     1     1     0     1     1     1     1     1     1     0     1
## X521      1     0     1     0     1     1     1     1     1     1     0     1
## X523      1     1     0     1     0     1     0     0     0     0     0     1
## X524      0     1     1     1     1     1     1     1     0     0     1     1
## X525      1     1     1     1     1     1     1     1     0     1     1     1
## X526      0     0     0     1     0     1     0     0     0     0     0     1
## X530      0     0     1     1     1     1     1     1     1     0     0     0
## X531      1     1     1     1     0     1     1     1     1     0     0     1
## X532      0     0     1     1     1     1     1     1     1     1     0     0
## X533      1     0     1     0     1     0     1     1     0     1     1     1
## X534      1     1     1     1     1     1     1     1     0     0     0     1
## X535      0     0     0     0     1     0     0     0     0     0     1     0
## X536      0     0     1     0     1     0     1     1     0     1     0     1
## X538      1     1     0     0     1     0     0     0     0     1     1     1
## X539      0     0     1     0     1     0     1     1     0     1     0     1
## X542      1     1     0     1     1     1     0     0     1     1     1     1
## X543      0     0     0     1     0     1     0     0     0     0     0     0
## X544      1     1     1     0     1     1     1     1     1     1     1     1
## X545      0     0     1     1     0     1     0     1     1     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     1     1     0     0     1     0     0     1
## X549      0     0     0     0     1     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      1     1     1     0     1     1     1     1     1     1     1     1
## X553      1     1     1     0     1     1     1     1     0     0     1     1
## X554      0     0     1     1     1     1     1     1     1     1     0     0
## X556      1     1     0     0     1     0     0     0     0     0     1     1
## X557      1     1     1     1     1     1     1     1     1     0     1     1
## X558      0     0     1     0     1     0     1     0     0     0     0     0
## X559      0     0     0     1     0     1     0     0     1     0     0     0
## X560      0     0     0     0     0     1     0     0     1     0     1     0
## X561      0     0     0     0     1     0     0     0     0     0     0     0
## X562      0     0     0     1     0     1     0     0     1     0     1     0
## X563      1     1     0     0     0     0     0     0     0     1     0     1
## X565      0     0     0     1     0     1     0     0     0     0     0     0
## X566      0     0     1     0     1     0     1     1     0     0     1     0
## X567      1     1     1     0     1     1     1     1     1     1     1     1
## X568      0     1     1     0     1     1     1     1     0     0     0     1
## X569      1     1     1     1     1     1     1     1     1     1     1     1
## X571      1     1     1     0     1     1     1     1     0     1     1     1
## X572      1     1     1     1     1     1     1     1     0     0     0     1
## X574      0     0     0     0     0     1     0     0     0     0     0     0
## X576      1     0     1     0     1     1     1     1     0     0     0     1
## X577      1     1     1     0     1     1     1     1     0     0     0     1
## X579      1     1     1     0     1     1     1     1     0     0     1     1
## X580      1     1     0     0     1     0     0     0     0     1     1     1
## X582      0     1     0     1     0     1     0     0     1     0     0     1
## X583      0     0     0     0     0     1     0     0     1     0     1     0
## X584      1     1     1     0     1     0     1     1     0     1     0     1
## X586      1     1     1     1     1     1     1     1     1     1     1     1
## X587      0     0     1     0     1     0     1     0     0     0     0     0
## X588      1     1     1     1     1     1     1     1     1     1     1     1
## X589      1     1     0     1     1     1     0     0     1     1     1     1
## X591      1     0     1     0     1     1     1     1     0     1     0     1
## X592      0     0     0     1     0     1     0     0     0     0     0     0
## X593      0     0     1     1     1     0     1     1     0     1     1     1
## X594      1     1     0     1     0     1     0     0     1     0     0     1
## X595      0     0     1     1     0     1     1     1     1     0     0     0
## X596      1     1     1     1     1     1     1     1     1     0     0     1
## X597      0     0     1     1     1     1     0     1     1     0     0     1
## X598      1     1     0     1     0     0     0     0     0     0     0     1
## X599      0     0     0     0     0     1     0     0     1     0     0     0
## X600      1     0     0     1     1     1     0     0     1     1     1     1
## X603      1     1     0     1     0     1     0     0     0     0     0     1
## X604      1     1     1     1     1     1     1     1     1     1     1     1
## X605      1     1     0     0     1     1     0     0     1     1     1     1
## X606      1     1     0     1     0     1     0     0     0     0     0     1
## X608      0     0     0     0     1     0     0     0     0     0     1     0
## X609      1     0     1     0     1     0     1     1     0     0     0     1
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     1     1     0     1     1     1     1     1     0     1     1
## X613      0     0     0     0     1     1     0     0     0     0     0     0
## X614      0     0     0     0     1     1     0     0     0     0     1     0
## X616      0     0     0     1     0     1     0     0     1     0     0     0
## X617      1     1     1     1     1     1     1     1     1     0     0     1
## X619      1     0     1     1     1     0     1     1     0     1     1     1
## X620      0     0     0     0     1     0     0     0     0     0     1     0
## X621      1     1     1     0     1     0     1     1     0     0     1     1
## X622      0     0     0     0     1     0     0     0     0     0     0     0
## X623      1     1     1     0     1     0     1     1     0     1     1     1
## X625      1     1     1     0     1     1     1     1     1     1     0     1
## X628      1     1     0     1     1     1     0     0     1     1     1     1
## X629      1     1     0     1     1     1     0     0     1     1     1     1
## X630      0     0     1     1     1     1     1     1     0     0     0     0
## X631      0     0     0     1     0     1     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      1     1     0     1     1     0     0     0     0     0     1     1
## X635      1     1     1     0     1     1     1     1     0     1     0     1
## X636      1     1     0     1     1     1     0     0     1     1     1     1
## X637      1     1     0     0     1     1     0     0     1     1     1     1
## X638      1     1     0     0     0     1     0     0     0     0     0     1
## X639      1     0     1     0     1     0     1     1     0     0     0     1
## X641      1     1     1     1     1     1     1     1     0     1     1     1
## X648      1     1     1     0     1     1     1     1     1     1     1     1
## X650      1     0     1     1     1     1     1     0     0     0     0     1
## X651      1     1     1     1     1     1     1     1     0     1     1     1
## X653      1     1     0     1     1     1     0     0     1     1     1     1
## X654      1     1     1     1     1     1     0     1     1     0     0     1
## X655      0     0     0     1     0     1     0     0     1     0     0     0
## X656      0     0     0     0     1     0     0     0     0     0     0     0
## X657      1     1     1     1     1     1     1     1     0     0     0     1
## X1082     0     0     0     1     0     1     0     0     1     0     0     0
## X1083     0     0     0     1     0     0     0     0     0     0     0     1
## X1084     0     0     0     0     0     1     0     0     1     1     1     1
## X1086     0     0     0     0     1     0     0     0     0     0     0     0
## X1088     1     1     1     0     1     1     1     1     1     0     0     1
## X1089     0     0     1     1     1     1     1     1     0     0     0     0
## X1090     1     1     1     1     1     0     1     1     0     0     0     1
## X1091     1     0     0     1     1     1     0     0     0     0     1     1
## X1092     0     1     0     1     0     1     0     0     1     0     0     1
## X1093     1     1     1     0     1     1     1     1     1     1     1     1
## X1094     1     1     0     0     0     1     0     0     0     0     0     1
## X1095     1     1     1     0     1     0     1     1     0     0     0     1
## X1097     0     0     0     1     0     1     0     0     1     0     0     0
## X1098     1     1     1     1     1     1     1     1     0     1     1     1
## X1101     1     0     1     0     1     0     1     1     0     1     1     1
## X1103     1     1     0     0     1     0     0     0     0     1     1     1
## X1104     1     0     1     0     1     0     1     1     0     0     0     1
## X1105     0     0     1     0     1     0     1     1     0     0     0     0
## X1106     0     0     1     1     0     1     0     1     0     0     0     0
## X1108     0     0     0     0     0     1     0     0     1     0     0     0
## X1110     0     0     0     0     1     0     0     0     0     0     0     0
## X1112     1     0     1     0     1     1     1     1     0     0     0     1
## X1113     1     0     0     0     1     1     0     0     1     0     0     1
## X1115     1     1     0     0     0     0     0     0     0     0     0     1
## X1116     0     0     1     0     1     1     1     1     1     0     1     0
## X1117     1     1     1     0     1     1     1     1     0     0     1     1
## X1119     1     1     0     1     1     0     0     0     0     0     1     1
## X1120     1     1     0     1     1     1     0     0     1     1     1     1
## X1121     1     1     1     1     1     1     1     1     0     1     1     1
## X1122     1     1     0     1     1     1     0     0     1     1     1     1
## X1124     1     1     0     0     1     1     0     0     0     1     1     1
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     1     0     0     0     0     0     0     0
## X1127     0     0     0     0     1     0     0     0     0     0     0     0
## X1128     0     1     1     0     1     1     1     1     0     0     0     1
## X1129     0     0     0     0     1     1     0     0     0     0     0     0
## X1130     1     1     0     1     1     0     0     0     0     0     1     1
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     1     1     0     1     0     1     1     0     0     1     1
## X1135     0     1     0     1     0     1     0     0     0     0     0     1
## X1136     0     0     0     0     1     1     0     0     0     0     0     0
## X1138     1     1     1     0     1     1     1     1     1     1     1     1
## X1139     1     1     0     1     1     1     0     0     1     1     1     1
## X1141     0     0     0     1     0     1     0     0     1     0     0     0
## X1142     0     0     0     0     1     0     0     0     0     0     0     0
## X1143     1     1     1     1     1     1     1     1     0     1     1     1
## X1144     1     0     1     0     1     1     1     1     0     1     0     1
## X1145     1     1     1     1     1     1     1     1     0     1     1     1
## X1146     1     1     1     1     0     1     1     1     0     0     0     1
## X1147     0     1     1     1     0     1     1     1     1     0     0     1
## X1149     1     1     1     0     1     1     1     1     1     0     0     1
## X1150     1     1     0     1     0     1     0     0     1     0     0     1
## X1151     0     1     1     1     0     1     1     1     1     1     0     1
## X1152     1     1     1     0     1     0     1     1     0     1     0     1
## X1153     0     0     1     0     1     0     1     0     0     0     1     0
## X1156     1     1     0     1     0     1     0     0     0     0     0     1
## X1158     1     1     0     0     1     0     0     0     0     1     1     1
## X1159     1     1     0     0     1     1     0     0     0     1     0     1
## X1160     1     1     0     1     1     1     0     0     0     1     1     1
##       FP073 FP074 FP075 FP076 FP077 FP078 FP079 FP080 FP081 FP082 FP083 FP084
## X661      0     0     0     1     0     0     1     0     0     1     0     1
## X662      1     1     1     1     1     1     1     1     0     1     0     1
## X663      1     0     0     0     0     0     1     0     1     1     0     0
## X665      0     0     0     0     1     0     1     0     1     0     0     0
## X668      0     0     1     0     0     0     1     1     0     1     1     1
## X669      0     0     1     0     0     0     0     1     0     1     0     0
## X670      0     0     1     1     0     0     1     1     0     1     0     1
## X671      0     0     0     0     1     0     0     1     1     0     0     0
## X672      1     1     0     1     1     1     1     0     1     1     0     0
## X673      0     0     1     1     1     0     1     0     1     1     1     0
## X674      0     1     0     0     0     1     1     0     0     1     0     0
## X676      1     1     0     1     1     1     1     0     1     1     0     0
## X677      0     0     0     1     0     0     1     0     0     1     0     0
## X678      0     0     0     1     0     0     1     0     0     1     0     0
## X679      0     0     0     0     0     0     1     0     1     1     0     0
## X682      1     1     0     1     0     1     1     0     0     1     0     0
## X683      0     0     1     0     1     1     1     1     1     1     1     1
## X684      1     0     1     1     1     0     1     1     0     1     0     1
## X685      1     1     0     1     1     1     1     0     1     1     0     0
## X686      0     0     0     1     0     0     1     0     0     1     0     0
## X688      1     1     0     1     0     1     1     0     0     1     0     0
## X689      0     0     1     1     1     0     1     1     1     1     0     1
## X690      0     0     1     0     1     0     1     1     1     1     0     0
## X691      0     0     1     0     1     0     1     1     0     0     1     1
## X692      0     1     1     0     1     0     1     1     0     1     1     0
## X693      0     0     1     1     1     0     1     0     0     1     1     0
## X695      0     1     1     1     0     1     1     1     1     1     0     1
## X696      0     0     0     1     0     0     1     0     0     1     1     1
## X698      0     1     1     0     0     1     1     0     0     1     1     0
## X699      0     0     0     0     0     0     1     0     0     1     0     0
## X700      0     0     0     0     1     0     0     0     1     0     0     0
## X702      0     0     0     0     0     0     0     0     1     1     0     0
## X703      0     0     0     0     1     0     1     0     1     0     0     0
## X704      0     0     0     1     0     0     1     0     0     1     0     0
## X706      0     1     0     1     0     1     1     0     0     1     0     1
## X708      0     0     0     1     0     0     1     0     0     1     0     0
## X709      0     0     0     0     1     0     1     0     1     0     0     0
## X711      1     1     0     1     1     1     1     0     1     1     0     0
## X712      1     1     0     1     0     1     1     0     0     1     0     0
## X713      1     0     0     1     0     0     1     0     0     1     1     0
## X714      1     1     0     1     1     1     1     1     1     1     0     0
## X715      0     0     1     0     0     0     1     1     0     1     1     0
## X717      0     0     0     1     0     0     1     0     0     1     0     0
## X718      0     0     1     1     1     0     1     1     1     1     0     1
## X721      0     0     1     0     0     0     1     0     0     1     1     1
## X722      0     1     0     1     0     1     1     0     0     1     0     1
## X723      0     0     0     0     1     0     0     0     1     0     0     0
## X724      0     0     0     1     0     0     1     0     0     1     0     0
## X726      1     1     0     1     0     1     1     0     0     1     0     0
## X728      1     0     0     1     0     0     1     0     0     1     0     0
## X729      0     0     0     0     0     0     1     0     0     1     0     0
## X731      0     0     0     0     1     0     0     0     1     0     0     0
## X732      0     0     0     1     0     0     1     0     0     1     0     0
## X733      0     0     1     0     0     0     1     1     0     1     1     1
## X734      0     0     0     0     0     0     1     0     0     1     0     0
## X735      1     1     0     1     1     1     1     0     1     1     0     0
## X736      0     0     0     0     1     0     1     1     1     1     1     0
## X737      0     0     0     1     0     0     1     0     0     1     0     0
## X739      0     1     1     1     0     1     1     0     1     1     0     1
## X740      1     1     0     1     0     1     1     0     0     1     0     1
## X741      1     0     0     0     1     0     0     0     1     0     0     0
## X742      0     0     0     0     1     0     0     0     1     0     0     0
## X743      0     0     0     0     0     0     1     0     0     1     0     0
## X744      0     0     0     1     1     0     1     0     0     1     0     0
## X746      0     0     1     0     0     0     1     1     1     1     0     0
## X747      1     0     0     0     1     0     0     1     1     0     0     0
## X749      0     0     1     1     1     0     1     1     0     1     0     1
## X752      1     1     0     1     1     1     1     1     1     1     0     0
## X753      0     0     0     0     1     0     0     0     1     0     0     0
## X754      0     0     1     1     1     0     1     1     1     1     0     1
## X755      0     0     0     1     0     0     1     0     0     1     0     0
## X757      0     0     0     0     1     0     0     1     1     0     0     0
## X758      0     1     0     1     0     1     1     0     0     1     0     0
## X759      0     0     1     0     0     0     0     1     0     1     0     0
## X760      0     0     0     1     0     0     1     0     0     1     0     0
## X761      1     1     0     1     1     1     1     1     1     1     0     0
## X762      0     0     0     1     0     0     1     0     0     1     0     0
## X763      0     0     0     1     0     0     1     0     0     1     1     0
## X764      0     0     0     1     0     0     1     0     0     1     0     0
## X765      1     1     0     1     0     0     1     0     0     1     0     0
## X767      0     1     0     1     1     1     1     0     1     1     0     0
## X768      0     0     0     1     0     0     1     0     0     1     1     1
## X770      0     0     1     1     1     0     1     1     1     1     0     1
## X771      0     1     0     1     0     1     1     0     0     1     1     0
## X772      0     0     0     0     0     0     1     0     0     1     0     0
## X773      0     0     0     0     1     0     0     0     1     0     0     0
## X774      0     0     0     0     1     0     0     1     1     0     0     0
## X775      1     1     0     1     1     0     1     0     0     1     0     0
## X776      0     1     1     1     1     1     1     1     0     1     1     0
## X777      0     0     1     0     1     0     0     1     1     1     0     0
## X778      1     1     0     1     1     1     1     1     1     1     1     0
## X779      0     0     0     1     0     0     1     0     0     1     1     0
## X780      0     0     0     0     0     0     0     0     0     1     0     0
## X781      0     1     0     0     1     0     0     0     1     1     0     0
## X782      0     1     0     1     0     1     1     0     0     1     0     0
## X784      1     1     0     1     0     1     1     0     0     1     1     0
## X786      0     0     0     0     1     0     0     0     1     0     0     0
## X787      0     0     0     1     0     0     1     0     0     1     0     0
## X788      0     1     0     1     1     1     1     0     1     1     0     0
## X789      0     0     0     1     0     0     1     0     0     1     0     0
## X791      0     0     0     1     0     0     1     0     0     1     0     0
## X792      0     0     1     1     1     0     1     1     1     1     0     1
## X794      1     0     0     0     1     0     0     0     1     0     0     0
## X798      0     0     0     1     0     0     1     0     0     1     0     1
## X799      0     0     1     0     0     1     1     0     0     1     0     1
## X800      1     1     0     1     1     1     1     0     1     0     0     1
## X804      0     0     1     1     0     0     1     0     0     1     0     0
## X805      1     1     0     1     1     1     1     1     1     1     0     0
## X807      0     0     1     0     0     0     0     1     0     1     0     0
## X808      1     1     0     1     0     1     1     0     0     1     0     1
## X809      0     0     1     1     1     0     1     1     1     1     0     0
## X810      0     0     0     0     0     0     1     0     0     1     0     0
## X813      1     0     0     0     1     0     0     0     1     0     0     0
## X814      0     1     1     0     0     1     1     0     0     1     0     1
## X818      0     0     0     1     0     0     1     0     0     1     0     0
## X819      0     0     1     1     0     0     1     0     0     1     1     0
## X820      1     0     0     0     1     0     0     1     1     0     0     0
## X821      0     0     0     1     0     0     1     0     0     1     0     0
## X822      0     0     0     1     0     0     1     0     0     1     0     0
## X823      0     0     0     1     0     0     1     0     0     1     1     0
## X827      0     1     0     1     0     0     1     0     0     1     0     1
## X828      0     0     0     1     0     0     1     0     0     1     0     0
## X829      0     0     1     0     0     1     1     1     0     1     0     1
## X831      0     0     0     1     0     0     1     0     0     1     0     0
## X832      0     0     0     1     0     0     1     0     0     1     0     0
## X833      0     0     0     1     0     0     1     0     0     1     0     0
## X834      0     0     0     1     0     0     1     0     0     1     0     0
## X835      0     0     0     1     0     0     1     0     0     1     0     0
## X836      0     0     0     1     0     0     1     0     0     1     0     0
## X839      0     0     0     1     0     0     1     0     0     1     0     0
## X840      0     0     0     1     0     0     1     0     0     1     0     0
## X841      0     0     0     1     0     0     1     0     0     1     0     0
## X842      0     0     0     1     0     0     1     0     0     1     0     0
## X843      0     0     0     1     0     0     1     0     0     1     0     0
## X846      0     0     0     1     0     0     1     0     0     1     0     0
## X848      0     0     0     1     0     0     1     0     0     1     0     0
## X849      0     0     0     1     0     0     1     0     0     1     0     0
## X851      1     1     0     1     1     1     1     1     1     1     0     1
## X854      0     0     0     1     0     0     1     0     0     1     0     0
## X855      0     0     0     1     0     0     1     0     0     1     1     1
## X856      0     0     0     1     0     0     1     0     0     1     0     0
## X857      0     0     0     1     0     0     1     0     0     1     0     0
## X858      0     0     0     1     0     0     1     0     0     1     0     0
## X859      0     0     0     1     0     0     1     0     0     1     0     0
## X860      0     0     0     1     0     0     1     0     0     1     0     0
## X862      0     0     0     1     0     0     1     0     0     1     0     0
## X863      0     0     0     1     0     0     1     0     0     1     0     0
## X864      0     0     0     1     1     0     1     0     0     1     0     0
## X865      0     0     0     1     0     0     1     0     0     1     0     0
## X866      0     0     0     1     0     0     1     0     0     1     0     0
## X867      0     0     0     1     0     0     1     0     0     1     0     0
## X869      0     0     1     1     0     0     1     0     0     1     0     1
## X870      0     0     0     1     0     0     1     0     0     1     0     0
## X871      0     0     0     1     0     0     1     0     0     1     0     0
## X872      0     0     0     1     0     0     1     0     0     1     0     0
## X873      0     0     0     1     0     0     1     0     0     1     0     0
## X875      0     0     0     1     0     0     1     0     0     1     0     0
## X876      0     0     0     1     0     0     1     0     0     1     0     0
## X877      0     0     0     1     0     0     1     0     0     1     0     0
## X1190     0     1     0     1     0     1     1     0     0     1     0     0
## X1191     0     0     0     0     1     0     0     1     1     0     0     0
## X1192     1     1     0     1     1     1     1     0     1     1     0     0
## X1193     0     0     0     0     0     0     1     0     0     1     0     0
## X1194     1     1     0     1     1     1     1     1     1     1     0     0
## X1195     0     0     0     0     0     0     1     0     0     1     0     0
## X1197     0     0     0     0     1     0     1     0     1     0     0     0
## X1198     0     0     0     0     0     0     1     0     0     1     0     0
## X1199     0     0     1     0     0     0     1     0     0     1     1     1
## X1200     0     0     1     0     0     0     0     1     0     1     0     0
## X1201     0     1     1     1     1     1     1     1     1     1     0     1
## X1202     1     1     0     1     1     1     1     1     1     1     0     0
## X1203     0     0     0     0     1     0     0     0     0     0     0     0
## X1204     1     1     1     1     0     1     1     0     0     1     1     1
## X1205     1     0     0     1     0     0     1     0     0     1     1     1
## X1206     0     0     0     0     0     0     0     0     0     1     0     0
## X1207     0     0     1     1     0     0     1     1     1     1     0     1
## X1208     0     1     0     1     1     1     1     0     1     1     0     1
## X1209     1     1     0     0     0     1     1     0     0     1     0     0
## X1210     1     1     0     1     1     1     1     0     1     1     0     0
## X1212     1     1     0     1     1     1     1     0     1     1     0     0
## X1213     0     0     1     1     1     0     1     1     1     1     0     1
## X1215     1     1     0     1     1     1     1     1     1     1     0     1
## X1216     0     0     0     1     0     0     1     0     0     1     0     1
## X1217     1     1     0     1     0     0     1     0     0     1     0     1
## X1219     1     1     0     1     0     1     1     0     0     1     0     0
## X1220     1     1     1     1     1     1     1     1     0     1     0     1
## X1221     0     0     0     0     1     0     0     1     1     0     0     0
## X1222     0     0     1     1     1     0     1     1     1     1     0     0
## X1226     0     0     1     1     1     0     1     1     1     1     0     1
## X1228     0     1     1     0     0     1     1     0     0     1     0     0
## X1229     1     1     0     1     1     1     1     1     1     1     0     0
## X1230     0     0     0     1     0     1     1     0     0     1     0     1
## X1231     0     0     0     1     1     0     1     0     0     1     0     0
## X1233     1     1     0     1     1     1     1     0     1     1     0     0
## X1234     0     0     0     1     0     0     1     0     0     1     0     0
## X1236     0     1     0     1     1     1     1     0     1     1     0     0
## X1237     0     0     1     0     0     1     1     0     0     1     0     1
## X1239     0     0     1     0     0     0     0     1     0     1     0     0
## X1242     0     0     0     0     0     0     0     0     0     1     0     0
## X1244     0     0     0     1     0     0     1     0     0     1     0     0
## X1245     0     0     0     0     1     0     1     0     1     0     0     0
## X1246     1     1     0     1     1     1     1     0     1     1     0     0
## X1247     0     1     0     1     0     1     1     1     0     1     0     0
## X1249     0     1     1     1     0     1     1     1     0     1     0     1
## X1250     1     1     0     0     0     1     1     0     0     1     0     0
## X1251     0     0     1     0     0     0     1     0     0     1     0     0
## X1253     0     0     1     0     0     0     1     1     0     1     0     0
## X1254     0     0     0     1     0     0     1     0     0     1     0     0
## X1255     0     0     0     1     0     0     1     0     0     1     0     0
## X1256     0     0     0     1     1     0     1     0     0     1     0     0
## X1257     0     0     0     1     0     0     1     0     0     1     0     0
## X1259     0     1     0     1     0     0     1     0     0     1     0     1
## X1260     0     0     0     1     0     0     1     0     0     1     0     0
## X1262     0     1     0     1     0     1     1     1     0     1     0     0
## X1264     0     0     0     0     0     0     1     0     0     1     0     0
## X1265     0     0     0     1     0     0     1     0     0     1     0     0
## X1266     0     0     0     1     0     0     1     0     0     1     0     0
## X1267     1     1     0     1     0     1     1     0     0     1     0     0
## X1268     1     0     0     0     1     0     0     0     1     0     0     0
## X1273     0     0     0     1     0     0     1     0     0     1     0     0
## X1274     1     0     0     0     1     0     0     1     1     0     0     0
## X1275     0     0     0     1     0     0     1     0     0     1     0     0
## X1276     0     0     0     1     0     0     1     0     0     1     0     0
## X1277     0     0     0     1     0     0     1     0     0     1     0     0
## X1278     0     0     0     1     0     0     1     0     0     1     0     0
## X1279     0     0     0     1     0     0     1     0     0     1     0     0
## X1281     0     0     0     1     0     0     1     0     0     1     0     0
## X1282     0     0     0     1     0     0     1     0     0     1     0     0
## X1283     0     0     0     1     0     0     1     0     0     1     0     0
## X1284     0     0     0     1     0     0     1     0     0     1     0     0
## X1285     0     0     0     1     0     0     1     0     0     1     0     0
## X1288     0     0     0     1     0     0     1     0     0     1     0     0
## X1299     0     0     1     1     0     1     1     0     0     1     1     1
## X1301     1     1     0     1     1     1     1     0     1     1     0     0
## X1302     0     0     0     0     0     0     1     0     0     0     0     0
## X1307     0     0     1     0     0     1     1     1     0     1     0     1
## X1309     0     0     0     1     0     0     1     0     0     1     0     0
## X1310     0     0     0     0     0     0     1     0     0     1     0     0
## X447      1     1     0     0     0     1     1     1     0     1     0     0
## X448      1     1     1     1     0     1     1     0     0     1     1     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     1     1     0     1     0     0
## X453      1     1     0     1     0     1     1     0     0     1     0     1
## X454      0     0     1     1     0     1     1     0     0     1     1     1
## X455      1     1     0     0     0     1     1     0     0     1     0     0
## X456      0     1     0     1     1     0     1     1     0     1     1     1
## X458      0     1     1     1     0     1     1     0     0     1     1     1
## X459      0     1     0     0     1     0     0     0     1     0     0     0
## X460      0     0     0     0     1     0     1     0     0     0     0     0
## X461      1     0     0     0     0     0     1     0     0     1     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     1
## X463      0     0     1     1     1     0     1     1     0     1     1     1
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      1     1     0     1     1     1     1     0     0     1     0     1
## X466      1     0     1     0     0     1     1     1     0     1     0     1
## X468      0     0     1     0     1     0     0     1     1     0     1     0
## X471      0     1     0     0     0     0     1     0     0     1     1     0
## X472      0     0     0     0     1     0     0     0     1     0     0     0
## X473      0     0     0     0     1     0     0     0     0     0     0     0
## X476      1     0     0     1     0     0     1     0     0     1     0     0
## X477      0     0     1     1     0     1     1     0     0     1     1     1
## X478      0     0     0     0     1     0     0     0     0     0     0     0
## X479      0     0     0     0     1     0     0     0     1     0     0     0
## X480      0     0     0     1     0     0     1     0     0     1     0     1
## X482      0     0     0     0     0     0     0     0     0     1     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     1     0     0     1     0     0     1     1     0
## X486      0     0     0     0     1     0     0     1     1     0     0     0
## X487      0     1     1     0     1     1     1     1     0     1     0     0
## X488      1     1     0     0     1     1     1     1     1     1     0     0
## X489      1     0     0     0     0     0     1     0     0     1     0     0
## X490      0     0     1     0     0     0     1     1     1     1     0     0
## X491      0     0     0     0     1     0     0     1     1     0     0     0
## X492      0     0     1     1     1     1     1     0     0     1     1     1
## X493      1     0     0     0     1     0     0     0     1     0     0     0
## X494      1     0     0     0     0     0     1     0     0     1     1     1
## X495      1     1     1     1     1     1     1     1     0     1     0     1
## X496      0     0     1     1     0     0     1     0     0     1     1     1
## X497      0     0     0     1     0     0     1     0     0     1     0     1
## X498      1     1     0     0     0     1     1     0     0     1     0     0
## X499      0     0     0     0     0     0     1     0     0     1     0     0
## X501      0     0     1     0     0     1     1     0     0     1     0     1
## X502      0     0     0     0     0     0     1     0     0     1     0     0
## X503      1     1     0     1     0     1     1     0     0     1     0     1
## X505      0     0     0     0     0     0     1     0     0     1     1     0
## X506      0     0     1     1     0     0     1     0     0     1     1     1
## X507      0     1     1     1     0     1     1     0     0     1     1     1
## X508      1     1     0     0     0     1     1     0     0     1     1     0
## X509      1     1     1     1     0     1     1     0     0     1     1     0
## X510      0     0     0     1     0     1     1     0     0     1     1     1
## X513      0     0     0     0     1     0     0     1     1     0     0     0
## X514      0     0     1     0     0     0     1     0     0     1     1     1
## X515      1     1     0     1     0     1     1     0     0     1     0     0
## X516      0     1     0     0     0     1     1     0     0     1     0     0
## X518      0     1     1     0     0     1     1     0     0     1     1     0
## X521      0     0     1     1     0     1     1     0     0     1     1     1
## X523      0     0     0     0     0     0     1     1     0     1     0     0
## X524      0     0     0     0     0     0     1     0     0     1     1     0
## X525      0     0     1     0     1     1     1     0     0     1     1     1
## X526      1     0     0     0     1     0     0     1     1     0     0     0
## X530      0     0     1     0     0     0     1     1     0     1     0     0
## X531      1     0     0     0     0     0     1     0     1     1     1     0
## X532      0     0     1     0     0     0     1     1     0     1     1     1
## X533      0     0     1     1     0     1     1     0     0     1     1     1
## X534      0     0     1     0     1     0     1     1     1     1     1     0
## X535      0     0     0     0     0     0     1     0     0     1     0     0
## X536      1     1     1     1     1     0     1     1     0     1     0     1
## X538      1     1     0     1     0     1     1     0     0     1     0     1
## X539      1     1     1     1     1     0     1     1     0     1     0     1
## X542      1     1     0     1     1     1     1     1     1     1     0     0
## X543      0     0     0     0     1     0     0     1     1     0     0     0
## X544      1     1     1     1     0     1     1     0     0     1     1     0
## X545      0     0     1     0     1     0     0     1     1     1     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     1     0     0     0     1     1     0     0     1     0     0
## X549      0     0     0     0     0     0     1     0     0     1     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     1     1     1     1     1     1     1     1     1     0     1
## X553      0     1     1     1     1     0     1     1     0     1     1     1
## X554      0     0     1     0     0     0     1     1     0     1     1     1
## X556      1     1     0     1     0     1     1     0     0     1     0     0
## X557      0     1     1     0     1     1     1     1     0     1     1     0
## X558      0     0     1     0     0     0     1     0     0     1     0     1
## X559      0     0     0     0     1     0     0     0     1     0     0     0
## X560      0     0     0     0     0     0     1     0     0     1     0     0
## X561      0     0     0     0     0     0     1     0     0     1     0     0
## X562      0     0     0     0     0     0     1     0     0     1     0     0
## X563      1     0     0     1     0     0     1     0     0     1     0     0
## X565      0     0     0     0     1     0     0     0     1     0     0     0
## X566      0     0     0     0     0     0     1     0     0     1     1     0
## X567      0     0     1     0     0     0     1     0     0     1     1     0
## X568      0     0     0     0     0     0     1     0     0     1     1     0
## X569      0     0     1     0     0     0     1     1     1     1     0     0
## X571      0     0     0     0     0     0     1     0     0     1     1     0
## X572      0     0     1     0     1     0     1     1     1     1     1     0
## X574      0     0     0     0     1     0     1     0     1     0     0     0
## X576      0     0     1     1     0     1     1     0     0     1     1     1
## X577      0     1     1     1     0     1     1     0     0     1     1     0
## X579      0     1     0     0     0     0     1     0     0     1     1     1
## X580      1     1     0     0     0     1     1     0     0     1     0     0
## X582      0     1     0     0     1     0     0     0     1     0     0     0
## X583      0     0     0     0     0     0     1     0     0     1     0     0
## X584      0     1     1     1     1     1     1     1     0     1     0     1
## X586      0     0     1     0     0     1     1     1     0     1     0     1
## X587      0     0     0     1     0     0     1     0     0     1     0     1
## X588      0     0     1     0     1     1     1     0     1     1     1     1
## X589      1     1     0     1     1     1     1     0     1     1     0     0
## X591      1     1     1     1     1     1     1     1     0     1     0     1
## X592      0     0     0     0     1     0     1     0     1     0     0     0
## X593      1     1     1     1     0     0     1     1     0     1     0     1
## X594      0     0     0     0     1     0     0     0     1     0     0     0
## X595      0     0     1     0     0     0     0     1     0     1     0     0
## X596      0     0     1     0     1     0     1     1     1     1     1     0
## X597      0     1     1     1     1     0     1     1     1     1     0     1
## X598      1     0     0     0     1     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     1     0     0     1     0     0
## X600      0     1     1     0     0     1     1     1     0     1     0     1
## X603      1     0     0     0     1     0     0     0     1     0     0     0
## X604      0     0     1     0     1     1     1     0     1     1     1     1
## X605      0     1     0     1     1     1     1     0     1     1     0     0
## X606      0     0     0     0     1     0     1     1     1     1     0     0
## X608      0     0     0     0     0     0     1     0     0     1     0     0
## X609      0     0     1     1     0     0     1     0     0     1     1     1
## X611      0     0     0     0     1     0     0     0     0     0     0     0
## X612      0     0     1     0     0     0     1     0     0     1     1     0
## X613      0     0     0     0     0     0     1     0     0     1     0     0
## X614      0     0     0     0     0     0     1     0     0     1     0     0
## X616      0     0     0     0     0     0     0     0     1     1     0     0
## X617      0     1     1     1     0     1     1     1     0     1     0     0
## X619      0     0     1     1     0     1     1     0     0     1     1     1
## X620      0     0     0     0     0     0     1     0     0     1     0     0
## X621      1     1     0     1     0     1     1     0     0     1     1     0
## X622      0     0     0     1     0     0     1     0     0     1     0     0
## X623      1     0     1     1     0     1     1     0     0     1     1     1
## X625      0     1     1     0     0     1     1     0     0     1     0     1
## X628      1     1     0     1     1     1     1     1     1     1     0     0
## X629      1     1     0     1     1     1     1     0     1     1     0     0
## X630      0     0     1     1     1     0     1     1     1     1     1     1
## X631      0     0     0     0     1     0     0     0     1     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      1     1     0     0     1     1     1     1     0     1     0     0
## X635      0     0     1     0     1     0     1     1     0     1     1     1
## X636      1     1     0     1     1     1     1     1     1     1     0     0
## X637      0     1     0     1     1     1     1     0     1     1     0     0
## X638      1     1     0     1     0     0     1     0     0     1     0     0
## X639      0     0     1     1     0     0     1     0     0     1     1     1
## X641      1     1     1     1     1     1     1     0     1     1     0     1
## X648      1     1     1     1     0     1     1     0     0     1     1     0
## X650      0     1     1     0     0     1     1     1     0     1     1     1
## X651      0     0     1     1     1     1     1     0     1     1     0     1
## X653      1     1     0     1     1     1     1     0     1     1     0     0
## X654      0     1     1     0     1     1     1     1     1     1     0     0
## X655      0     0     0     0     0     0     1     0     1     1     0     0
## X656      0     0     0     1     0     0     1     0     0     1     0     0
## X657      0     0     0     0     1     0     1     1     1     1     1     0
## X1082     0     0     0     0     0     0     0     0     1     1     0     0
## X1083     1     1     0     1     0     0     1     0     0     1     0     0
## X1084     1     1     0     0     1     1     1     0     1     1     0     0
## X1086     0     0     0     0     0     0     1     0     0     0     0     0
## X1088     0     0     1     0     0     0     1     0     0     1     1     0
## X1089     0     0     0     0     0     0     1     0     0     1     1     1
## X1090     1     1     0     0     0     1     1     0     0     1     1     0
## X1091     1     1     0     0     1     1     1     0     1     1     0     0
## X1092     0     1     0     0     1     0     0     0     1     0     0     0
## X1093     0     0     1     0     0     1     0     0     0     1     0     1
## X1094     1     0     0     0     0     0     1     0     0     1     0     0
## X1095     0     0     1     0     0     1     1     0     0     1     1     1
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     1     1     1     1     1     0     0     1     1     1
## X1101     0     0     1     1     0     1     1     0     0     1     1     1
## X1103     1     1     0     1     0     1     1     1     0     1     0     1
## X1104     0     0     1     1     0     0     1     0     0     1     1     1
## X1105     0     0     1     1     0     0     1     0     0     1     1     1
## X1106     0     0     0     0     1     0     0     1     1     0     1     0
## X1108     0     0     0     0     0     0     1     0     0     1     0     0
## X1110     0     0     0     0     0     0     1     0     0     0     0     0
## X1112     0     0     1     1     0     0     1     0     0     1     1     1
## X1113     1     1     0     1     0     1     1     0     0     1     0     0
## X1115     1     1     0     1     0     0     1     0     0     1     0     0
## X1116     0     0     1     0     0     0     1     0     0     1     0     0
## X1117     1     0     0     0     0     0     1     0     0     1     1     0
## X1119     1     1     0     0     0     1     1     1     0     1     0     0
## X1120     1     1     0     1     1     1     1     1     1     1     0     0
## X1121     1     1     1     1     1     1     1     1     0     1     1     1
## X1122     1     1     0     1     1     1     1     1     1     1     0     0
## X1124     0     1     0     1     0     1     1     0     0     1     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     1     0     0     1     0     0
## X1127     0     0     0     0     1     0     1     0     0     1     0     0
## X1128     0     0     0     0     0     0     1     0     0     1     1     0
## X1129     0     0     0     0     0     0     1     0     0     1     0     0
## X1130     1     0     0     0     0     0     1     0     0     1     0     0
## X1131     0     0     0     0     1     0     1     0     0     0     0     0
## X1133     0     0     0     1     0     1     1     0     0     1     1     1
## X1135     0     0     0     0     1     0     0     0     1     0     0     0
## X1136     0     0     0     0     0     0     1     0     0     1     0     0
## X1138     1     1     0     1     0     1     1     0     1     1     1     1
## X1139     1     1     0     1     1     1     1     1     1     1     0     0
## X1141     0     0     0     0     0     0     0     0     1     0     0     0
## X1142     0     0     0     0     0     0     1     0     0     1     0     0
## X1143     0     1     1     1     1     1     1     0     1     1     0     1
## X1144     1     1     1     1     1     1     1     1     1     1     0     1
## X1145     0     0     1     1     0     1     1     0     0     1     1     1
## X1146     0     0     1     0     1     0     0     1     1     0     1     0
## X1147     0     0     1     0     1     0     0     1     1     1     0     0
## X1149     0     1     1     0     0     0     1     0     0     1     1     0
## X1150     0     0     0     0     1     0     0     1     1     0     0     0
## X1151     0     0     1     0     1     0     1     1     0     1     0     0
## X1152     0     1     1     1     1     0     1     1     0     1     0     1
## X1153     0     0     1     0     0     0     0     0     0     1     1     1
## X1156     1     0     0     0     1     0     0     0     1     0     0     0
## X1158     1     1     0     1     0     1     1     0     0     1     0     1
## X1159     0     1     0     1     0     1     1     0     0     1     0     1
## X1160     1     1     0     1     0     1     1     1     0     1     0     1
##       FP085 FP086 FP087 FP088 FP089 FP090 FP091 FP092 FP093 FP094 FP095 FP096
## X661      0     0     1     0     1     0     1     0     0     0     0     0
## X662      1     0     1     1     1     1     1     0     1     0     0     0
## X663      0     0     1     0     0     0     0     0     0     0     0     0
## X665      0     1     1     0     0     1     0     0     1     0     0     0
## X668      0     1     1     0     0     0     1     1     0     1     0     0
## X669      0     0     0     0     0     0     0     1     0     0     0     0
## X670      1     0     1     0     1     0     1     1     0     0     0     0
## X671      0     1     0     1     0     1     0     0     1     1     0     0
## X672      0     1     1     1     0     1     0     1     1     0     1     1
## X673      0     1     1     0     0     1     1     0     1     0     1     0
## X674      1     0     1     0     0     0     0     0     0     0     0     1
## X676      0     1     1     1     0     1     0     0     1     0     0     0
## X677      0     0     1     0     1     0     0     0     0     0     0     0
## X678      0     0     1     0     1     0     0     1     0     0     0     0
## X679      0     0     1     0     0     0     0     0     0     1     0     0
## X682      0     0     1     0     1     0     0     0     0     0     0     1
## X683      1     1     1     0     0     0     1     0     0     1     0     1
## X684      1     0     1     1     1     1     1     1     1     0     0     0
## X685      0     1     1     1     0     1     0     0     1     0     0     0
## X686      0     0     1     0     1     0     0     0     0     1     0     0
## X688      1     0     1     0     1     0     0     1     0     0     0     1
## X689      1     1     1     0     1     0     1     0     1     0     0     0
## X690      1     1     1     1     0     1     0     0     1     1     0     0
## X691      0     0     1     0     0     1     1     1     1     0     1     0
## X692      0     0     1     0     0     0     0     0     0     0     0     1
## X693      0     0     1     0     0     1     1     0     1     0     1     1
## X695      1     0     1     0     1     0     1     0     0     0     0     0
## X696      0     0     1     0     1     0     1     0     0     0     0     0
## X698      0     0     1     0     0     0     0     0     0     0     0     0
## X699      1     0     1     0     0     0     0     1     0     0     0     0
## X700      0     1     0     0     0     1     0     0     1     1     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     1     1     0     0     1     0     0     1     0     0     0
## X704      0     0     1     0     1     0     0     0     0     0     0     0
## X706      1     1     1     0     0     0     0     0     0     0     0     1
## X708      0     0     1     0     1     0     0     0     0     0     0     0
## X709      0     1     1     0     0     1     0     0     1     0     0     0
## X711      0     1     1     1     0     1     0     0     1     0     1     1
## X712      0     0     1     0     1     1     0     0     0     1     1     0
## X713      1     0     1     0     1     0     0     1     0     0     1     0
## X714      0     1     1     1     0     1     0     0     1     0     1     1
## X715      0     0     1     0     0     1     0     1     0     0     0     0
## X717      0     0     1     0     1     0     0     1     0     0     0     0
## X718      1     1     1     0     1     1     1     1     1     0     0     0
## X721      0     0     1     0     0     0     1     1     0     0     1     0
## X722      0     0     1     0     1     0     0     1     0     0     0     0
## X723      0     1     0     0     0     1     0     0     1     1     0     0
## X724      0     0     1     0     1     0     1     0     0     0     0     0
## X726      1     0     1     0     1     0     0     1     0     0     0     0
## X728      1     0     1     0     1     0     0     1     0     0     0     0
## X729      1     0     1     0     0     0     0     1     0     0     0     0
## X731      0     1     0     0     0     1     0     0     1     1     0     0
## X732      1     0     1     0     1     0     0     1     0     0     0     0
## X733      0     0     1     0     0     0     1     1     0     1     1     0
## X734      1     0     1     0     0     0     0     1     0     0     0     0
## X735      0     1     1     1     0     1     0     0     1     0     0     0
## X736      0     1     1     1     0     1     0     0     1     1     0     0
## X737      0     0     1     0     1     0     0     0     0     0     0     0
## X739      1     0     1     1     0     0     0     1     0     0     0     1
## X740      1     1     1     1     1     0     0     1     0     0     0     1
## X741      0     1     0     1     0     1     0     0     1     1     0     0
## X742      0     1     0     1     0     1     0     0     1     1     0     0
## X743      1     0     1     0     0     0     0     1     0     0     0     0
## X744      0     0     1     0     1     0     0     0     1     0     0     0
## X746      1     0     1     0     0     0     0     0     0     0     0     1
## X747      0     1     0     1     0     1     0     0     1     1     0     0
## X749      1     1     1     1     1     1     1     1     1     0     0     0
## X752      0     1     1     1     0     1     0     1     1     1     1     1
## X753      0     0     1     0     0     1     0     0     1     1     0     0
## X754      1     1     1     0     1     1     1     0     1     0     0     0
## X755      0     0     1     0     1     0     0     0     0     0     0     0
## X757      0     1     0     0     0     1     0     0     1     1     0     0
## X758      0     0     1     0     1     0     0     0     0     0     0     0
## X759      0     1     0     0     0     0     1     0     0     1     0     0
## X760      0     0     1     0     1     0     0     1     0     0     0     0
## X761      0     1     1     1     0     1     0     1     1     0     1     1
## X762      1     0     1     0     1     0     0     0     0     0     0     0
## X763      1     0     1     0     1     0     1     1     0     0     1     0
## X764      0     0     1     0     1     0     0     0     0     0     0     0
## X765      0     0     1     0     1     0     0     1     0     0     0     1
## X767      0     1     1     1     0     1     0     1     1     0     0     1
## X768      0     0     1     0     1     0     0     0     0     0     0     0
## X770      1     1     1     0     1     0     1     1     0     0     0     0
## X771      1     0     1     0     0     0     0     1     0     0     0     1
## X772      1     0     1     0     0     0     0     1     0     0     0     0
## X773      0     1     0     0     0     1     0     0     1     1     0     0
## X774      0     1     0     0     0     1     0     0     1     1     0     0
## X775      0     0     1     1     1     0     0     0     0     0     0     1
## X776      1     0     1     0     1     1     1     1     1     0     1     1
## X777      0     1     0     0     0     0     0     0     1     1     0     0
## X778      0     1     1     1     0     1     0     0     1     0     1     1
## X779      0     0     1     0     1     0     0     0     0     0     0     0
## X780      0     0     1     0     0     0     0     1     0     0     0     0
## X781      0     1     0     1     0     1     0     0     1     0     0     1
## X782      1     0     1     0     1     0     0     0     0     0     0     0
## X784      1     0     1     0     1     0     0     1     0     0     1     1
## X786      0     1     0     0     0     1     0     0     1     1     0     0
## X787      1     0     1     0     1     0     0     1     0     0     0     0
## X788      0     1     1     1     0     1     0     0     1     0     0     0
## X789      1     0     1     0     1     0     0     1     0     0     0     0
## X791      1     0     1     0     1     0     0     1     0     0     0     0
## X792      1     1     1     0     1     0     1     1     0     0     0     0
## X794      0     1     0     1     0     1     0     0     1     1     0     0
## X798      0     0     1     0     1     0     1     0     0     0     0     0
## X799      0     0     1     0     0     1     0     1     0     0     0     0
## X800      0     1     1     1     0     1     0     0     1     0     0     0
## X804      1     0     1     0     1     0     1     0     0     0     0     0
## X805      0     1     1     1     0     1     0     0     1     0     1     1
## X807      0     0     0     0     0     0     0     0     1     1     0     1
## X808      1     1     1     1     1     0     0     0     0     0     0     1
## X809      1     1     1     1     1     0     0     0     0     1     0     1
## X810      0     0     1     0     0     0     0     1     0     0     0     0
## X813      0     1     0     1     0     1     0     0     1     1     0     0
## X814      1     0     1     0     0     0     1     1     0     0     0     1
## X818      1     0     1     0     1     0     0     1     0     0     0     0
## X819      1     0     1     0     1     0     1     1     0     0     1     0
## X820      0     1     0     1     0     1     0     0     1     1     0     0
## X821      1     0     1     0     1     0     0     1     0     0     0     0
## X822      0     0     1     0     1     0     0     0     0     0     0     0
## X823      0     0     1     0     1     0     0     0     0     0     0     0
## X827      0     0     1     0     0     0     0     1     0     0     0     0
## X828      1     0     1     0     1     0     0     1     0     0     0     0
## X829      1     0     1     0     0     0     0     0     1     1     0     1
## X831      1     0     1     0     1     0     0     1     0     0     0     0
## X832      1     0     1     0     1     0     0     1     0     0     0     0
## X833      1     0     1     0     1     0     0     1     0     0     0     0
## X834      1     0     1     0     1     0     0     1     0     0     0     0
## X835      0     0     1     0     1     0     0     1     0     0     0     0
## X836      1     0     1     0     1     0     0     1     0     0     0     0
## X839      1     0     1     0     1     0     0     0     0     0     0     0
## X840      0     0     1     0     1     0     0     0     0     0     0     0
## X841      1     0     1     0     1     0     0     1     0     0     0     0
## X842      0     0     1     0     1     0     0     0     0     1     0     0
## X843      0     0     1     0     1     0     0     1     0     0     0     0
## X846      0     0     1     0     1     0     0     0     0     0     0     0
## X848      1     0     1     0     1     0     0     1     0     0     0     0
## X849      1     0     1     0     1     0     0     1     0     0     0     0
## X851      0     1     1     1     0     1     0     0     1     0     0     1
## X854      1     0     1     0     1     0     0     1     0     0     0     0
## X855      0     0     1     0     1     0     0     0     0     0     0     0
## X856      1     0     1     0     1     0     0     1     0     0     0     0
## X857      1     0     1     0     1     0     0     1     0     0     0     0
## X858      1     0     1     0     1     0     0     1     0     0     0     0
## X859      1     0     1     0     1     0     0     1     0     0     0     0
## X860      1     0     1     0     1     0     0     1     0     0     0     0
## X862      1     0     1     0     1     0     0     1     0     0     0     0
## X863      1     0     1     0     1     0     0     1     0     0     0     0
## X864      1     1     1     0     1     0     0     0     1     0     0     0
## X865      1     0     1     0     1     0     0     0     0     0     0     0
## X866      1     0     1     0     1     0     0     1     0     0     0     0
## X867      0     0     1     0     1     0     0     0     0     0     0     0
## X869      0     0     1     0     1     0     1     1     0     0     0     0
## X870      1     0     1     0     1     0     0     1     0     0     0     0
## X871      1     0     1     0     1     0     0     1     0     0     0     0
## X872      1     0     1     0     1     0     0     1     0     0     0     0
## X873      0     0     1     0     1     0     0     0     0     0     0     0
## X875      1     0     1     0     1     0     0     1     0     0     0     0
## X876      1     0     1     0     1     0     0     1     0     0     0     0
## X877      1     0     1     0     1     0     0     1     0     0     0     0
## X1190     0     0     1     0     1     0     0     0     0     0     0     0
## X1191     0     1     0     0     0     1     0     0     1     1     0     0
## X1192     0     1     1     1     0     1     0     0     1     0     0     0
## X1193     1     0     1     0     0     0     0     0     0     0     0     0
## X1194     0     1     1     1     0     1     0     0     1     0     0     1
## X1195     1     0     1     0     0     0     0     1     0     0     0     0
## X1197     0     1     1     0     0     0     0     0     0     1     0     0
## X1198     0     0     1     0     0     0     0     1     0     0     0     0
## X1199     0     0     1     0     0     0     1     0     0     0     1     0
## X1200     0     1     0     0     0     0     0     0     1     1     0     0
## X1201     1     1     1     0     1     0     0     0     0     0     0     1
## X1202     0     1     1     1     0     1     0     1     1     0     1     1
## X1203     0     0     1     0     0     1     0     0     1     0     0     0
## X1204     1     0     1     0     1     0     1     0     0     0     1     1
## X1205     1     0     1     0     1     0     1     1     0     0     1     0
## X1206     0     0     0     0     0     0     0     1     0     0     0     0
## X1207     1     1     1     0     1     0     1     0     0     0     0     0
## X1208     0     1     1     1     0     1     0     0     1     0     0     1
## X1209     1     0     1     0     0     0     0     1     0     0     0     0
## X1210     0     1     1     1     0     1     0     0     1     0     1     1
## X1212     1     1     1     1     0     1     0     0     1     0     1     0
## X1213     1     1     1     0     1     0     1     0     0     0     0     0
## X1215     0     1     1     1     0     1     0     1     1     0     1     1
## X1216     0     0     1     0     1     0     0     0     0     0     0     0
## X1217     1     0     1     0     1     0     1     1     0     0     0     0
## X1219     0     0     1     0     1     1     0     0     0     1     1     0
## X1220     0     0     1     1     1     1     0     1     1     0     0     0
## X1221     0     1     0     0     0     1     0     0     1     1     0     0
## X1222     1     1     1     0     1     0     0     0     0     0     0     0
## X1226     1     1     1     0     1     1     1     1     1     0     0     0
## X1228     1     0     1     0     0     0     0     0     0     0     0     1
## X1229     0     1     1     1     0     1     0     0     1     0     1     1
## X1230     1     0     1     0     1     0     0     0     0     0     0     0
## X1231     0     0     1     0     1     0     0     0     0     0     0     0
## X1233     0     1     1     1     0     1     0     0     1     0     0     0
## X1234     1     0     1     0     1     0     0     0     0     0     0     0
## X1236     0     1     1     1     0     1     0     0     1     0     0     1
## X1237     1     0     1     0     0     0     0     1     0     0     0     1
## X1239     0     0     0     0     0     0     0     1     0     0     0     0
## X1242     0     0     0     0     0     0     0     1     0     0     0     0
## X1244     0     0     1     0     1     0     0     1     0     0     0     0
## X1245     0     1     1     0     0     1     0     0     1     1     0     0
## X1246     1     1     1     1     1     1     0     0     1     0     0     0
## X1247     0     0     1     0     1     0     0     0     0     0     0     1
## X1249     1     0     1     0     0     0     0     1     1     1     0     1
## X1250     0     0     1     0     0     0     0     1     0     0     0     0
## X1251     1     0     1     0     0     0     1     1     0     0     0     0
## X1253     0     0     1     0     0     0     0     1     1     1     0     0
## X1254     0     0     1     0     1     0     0     1     0     0     0     0
## X1255     0     0     1     0     1     0     0     0     0     0     0     0
## X1256     0     0     1     0     1     0     0     0     1     0     0     0
## X1257     1     0     1     0     1     0     0     1     0     0     0     0
## X1259     0     0     1     0     0     0     0     1     0     0     0     0
## X1260     1     0     1     0     1     0     0     1     0     0     0     0
## X1262     0     0     1     0     1     0     0     1     0     0     0     1
## X1264     0     0     1     0     0     0     0     1     0     0     0     0
## X1265     1     0     1     0     1     0     0     1     0     0     0     0
## X1266     1     0     1     0     1     0     0     1     0     0     0     0
## X1267     1     0     1     0     1     0     0     0     0     0     1     1
## X1268     0     1     0     1     0     1     0     0     1     1     0     0
## X1273     1     0     1     0     1     0     0     1     0     0     0     0
## X1274     0     1     0     1     0     1     0     0     1     1     0     0
## X1275     0     0     1     0     0     0     0     1     0     0     0     0
## X1276     0     0     1     0     1     0     0     0     0     0     0     0
## X1277     1     0     1     0     1     0     0     1     0     0     0     0
## X1278     1     0     1     0     1     0     0     0     0     0     0     0
## X1279     0     0     1     0     1     0     0     0     0     0     0     0
## X1281     1     0     1     0     1     0     0     1     0     0     0     0
## X1282     1     0     1     0     1     0     0     1     0     0     0     0
## X1283     1     0     1     0     1     0     0     0     0     0     0     0
## X1284     0     0     1     0     1     0     0     0     0     0     0     0
## X1285     1     0     1     0     1     0     0     1     0     0     0     0
## X1288     1     0     1     0     1     0     0     1     0     0     0     0
## X1299     0     0     1     0     1     0     1     0     0     0     1     0
## X1301     0     1     1     1     0     1     0     0     1     0     0     0
## X1302     0     0     1     0     0     0     0     1     0     0     0     0
## X1307     1     0     1     0     0     0     0     1     1     1     0     1
## X1309     0     0     1     0     1     0     0     1     0     0     0     0
## X1310     0     0     1     0     0     0     0     1     0     0     0     0
## X447      1     0     1     1     0     0     0     1     0     0     0     1
## X448      1     0     1     0     0     0     1     1     0     0     1     1
## X451      0     1     0     0     0     0     0     0     0     1     0     0
## X452      0     0     1     0     0     0     0     1     0     0     0     0
## X453      0     0     1     0     1     0     0     0     0     0     0     0
## X454      0     0     1     0     1     0     1     0     0     0     1     1
## X455      1     0     1     0     0     0     0     1     0     0     0     1
## X456      0     1     1     1     0     0     0     0     1     0     0     0
## X458      0     0     1     0     1     0     1     0     0     0     1     1
## X459      0     1     0     1     0     1     0     0     1     1     0     0
## X460      0     0     1     0     0     1     0     0     1     0     0     0
## X461      0     0     1     0     0     0     0     1     0     0     0     0
## X462      0     0     1     0     0     0     0     0     0     1     0     0
## X463      0     0     1     0     1     1     1     0     1     0     0     0
## X464      0     0     0     0     0     0     0     1     0     0     0     0
## X465      0     0     1     0     1     0     1     0     0     0     0     0
## X466      1     0     1     1     0     0     0     1     0     0     0     1
## X468      0     1     0     1     0     1     0     0     1     1     0     0
## X471      0     0     1     1     0     0     0     0     0     1     0     0
## X472      0     1     0     0     0     0     0     1     0     1     0     0
## X473      0     0     1     0     0     1     0     0     1     0     0     0
## X476      0     0     1     1     1     0     0     0     0     0     0     0
## X477      1     0     1     0     0     0     1     0     0     0     0     1
## X478      0     0     0     0     0     1     0     0     0     0     0     0
## X479      0     0     0     0     0     1     0     0     0     1     0     0
## X480      0     0     1     0     1     0     1     0     0     0     0     0
## X482      0     0     0     0     0     0     0     1     0     0     0     0
## X483      0     0     0     0     0     0     0     1     0     0     0     0
## X484      0     0     1     0     1     0     1     0     0     0     1     0
## X486      0     1     0     1     0     1     0     0     1     1     0     0
## X487      0     1     1     1     0     1     0     0     0     1     0     1
## X488      0     1     1     1     0     0     0     0     0     1     0     1
## X489      1     0     1     0     0     0     0     1     0     0     0     0
## X490      1     0     1     1     0     0     0     0     1     1     0     0
## X491      0     1     0     0     0     1     0     0     0     1     0     0
## X492      0     1     1     0     0     1     1     0     1     0     0     1
## X493      0     1     0     1     0     1     0     0     1     1     0     0
## X494      1     0     1     0     0     0     1     1     0     0     1     0
## X495      0     0     1     0     1     1     1     0     1     0     0     0
## X496      1     0     1     0     0     0     1     0     0     0     0     0
## X497      0     0     1     0     1     0     0     0     0     0     0     0
## X498      1     0     1     0     0     0     0     1     0     0     0     0
## X499      1     0     1     0     0     0     0     0     0     0     0     0
## X501      1     0     1     0     0     0     1     1     0     0     0     1
## X502      0     0     1     0     0     0     0     0     0     0     0     0
## X503      1     0     1     0     0     1     1     0     1     1     1     0
## X505      0     0     1     0     0     0     0     1     0     0     0     0
## X506      0     0     1     0     1     0     1     0     0     0     1     0
## X507      1     0     1     0     1     0     1     0     0     0     1     1
## X508      1     0     1     0     0     0     0     1     0     0     1     1
## X509      1     0     1     0     0     0     1     0     0     0     1     1
## X510      0     0     1     0     0     0     1     1     0     0     0     0
## X513      0     1     0     0     0     0     0     0     0     0     0     0
## X514      1     0     1     0     1     0     1     0     0     0     1     1
## X515      0     0     1     0     1     0     0     0     0     0     1     0
## X516      0     0     1     0     0     0     0     0     0     0     0     0
## X518      0     0     1     0     0     0     1     0     0     0     1     1
## X521      0     0     1     0     1     0     1     0     0     0     1     1
## X523      0     0     1     0     0     0     0     0     0     1     0     0
## X524      1     0     1     1     0     0     0     1     0     1     0     0
## X525      0     0     1     0     0     1     1     0     1     1     1     1
## X526      0     1     0     1     0     1     0     0     1     1     0     0
## X530      0     1     1     0     0     0     0     0     0     1     0     0
## X531      0     0     1     0     0     0     0     0     0     0     1     0
## X532      0     0     1     0     0     0     1     0     0     1     1     0
## X533      1     0     1     0     0     0     1     1     0     0     1     1
## X534      0     1     1     0     0     0     1     0     0     1     1     1
## X535      1     0     1     0     0     0     0     1     0     0     0     0
## X536      0     0     1     0     1     1     1     0     1     0     0     0
## X538      1     0     1     0     1     0     0     0     0     0     1     1
## X539      0     0     1     0     1     1     1     0     1     0     0     0
## X542      0     1     1     1     0     1     0     0     1     0     1     1
## X543      0     1     0     0     0     1     0     0     1     1     0     0
## X544      1     1     1     0     0     0     1     0     0     0     1     1
## X545      0     1     0     0     0     1     0     0     1     1     0     0
## X546      0     0     0     0     0     0     0     1     0     0     0     0
## X548      0     0     1     0     0     0     0     0     0     0     0     0
## X549      0     0     1     0     0     0     0     1     0     0     0     0
## X551      0     0     0     0     0     0     0     1     0     0     0     0
## X552      1     1     1     0     1     0     0     0     0     0     0     1
## X553      0     1     1     1     0     0     0     0     0     0     0     0
## X554      0     0     1     0     0     0     1     1     0     1     1     0
## X556      1     0     1     0     1     0     0     0     0     0     0     1
## X557      1     1     1     0     0     1     1     1     0     1     1     0
## X558      0     0     1     0     1     0     0     0     0     0     0     0
## X559      0     1     0     0     0     0     0     0     0     1     0     0
## X560      1     0     1     0     0     0     0     0     0     0     0     0
## X561      0     0     1     0     0     0     0     1     0     0     0     0
## X562      1     1     1     0     0     0     0     0     0     1     0     0
## X563      0     0     1     0     1     0     0     0     0     0     0     0
## X565      0     1     0     0     0     1     0     0     1     1     0     0
## X566      1     0     1     0     0     0     0     1     0     0     0     0
## X567      1     0     1     0     0     0     1     1     0     0     1     1
## X568      0     0     1     0     0     0     0     1     0     0     0     0
## X569      1     0     1     1     0     1     0     0     1     1     0     0
## X571      1     0     1     0     0     0     0     1     0     0     0     0
## X572      0     1     1     1     0     1     1     0     1     1     1     0
## X574      0     1     1     0     0     1     0     0     1     0     0     0
## X576      0     0     1     0     1     0     1     0     0     0     1     1
## X577      0     0     1     0     1     0     0     0     0     0     0     0
## X579      1     0     1     0     1     0     0     0     0     0     0     0
## X580      1     0     1     0     0     0     0     1     0     0     1     1
## X582      0     1     0     1     0     1     0     0     1     1     0     0
## X583      1     0     1     0     0     0     0     0     0     0     0     0
## X584      1     0     1     1     0     1     1     0     1     0     0     0
## X586      1     0     1     0     0     0     0     0     1     1     0     1
## X587      0     0     1     0     1     0     0     0     0     0     0     0
## X588      0     1     1     0     0     1     1     0     1     1     1     0
## X589      0     1     1     1     0     1     0     0     1     0     1     1
## X591      0     0     1     0     1     1     1     0     1     0     0     0
## X592      0     0     1     0     0     0     0     0     0     1     0     0
## X593      1     0     1     1     1     0     1     1     0     0     0     0
## X594      0     1     0     1     0     1     0     0     1     1     0     0
## X595      0     1     0     0     0     0     0     1     1     1     0     0
## X596      0     1     1     0     0     0     1     0     0     1     1     1
## X597      1     1     1     0     1     0     0     0     0     0     0     0
## X598      0     0     0     1     0     1     0     0     1     0     0     0
## X599      0     0     1     0     0     0     0     0     0     0     0     0
## X600      1     0     1     0     0     0     0     0     0     1     0     1
## X603      0     1     0     1     0     1     0     0     1     1     0     0
## X604      0     1     1     0     0     1     1     0     1     1     1     0
## X605      0     1     1     1     0     1     0     0     1     0     0     1
## X606      0     1     1     1     0     0     0     0     0     1     0     0
## X608      1     0     1     0     0     0     0     1     0     0     0     0
## X609      0     0     1     0     1     0     1     0     0     0     1     0
## X611      0     0     1     0     0     1     0     0     1     0     0     0
## X612      1     0     1     0     0     0     1     1     0     0     0     0
## X613      0     0     1     0     0     0     0     1     0     0     0     0
## X614      1     0     1     0     0     0     0     1     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     1     0     0
## X617      0     1     1     0     1     0     0     0     0     1     0     0
## X619      1     0     1     0     1     0     1     1     0     0     1     1
## X620      1     0     1     0     0     0     0     1     0     0     0     0
## X621      1     0     1     0     1     0     0     0     0     0     1     0
## X622      0     0     1     0     1     0     0     0     0     0     0     0
## X623      1     0     1     0     1     0     1     1     0     0     1     0
## X625      0     0     1     0     1     0     1     1     0     0     0     0
## X628      0     1     1     1     0     1     0     1     1     0     1     1
## X629      0     1     1     1     0     1     0     0     1     0     1     1
## X630      1     1     1     0     1     0     1     0     1     0     0     0
## X631      0     1     0     0     0     1     0     0     1     1     0     0
## X632      0     0     0     0     0     0     0     1     0     0     0     0
## X633      1     0     1     1     0     0     0     1     0     0     0     1
## X635      0     0     1     0     0     1     1     0     1     0     1     1
## X636      0     1     1     1     0     1     0     1     1     0     1     1
## X637      0     1     1     1     0     1     0     0     1     0     0     0
## X638      0     0     1     0     1     0     0     0     0     0     0     1
## X639      0     0     1     0     1     0     1     0     0     0     1     0
## X641      0     1     1     0     1     0     1     0     0     1     0     1
## X648      1     0     1     0     1     0     1     1     0     0     1     1
## X650      0     0     1     0     1     0     1     0     0     1     0     1
## X651      0     1     1     0     1     0     1     0     0     1     0     0
## X653      0     1     1     1     0     1     0     0     1     0     1     1
## X654      0     1     1     1     0     1     0     0     0     1     0     1
## X655      0     0     1     0     0     0     0     0     0     1     0     0
## X656      0     0     1     0     1     0     0     1     0     0     0     0
## X657      0     1     1     1     0     1     0     0     1     1     0     0
## X1082     0     0     0     0     0     0     0     1     0     1     0     0
## X1083     0     0     1     1     1     0     0     0     0     0     0     0
## X1084     0     1     1     1     0     1     0     0     1     0     0     0
## X1086     0     0     1     0     0     0     0     1     0     0     0     0
## X1088     0     0     1     0     0     0     1     1     0     0     0     0
## X1089     0     1     1     0     1     0     1     0     0     1     1     0
## X1090     0     0     1     0     0     0     0     0     0     0     1     1
## X1091     1     1     1     0     0     1     0     0     1     1     1     0
## X1092     0     1     0     1     0     1     0     0     1     1     0     0
## X1093     0     0     1     0     0     0     1     1     0     0     0     0
## X1094     0     0     1     0     0     0     0     0     0     0     0     0
## X1095     1     0     1     0     0     0     0     0     0     0     0     0
## X1097     0     1     0     0     0     0     0     1     0     1     0     0
## X1098     0     0     1     0     0     1     1     0     1     1     1     1
## X1101     1     0     1     0     0     0     1     1     0     0     1     1
## X1103     1     0     1     1     0     0     0     0     0     0     1     1
## X1104     0     0     1     0     1     0     1     0     0     0     1     0
## X1105     1     0     1     0     0     0     1     0     0     0     0     0
## X1106     0     1     0     0     0     1     0     0     1     1     0     0
## X1108     0     0     1     0     0     0     0     0     0     0     0     0
## X1110     0     0     1     0     0     0     0     1     0     0     0     0
## X1112     0     0     1     0     1     0     1     0     0     0     1     0
## X1113     0     0     1     0     1     0     0     0     0     0     1     0
## X1115     0     0     1     0     1     0     0     0     0     0     0     0
## X1116     1     0     1     0     0     0     1     1     0     0     0     0
## X1117     1     0     1     0     0     0     0     0     0     0     1     0
## X1119     1     0     1     1     0     0     0     1     0     0     0     1
## X1120     0     1     1     1     0     1     0     0     1     0     1     1
## X1121     1     0     1     0     0     1     1     0     1     1     1     1
## X1122     0     1     1     1     0     1     0     0     1     0     1     1
## X1124     1     0     1     0     0     0     0     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     1     0     0     0     0
## X1126     0     0     1     0     0     0     0     1     0     0     0     0
## X1127     1     0     1     0     0     1     0     0     1     0     0     0
## X1128     0     0     1     0     0     0     0     1     0     0     0     0
## X1129     0     0     1     0     0     0     0     1     0     0     0     0
## X1130     1     0     1     1     0     0     0     1     0     0     0     0
## X1131     0     0     1     0     0     1     0     0     1     0     0     0
## X1133     0     0     1     0     0     0     1     1     0     0     0     0
## X1135     0     1     0     1     0     1     0     0     1     1     0     0
## X1136     0     0     1     0     0     0     0     1     0     0     0     0
## X1138     0     0     1     1     0     0     0     0     1     0     1     1
## X1139     0     1     1     1     0     1     0     0     1     0     1     1
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     1     0     0     0     0     1     0     0     0     0
## X1143     0     1     1     1     1     0     1     0     0     0     0     1
## X1144     1     1     1     0     0     1     0     0     1     0     1     1
## X1145     1     0     1     0     0     0     1     1     0     1     1     1
## X1146     0     1     0     1     0     1     0     0     1     1     0     0
## X1147     0     1     0     0     0     1     0     0     1     1     0     0
## X1149     0     0     1     0     0     0     0     1     0     0     0     0
## X1150     0     1     0     1     0     1     0     0     1     1     0     0
## X1151     0     0     1     0     0     1     0     0     1     1     0     0
## X1152     1     0     1     0     0     1     0     0     1     0     0     1
## X1153     1     0     1     0     0     0     0     1     0     0     0     0
## X1156     0     1     0     1     0     1     0     0     1     1     0     0
## X1158     1     0     1     1     1     0     0     0     0     0     1     1
## X1159     1     0     1     0     1     0     0     0     0     0     0     1
## X1160     1     0     1     0     1     0     0     0     0     1     1     1
##       FP097 FP098 FP099 FP100 FP101 FP102 FP103 FP104 FP105 FP106 FP107 FP108
## X661      1     0     0     0     1     0     0     1     0     0     0     0
## X662      1     0     0     0     1     1     0     1     1     1     0     0
## X663      0     1     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     0     0     0     1     0     0     0     0     0
## X668      0     0     0     0     1     1     0     1     0     1     1     0
## X669      0     0     0     1     0     1     0     0     0     0     1     0
## X670      1     0     0     0     1     1     1     1     0     1     1     0
## X671      0     1     0     0     0     0     1     1     1     0     0     1
## X672      1     0     1     0     0     0     1     0     0     0     0     0
## X673      0     0     0     1     0     0     1     0     1     0     0     0
## X674      1     0     1     0     0     0     0     0     0     0     0     0
## X676      1     0     1     0     0     0     1     0     1     0     0     0
## X677      1     0     0     0     0     0     0     0     0     0     0     0
## X678      1     0     0     0     0     0     0     0     0     0     1     0
## X679      0     0     1     0     0     0     0     0     0     0     0     0
## X682      1     1     0     0     0     0     0     0     0     0     0     1
## X683      0     0     1     1     1     1     1     1     1     1     0     1
## X684      1     0     0     0     1     1     0     1     1     1     1     0
## X685      1     0     1     0     0     0     1     0     1     0     0     0
## X686      1     0     0     0     0     0     0     0     0     0     0     0
## X688      1     1     1     0     0     0     0     0     0     0     1     1
## X689      1     0     0     0     1     1     1     0     1     1     0     0
## X690      0     0     0     1     0     1     0     0     1     0     1     1
## X691      0     0     1     1     1     1     0     1     1     1     1     0
## X692      0     0     1     1     0     1     0     0     0     1     0     1
## X693      0     0     1     1     0     1     0     0     1     1     0     0
## X695      1     0     0     0     1     1     1     1     0     1     0     1
## X696      1     0     0     0     1     0     0     0     0     0     0     0
## X698      0     1     1     1     0     0     0     0     0     0     0     1
## X699      0     0     0     0     0     0     0     0     0     0     1     0
## X700      0     0     0     0     0     0     1     1     1     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     1     0     1     0     0     0
## X704      1     0     0     0     0     0     0     0     0     0     0     0
## X706      1     1     0     0     0     0     1     0     0     0     0     1
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     1     0     1     0     0     0
## X711      1     1     1     0     0     0     1     0     1     0     0     0
## X712      0     0     0     0     0     0     1     0     0     0     0     0
## X713      0     1     1     0     0     0     0     0     0     0     0     0
## X714      1     1     1     0     0     0     1     0     1     0     0     1
## X715      0     1     0     1     0     0     0     0     0     0     1     1
## X717      1     0     0     0     0     0     0     0     0     0     0     0
## X718      1     0     0     0     1     1     0     1     1     1     1     0
## X721      0     0     0     0     1     0     0     1     0     1     1     0
## X722      0     0     1     0     1     1     0     0     0     0     0     0
## X723      0     0     0     0     0     0     1     0     1     0     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     0     0     0     0     0     0     0     0     0     1     1
## X728      0     1     0     0     0     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     1     0     1     0     0     0
## X732      0     0     0     0     0     0     0     0     0     0     1     0
## X733      0     0     0     0     1     0     0     1     0     1     1     0
## X734      0     0     0     0     0     0     0     0     0     0     1     0
## X735      1     0     1     0     0     0     1     0     1     0     0     0
## X736      0     1     0     0     0     0     1     1     1     0     0     1
## X737      1     0     0     0     0     0     0     0     0     0     0     0
## X739      1     0     1     0     0     0     0     0     0     0     1     1
## X740      1     1     0     1     1     1     0     0     0     0     1     1
## X741      0     1     0     0     0     0     1     1     1     0     0     0
## X742      0     1     0     0     0     0     1     1     1     0     0     1
## X743      0     0     0     0     0     0     0     0     0     0     1     0
## X744      1     0     0     0     0     0     0     0     0     0     0     0
## X746      0     1     0     0     0     0     0     0     0     0     0     1
## X747      0     0     0     0     0     0     1     1     1     0     0     0
## X749      1     1     0     0     1     1     1     1     1     1     1     1
## X752      1     1     1     0     0     0     1     0     1     0     0     1
## X753      0     0     0     0     0     0     1     0     1     0     0     0
## X754      1     0     0     0     1     1     1     1     1     1     0     0
## X755      1     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     1     1     1     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     1
## X759      0     0     0     0     0     1     0     0     0     1     0     0
## X760      0     0     0     0     0     0     0     0     0     0     1     0
## X761      1     1     1     0     0     0     1     0     0     0     0     1
## X762      1     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     0     0     0     0     0     0     1     0
## X764      1     0     0     0     0     0     0     0     0     0     0     0
## X765      0     1     1     0     0     0     0     0     0     0     0     1
## X767      1     1     1     0     0     0     1     0     1     0     1     1
## X768      1     0     0     0     1     0     0     0     0     0     0     0
## X770      1     0     0     0     1     1     1     1     1     1     1     0
## X771      1     0     0     1     0     0     0     0     0     0     1     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     1     1     1     0     0     0
## X774      0     0     0     0     0     0     1     1     1     0     0     0
## X775      0     1     0     0     0     0     0     0     0     0     0     0
## X776      0     0     1     1     0     1     0     1     1     1     1     1
## X777      0     0     1     0     0     1     0     1     1     1     0     0
## X778      1     1     1     1     0     0     1     0     1     0     0     0
## X779      1     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     1     0     0     0     0     0     0     1     1     0
## X781      0     1     1     0     0     0     1     0     1     0     0     1
## X782      1     0     0     0     0     0     0     0     0     0     0     0
## X784      0     1     0     0     0     0     0     0     0     0     0     1
## X786      0     0     0     0     0     0     1     1     1     0     0     0
## X787      0     0     0     0     0     0     0     0     0     0     1     0
## X788      1     0     1     0     0     0     1     0     1     0     0     0
## X789      0     0     0     0     0     0     0     0     0     0     1     0
## X791      0     0     0     0     0     0     0     0     0     0     1     0
## X792      1     0     1     0     1     1     1     1     1     1     0     0
## X794      0     1     0     0     0     0     1     1     1     0     0     0
## X798      1     0     0     0     1     0     0     1     0     0     0     0
## X799      1     0     1     1     1     1     0     0     0     1     1     0
## X800      1     0     1     0     0     0     1     0     1     0     0     0
## X804      0     0     0     0     0     1     0     0     0     0     0     0
## X805      1     1     1     0     0     0     1     0     1     0     0     1
## X807      0     0     1     0     0     1     0     0     0     1     0     1
## X808      1     1     0     1     1     1     0     0     0     0     0     1
## X809      0     1     0     0     0     0     0     0     1     0     0     1
## X810      1     0     1     0     0     0     0     0     0     1     1     0
## X813      0     1     0     0     0     0     1     1     1     0     0     0
## X814      0     1     1     1     1     1     0     1     0     1     1     1
## X818      0     0     0     0     0     0     0     0     0     0     1     0
## X819      0     0     0     1     0     0     0     0     0     1     1     0
## X820      0     0     0     0     0     0     1     1     1     0     0     0
## X821      0     0     0     0     0     0     0     0     0     0     1     0
## X822      1     0     0     0     0     0     0     0     0     0     0     0
## X823      1     0     0     0     0     0     0     0     0     0     0     0
## X827      1     0     1     0     0     0     0     0     0     1     1     0
## X828      0     0     0     0     0     0     0     0     0     0     1     0
## X829      1     0     1     1     1     1     0     0     0     1     1     1
## X831      0     0     0     0     0     0     0     0     0     0     1     0
## X832      0     0     0     0     0     0     0     0     0     0     1     0
## X833      0     0     0     0     0     0     0     0     0     0     1     0
## X834      0     0     0     0     0     0     0     0     0     0     1     0
## X835      0     0     0     0     0     0     0     0     0     0     1     0
## X836      0     0     0     0     0     0     0     0     0     0     1     0
## X839      1     0     0     0     0     0     0     0     0     0     0     0
## X840      1     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     0     1     0
## X842      1     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     0     0     1     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     0     0     0     0     0     0     1     0
## X849      0     0     0     0     0     0     0     0     0     0     1     0
## X851      1     1     1     0     0     0     1     1     1     0     0     0
## X854      0     0     0     0     0     0     0     0     0     0     1     0
## X855      1     0     0     0     1     0     0     0     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     1     0
## X857      0     0     0     0     0     0     0     0     0     0     1     0
## X858      0     0     0     0     0     0     0     0     0     0     1     0
## X859      0     0     0     0     0     0     0     0     0     0     1     0
## X860      0     0     0     0     0     0     0     0     0     0     1     0
## X862      0     0     0     0     0     0     0     0     0     0     1     0
## X863      0     0     0     0     0     0     0     0     0     0     1     0
## X864      1     0     0     0     0     0     1     0     0     0     0     0
## X865      1     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     0     0     0     0     0     0     1     0
## X867      1     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     1     0     1     1     0     1     0     1     0     0
## X870      0     0     0     0     0     0     0     0     0     0     1     0
## X871      0     0     0     0     0     0     0     0     0     0     1     0
## X872      0     0     0     0     0     0     0     0     0     0     1     0
## X873      1     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     1     0
## X876      0     0     0     0     0     0     0     0     0     0     1     0
## X877      0     0     0     0     0     0     0     0     0     0     1     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     1
## X1191     0     0     0     0     0     0     1     1     1     0     1     0
## X1192     1     0     1     0     0     0     1     0     1     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     1     1     1     0     0     0     1     0     1     0     0     1
## X1195     0     0     0     0     0     0     0     0     0     0     1     0
## X1197     0     0     0     0     0     0     0     0     1     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     0     1     0     0     1     0     1     0     0
## X1200     0     0     1     0     0     1     0     0     0     1     0     1
## X1201     1     1     0     0     1     1     0     1     0     0     0     1
## X1202     1     1     1     0     0     0     1     0     0     0     0     1
## X1203     0     0     0     0     0     0     0     1     1     0     0     0
## X1204     1     0     1     1     1     1     0     1     0     1     0     0
## X1205     0     1     1     0     1     0     0     0     0     1     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     1     0
## X1207     1     0     0     0     1     1     0     1     0     1     0     0
## X1208     1     1     1     0     0     0     1     0     1     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     1     0
## X1210     1     1     1     0     0     0     1     0     1     0     0     0
## X1212     1     0     1     0     0     0     1     0     1     0     0     0
## X1213     1     0     0     0     1     1     1     1     1     1     0     0
## X1215     1     1     1     0     0     0     1     1     0     0     0     0
## X1216     1     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     1     0     1     0     0     1     0     0     1     0
## X1219     0     0     0     0     0     0     1     0     0     0     0     0
## X1220     0     0     1     0     1     1     0     0     1     0     1     0
## X1221     0     0     0     0     0     0     1     1     1     0     0     0
## X1222     1     0     0     0     0     1     0     0     1     0     0     0
## X1226     1     0     1     0     1     1     0     1     1     1     0     0
## X1228     0     0     1     0     0     1     0     0     0     1     0     1
## X1229     1     1     1     0     0     0     1     0     1     0     0     1
## X1230     1     1     0     1     1     0     0     1     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     1     0     1     0     0     0     1     0     1     0     0     0
## X1234     1     0     0     0     0     0     0     0     0     0     0     0
## X1236     1     1     1     0     0     0     1     0     1     0     0     1
## X1237     0     0     1     1     1     1     0     0     0     1     1     1
## X1239     0     0     0     1     0     1     0     0     0     0     1     0
## X1242     0     0     0     0     0     0     0     0     0     1     1     0
## X1244     0     0     0     0     0     0     0     0     0     0     1     0
## X1245     0     0     0     0     0     0     1     0     1     0     0     0
## X1246     1     0     1     0     0     0     1     0     1     0     0     0
## X1247     0     1     1     0     0     0     0     0     0     0     0     1
## X1249     1     1     1     0     0     1     0     0     0     1     1     1
## X1250     1     0     1     0     0     0     0     0     0     1     1     0
## X1251     0     0     0     0     0     0     0     0     0     0     1     0
## X1253     0     0     1     0     0     1     0     0     0     1     1     1
## X1254     0     0     0     0     0     0     0     0     0     0     1     0
## X1255     1     0     0     0     0     0     0     0     0     0     0     0
## X1256     1     0     0     0     0     0     0     0     1     0     0     0
## X1257     0     0     0     0     0     0     0     0     0     0     1     0
## X1259     1     0     1     0     0     0     0     0     0     1     1     0
## X1260     0     0     0     0     0     0     0     0     0     0     1     0
## X1262     0     1     1     0     0     0     0     0     0     0     1     1
## X1264     1     0     1     0     0     0     0     0     0     1     1     0
## X1265     0     0     0     0     0     0     0     0     0     0     1     0
## X1266     0     0     1     0     0     0     0     0     0     0     1     0
## X1267     0     0     1     0     0     1     0     0     0     1     0     1
## X1268     0     1     0     0     0     0     1     1     1     0     0     0
## X1273     0     0     0     0     0     0     0     0     0     0     1     0
## X1274     0     0     0     0     0     0     1     1     1     0     0     0
## X1275     1     0     1     0     0     0     0     0     0     1     1     0
## X1276     1     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     1     0
## X1278     1     0     0     0     0     0     0     0     0     0     0     0
## X1279     1     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     1     0
## X1282     0     0     0     0     0     0     0     0     0     0     1     0
## X1283     1     0     0     0     0     0     0     0     0     0     0     0
## X1284     1     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     1     0
## X1288     0     0     0     0     0     0     0     0     0     0     1     0
## X1299     0     0     1     1     1     0     0     1     0     0     0     0
## X1301     1     0     1     0     0     0     1     0     1     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     1     0
## X1307     0     0     1     1     1     1     0     0     0     1     1     1
## X1309     0     0     1     0     0     0     0     0     0     0     1     0
## X1310     1     0     1     0     0     0     0     0     0     1     1     0
## X447      0     1     0     0     0     0     0     0     0     0     1     1
## X448      1     0     1     1     0     1     1     0     0     1     1     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     1     0
## X453      1     0     0     0     1     0     0     0     0     0     0     0
## X454      0     0     1     1     1     1     0     1     0     1     0     1
## X455      0     1     0     0     0     0     0     0     0     0     1     1
## X456      0     0     0     1     0     0     1     0     1     0     0     0
## X458      0     0     1     1     1     1     0     1     0     1     0     1
## X459      0     0     0     0     0     0     1     1     1     0     0     0
## X460      0     0     0     0     0     0     0     0     1     0     0     0
## X461      0     1     0     0     0     0     0     0     0     0     1     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     0     0     1     1     0     1     0     0     0     0
## X464      0     0     1     0     0     0     0     0     0     0     1     0
## X465      0     0     1     0     1     0     0     1     0     0     0     1
## X466      1     1     0     1     1     1     0     1     0     0     1     0
## X468      0     1     0     1     0     0     1     1     1     0     0     1
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     1     0
## X473      0     0     0     0     0     0     0     1     1     0     0     0
## X476      1     1     0     0     0     0     0     0     0     0     0     0
## X477      1     0     1     1     1     1     0     1     0     1     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     1     0     0     0     0     0
## X480      1     0     0     0     1     0     0     1     0     0     0     0
## X482      0     0     1     0     0     0     0     0     0     0     1     0
## X483      0     0     0     0     0     0     0     0     0     0     1     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     1     0     0     0     0     1     0     1     0     0     1
## X487      0     1     0     0     0     1     1     0     0     0     0     1
## X488      0     1     0     0     0     0     0     0     1     0     0     1
## X489      0     1     0     0     0     0     0     0     0     0     0     0
## X490      0     0     0     1     0     1     1     0     0     0     1     1
## X491      0     0     0     0     0     0     1     0     1     0     1     0
## X492      0     0     1     1     1     1     1     1     1     1     0     0
## X493      0     1     0     0     0     0     1     1     1     0     0     0
## X494      0     1     0     0     1     0     0     0     0     1     1     0
## X495      1     0     0     0     1     1     0     1     0     0     0     1
## X496      1     0     0     0     1     0     0     1     0     1     0     0
## X497      1     0     0     0     1     0     0     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     1     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      0     1     0     1     1     1     0     1     0     1     1     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      1     0     1     1     1     1     1     1     0     1     0     0
## X505      0     0     0     1     0     0     0     0     0     0     1     0
## X506      0     0     1     1     1     1     0     1     0     1     0     0
## X507      0     0     0     0     1     0     0     1     0     1     0     1
## X508      0     1     0     0     0     0     0     0     0     0     0     0
## X509      1     0     1     1     0     1     0     0     0     1     0     0
## X510      0     0     0     1     1     1     0     1     0     0     1     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     1     1     1     1     0     1     0     1     0     0
## X515      1     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     1
## X518      0     1     1     1     0     1     0     0     0     1     0     1
## X521      0     0     1     1     1     1     0     1     0     1     0     1
## X523      0     1     0     0     0     0     0     0     0     0     0     1
## X524      0     0     0     1     0     0     0     0     0     0     1     0
## X525      0     0     1     1     1     0     1     1     1     1     0     0
## X526      0     0     0     0     0     0     1     1     1     0     0     0
## X530      0     0     0     0     0     1     0     0     0     0     0     0
## X531      0     0     0     1     0     0     0     0     0     0     0     0
## X532      0     0     0     0     1     0     0     1     0     1     0     0
## X533      1     0     1     1     1     1     0     1     0     1     1     0
## X534      0     0     1     1     0     1     0     0     1     1     0     0
## X535      0     0     0     0     0     0     0     0     0     0     1     0
## X536      1     0     0     0     1     1     0     1     0     0     0     0
## X538      1     0     0     0     0     0     0     0     0     0     0     0
## X539      1     0     0     0     1     1     0     1     0     0     0     0
## X542      1     0     1     0     0     0     1     0     1     0     0     0
## X543      0     0     0     0     0     0     1     0     1     0     1     0
## X544      1     0     1     1     0     1     1     0     0     1     0     0
## X545      0     0     0     0     0     1     0     1     1     0     0     0
## X546      0     0     1     0     0     0     0     0     0     0     1     0
## X548      0     0     0     0     0     0     0     0     0     0     0     1
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     1     0     0     0     0     0     0     0     0     0
## X552      1     1     0     0     1     1     0     1     0     0     0     1
## X553      0     0     0     1     0     0     1     1     0     0     0     0
## X554      0     0     1     0     1     0     0     1     0     1     1     0
## X556      0     1     0     0     0     0     0     0     0     0     0     1
## X557      0     0     0     1     0     1     1     0     0     0     1     1
## X558      1     0     0     0     1     0     0     1     0     0     0     0
## X559      0     0     0     0     0     0     0     0     1     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     1     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     1     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     1     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     1     0
## X567      0     0     1     1     0     1     0     0     0     1     0     0
## X568      0     0     0     1     0     0     0     0     0     0     0     0
## X569      0     0     0     1     0     1     0     0     0     0     1     1
## X571      0     1     0     0     0     0     0     0     0     0     1     1
## X572      0     1     0     0     0     0     1     0     1     0     0     1
## X574      0     0     0     0     0     0     1     0     1     0     0     0
## X576      0     0     1     1     1     1     0     1     0     1     0     1
## X577      1     1     0     1     0     0     0     0     0     0     0     1
## X579      0     0     0     1     0     0     0     0     0     0     0     0
## X580      0     1     0     0     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     1     1     1     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      1     0     1     1     1     1     0     1     0     1     0     0
## X586      1     0     1     1     1     1     0     0     0     1     0     1
## X587      1     0     0     0     1     0     0     0     0     0     0     0
## X588      0     0     1     1     1     0     1     1     0     1     0     0
## X589      1     1     1     0     0     0     1     0     1     0     0     0
## X591      1     0     0     0     1     1     0     1     0     0     0     1
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     1     0     1     1     0     1     0     1     0     0
## X594      0     1     0     0     0     0     1     1     1     0     0     1
## X595      0     0     0     0     0     1     0     0     0     0     1     0
## X596      0     0     1     1     0     1     0     0     1     1     0     0
## X597      1     0     0     0     0     1     0     0     0     0     0     0
## X598      0     1     0     0     0     0     0     1     1     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      1     1     1     0     0     1     1     0     0     1     0     1
## X603      0     1     0     0     0     0     1     1     1     0     0     0
## X604      0     0     1     1     1     0     0     1     0     1     0     0
## X605      1     0     1     0     0     0     1     0     1     0     0     0
## X606      0     1     0     0     0     0     0     0     1     0     0     1
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     1     1     1     1     0     1     0     1     0     0
## X611      0     0     0     0     0     0     0     1     1     0     0     0
## X612      0     0     0     1     0     1     0     0     0     0     1     1
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     0     0     0     0     0     0     0     0     1     0
## X616      0     0     1     0     0     0     0     0     0     0     0     0
## X617      1     0     0     1     0     1     1     0     0     0     0     1
## X619      1     0     1     1     1     1     0     1     0     1     0     0
## X620      0     0     0     0     0     0     0     0     0     0     1     0
## X621      0     0     0     1     0     0     0     0     0     0     0     0
## X622      1     0     0     0     0     0     0     0     0     0     0     0
## X623      1     0     0     1     1     0     0     1     0     0     1     0
## X625      0     0     1     1     1     1     0     1     0     1     1     1
## X628      1     0     1     0     0     0     1     0     0     0     0     0
## X629      1     1     1     0     0     0     1     0     1     0     0     0
## X630      1     0     0     0     1     1     1     0     1     0     0     0
## X631      0     0     0     0     0     0     1     0     1     0     0     0
## X632      0     0     1     0     0     0     0     0     0     0     1     0
## X633      0     1     0     0     0     0     0     0     1     0     1     1
## X635      0     0     1     1     1     1     0     1     1     1     0     0
## X636      1     0     1     0     0     0     1     0     0     0     0     0
## X637      1     0     1     0     0     0     1     0     1     0     0     0
## X638      0     1     0     0     0     0     0     0     0     0     0     0
## X639      0     0     1     1     1     1     0     1     0     1     0     0
## X641      0     0     0     1     1     1     0     1     1     1     0     0
## X648      0     0     1     1     0     1     0     0     0     1     1     0
## X650      1     0     1     1     1     1     0     1     0     1     0     1
## X651      0     0     0     1     1     1     0     1     1     1     0     0
## X653      1     1     1     0     0     0     1     0     1     0     0     0
## X654      0     1     0     0     0     1     1     0     1     0     0     1
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      1     0     0     0     0     0     0     0     0     0     1     0
## X657      0     1     0     0     0     0     1     0     1     0     0     1
## X1082     0     0     1     0     0     0     0     0     0     0     1     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     0     0     0     0     0     0     1     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     0     1     0     1     0     0     0     0     1     1
## X1089     1     0     0     0     1     0     0     0     0     0     0     0
## X1090     0     1     0     0     0     0     0     0     0     0     0     0
## X1091     0     0     0     0     0     0     1     0     1     0     0     0
## X1092     0     0     0     0     0     0     0     0     1     0     0     0
## X1093     0     0     1     1     1     1     0     1     0     1     1     0
## X1094     0     1     0     0     0     0     0     0     0     0     0     0
## X1095     1     0     0     1     1     0     0     0     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     1     0
## X1098     1     0     1     1     1     0     1     1     0     1     0     0
## X1101     1     0     1     1     1     1     0     1     0     1     1     0
## X1103     1     0     1     0     0     0     0     0     0     0     0     0
## X1104     0     0     1     1     1     1     0     0     0     1     0     0
## X1105     1     0     0     0     1     0     0     1     0     0     0     0
## X1106     0     0     0     0     0     0     1     1     1     0     0     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     1     1     1     1     0     1     0     1     0     0
## X1113     0     0     1     0     0     0     0     0     0     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     0     0     0     0     0     1     0     0     0     0     1     0
## X1117     0     1     0     0     0     0     0     0     0     0     0     0
## X1119     0     1     0     0     0     0     0     0     0     0     1     1
## X1120     1     0     1     0     0     0     1     0     1     0     0     0
## X1121     1     1     0     0     1     1     0     1     1     1     0     0
## X1122     1     0     1     0     0     0     1     0     0     0     0     0
## X1124     1     0     0     0     0     0     0     0     0     0     0     0
## X1125     0     0     1     0     0     0     0     0     0     0     1     0
## X1126     0     0     0     0     0     0     0     0     0     0     1     0
## X1127     1     0     0     0     0     0     0     0     1     0     0     0
## X1128     0     0     0     1     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     1     0
## X1130     0     1     0     0     0     0     0     0     0     0     1     0
## X1131     0     0     0     0     0     0     0     1     1     0     0     0
## X1133     0     0     0     1     1     1     0     1     0     0     0     0
## X1135     0     0     0     0     0     0     1     1     1     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     1     1     1     0     0     0     0     1     0     1     0     1
## X1139     1     0     1     0     0     0     1     0     1     0     0     0
## X1141     0     0     0     0     0     0     1     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     1     0
## X1143     0     0     0     1     1     1     0     1     0     1     0     0
## X1144     1     0     1     0     1     1     0     1     0     0     0     0
## X1145     1     0     1     1     1     1     0     1     0     1     1     0
## X1146     0     1     0     1     0     0     1     1     1     0     0     1
## X1147     0     0     0     1     0     1     1     0     1     0     0     0
## X1149     0     1     0     1     0     0     0     0     0     0     1     1
## X1150     0     1     0     0     0     0     1     1     1     0     0     1
## X1151     0     0     0     1     0     1     1     0     1     0     0     0
## X1152     1     1     0     1     1     1     0     1     1     0     0     0
## X1153     0     0     0     0     1     0     0     0     0     1     0     0
## X1156     0     1     0     0     0     0     1     1     1     0     0     0
## X1158     1     0     0     0     0     0     0     0     0     0     0     0
## X1159     1     1     0     0     0     0     0     1     0     0     0     1
## X1160     1     1     0     0     0     0     0     1     0     1     0     1
##       FP109 FP110 FP111 FP112 FP113 FP114 FP115 FP116 FP117 FP118 FP119 FP120
## X661      0     0     0     0     0     0     0     1     0     0     0     0
## X662      1     0     0     0     1     0     0     1     0     1     0     0
## X663      0     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     0     0     0     0     0     0     0     0     0
## X668      1     0     1     1     0     1     0     1     0     0     0     0
## X669      0     1     1     0     0     0     0     0     0     0     0     0
## X670      1     0     0     1     0     0     0     0     1     0     0     0
## X671      0     0     0     0     0     0     0     0     0     0     0     1
## X672      0     0     0     1     1     0     1     0     1     1     0     0
## X673      1     1     1     0     1     1     0     0     0     1     0     0
## X674      0     0     0     0     0     0     1     0     1     0     0     0
## X676      0     0     0     0     1     0     0     0     1     1     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     1     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     0     0     0     0
## X682      0     0     0     0     0     0     0     0     0     0     1     0
## X683      1     1     1     0     0     1     1     1     0     0     1     0
## X684      1     0     0     1     0     0     0     1     0     1     0     1
## X685      0     0     0     0     1     0     0     0     1     1     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     1     0     0     0     0     1     0     0     0
## X689      1     0     0     0     0     0     0     0     0     0     0     0
## X690      1     1     0     0     0     1     0     0     0     0     0     1
## X691      0     1     1     0     1     0     1     1     0     0     0     0
## X692      0     0     1     0     0     0     1     0     0     1     0     0
## X693      0     1     1     0     1     1     1     0     0     1     0     0
## X695      1     0     0     0     0     0     0     1     0     0     1     0
## X696      1     0     0     0     0     1     0     1     0     0     0     0
## X698      0     1     1     0     0     0     0     0     0     0     1     0
## X699      0     0     0     1     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      0     0     0     0     0     0     0     1     0     0     1     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     0     0     1     0     0     0     1     1     0     0
## X712      0     0     0     0     0     0     0     0     0     0     1     0
## X713      1     0     1     0     0     1     0     0     0     0     0     0
## X714      0     0     0     0     1     0     1     0     1     1     0     1
## X715      1     1     1     1     1     1     0     0     0     0     0     1
## X717      0     0     0     1     0     0     0     0     0     0     0     0
## X718      1     0     0     1     0     0     0     1     0     0     0     0
## X721      1     0     1     1     0     1     0     1     0     0     0     0
## X722      0     0     1     0     0     0     0     1     0     0     0     0
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      1     0     0     0     0     1     0     0     0     0     0     0
## X726      0     0     0     1     0     0     0     0     0     0     1     0
## X728      0     0     0     1     0     0     0     0     0     0     0     0
## X729      0     0     0     1     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     1     0     0     0     0     0     0     0     0
## X733      1     0     1     1     0     1     0     1     0     0     0     0
## X734      0     0     0     1     0     0     0     0     0     0     0     0
## X735      0     0     0     0     1     0     0     0     1     1     0     0
## X736      1     0     0     0     0     1     0     0     0     0     0     1
## X737      1     0     0     0     0     1     0     0     0     0     0     0
## X739      0     0     0     1     0     0     1     0     1     0     1     0
## X740      0     1     0     1     0     0     1     0     1     1     1     0
## X741      0     0     0     0     1     0     0     0     0     1     0     0
## X742      0     0     0     0     0     0     0     0     0     0     0     0
## X743      0     0     0     1     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     1     0     0     0
## X746      0     0     0     0     0     0     1     0     0     0     0     1
## X747      0     0     0     0     1     0     0     0     0     1     0     1
## X749      1     0     0     1     0     0     0     1     0     0     0     1
## X752      0     0     0     1     0     0     1     0     1     1     0     1
## X753      0     0     0     0     0     0     0     0     1     0     0     0
## X754      1     0     0     0     0     0     0     1     0     0     0     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     1     0
## X759      0     0     1     0     0     0     0     0     0     0     0     0
## X760      0     0     0     1     0     0     0     0     0     0     0     0
## X761      0     0     0     1     0     0     1     0     1     1     0     1
## X762      0     0     0     0     0     0     0     0     1     0     0     0
## X763      1     0     0     1     0     1     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      0     0     0     1     0     0     0     0     0     0     0     0
## X767      0     0     0     1     0     0     1     0     1     0     0     0
## X768      0     0     0     0     0     0     0     0     1     0     0     0
## X770      1     0     0     1     0     0     0     1     0     0     0     0
## X771      0     1     0     1     0     1     1     0     0     0     0     0
## X772      0     0     0     1     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     1     0     1     0     0     1     0     0
## X776      0     1     1     1     1     1     1     0     0     1     1     0
## X777      0     0     1     0     0     0     0     0     0     0     0     0
## X778      0     1     0     0     1     0     1     0     1     1     0     0
## X779      1     0     0     0     0     1     0     0     0     0     0     0
## X780      0     0     0     1     0     0     0     0     1     0     0     0
## X781      0     0     0     0     0     0     0     0     0     0     0     0
## X782      0     0     0     0     0     0     1     0     0     0     0     0
## X784      0     0     0     1     1     0     0     0     0     1     1     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     1     0     0     0     0     0     0     0     0
## X788      0     0     0     0     0     0     1     0     1     0     0     0
## X789      0     0     0     1     0     0     0     0     0     0     0     0
## X791      0     0     0     1     0     0     0     0     0     0     0     0
## X792      1     0     1     0     0     0     0     1     0     0     0     0
## X794      0     0     0     0     1     0     0     0     0     1     0     0
## X798      0     0     0     0     0     0     0     1     0     0     0     0
## X799      0     1     1     0     0     0     1     0     1     0     0     0
## X800      0     0     0     0     1     0     0     0     1     1     0     0
## X804      1     0     0     0     0     1     0     0     0     0     0     0
## X805      0     0     0     0     1     0     1     0     1     1     0     1
## X807      0     0     1     0     0     0     0     0     0     0     0     1
## X808      0     1     0     0     0     0     1     0     1     1     1     0
## X809      0     0     0     0     0     0     1     0     0     0     0     1
## X810      0     0     0     1     0     0     0     0     1     0     0     0
## X813      0     0     0     0     1     0     0     0     0     1     0     0
## X814      1     1     1     1     0     1     0     0     1     0     1     0
## X818      0     0     0     1     0     0     0     0     0     0     0     0
## X819      1     1     1     1     0     1     1     0     0     0     0     0
## X820      0     0     0     0     1     0     0     0     0     1     0     1
## X821      0     0     0     1     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      1     0     0     0     0     1     0     0     0     0     0     0
## X827      0     0     0     1     0     0     0     1     1     0     0     0
## X828      0     0     0     1     0     0     0     0     0     0     0     0
## X829      0     1     1     0     0     0     1     0     1     0     0     1
## X831      0     0     0     1     0     0     0     0     0     0     0     0
## X832      0     0     0     1     0     0     0     0     0     0     0     0
## X833      0     0     0     1     0     0     0     0     0     0     0     0
## X834      0     0     0     1     0     0     0     0     0     0     0     0
## X835      0     0     0     1     0     0     0     0     0     0     0     0
## X836      0     0     0     1     0     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     1     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     1     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     1     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     1     0     0     0     0     0     0     0     0
## X849      0     0     0     1     0     0     0     0     0     0     0     0
## X851      0     0     0     0     1     0     0     1     1     1     0     1
## X854      0     0     0     1     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     1     0     0     0
## X856      0     0     0     1     0     0     0     0     0     0     0     0
## X857      0     0     0     1     0     0     0     0     0     0     0     0
## X858      0     0     0     1     0     0     0     0     0     0     0     0
## X859      0     0     0     1     0     0     0     0     0     0     0     0
## X860      0     0     0     1     0     0     0     0     0     0     0     0
## X862      0     0     0     1     0     0     0     0     0     0     0     0
## X863      0     0     0     1     0     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     0     1     0     0     0
## X865      0     0     0     0     0     0     0     0     1     0     0     0
## X866      0     0     0     1     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     1     0     0     0     0     0     1     0     0     0
## X870      0     0     0     1     0     0     0     0     0     0     0     0
## X871      0     0     0     1     0     0     0     0     0     0     0     0
## X872      0     0     0     1     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     1     0     0     0     0     0     0     0     0
## X876      0     0     0     1     0     0     0     0     0     0     0     0
## X877      0     0     0     1     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     1     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     0     1     0     0     0     1     1     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     0     1     0     1     0     1     1     0     1
## X1195     0     0     0     1     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     1     0     0     0     0     0     0     0     0
## X1199     1     0     1     0     0     1     0     1     0     0     0     0
## X1200     0     0     1     0     0     0     0     0     0     0     0     1
## X1201     0     0     0     0     0     0     0     1     1     0     1     1
## X1202     0     0     0     1     1     0     1     0     1     1     0     1
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     1     1     0     0     1     1     1     0     0     0     0
## X1205     1     0     1     0     0     1     0     1     0     0     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     1     0     0     0     0     0     0     1     0     0     0     0
## X1208     0     0     0     0     0     0     1     0     1     0     0     0
## X1209     0     0     0     1     0     0     0     0     0     0     1     0
## X1210     0     0     0     0     1     0     0     0     1     1     0     0
## X1212     0     0     0     0     1     0     0     0     1     1     1     0
## X1213     1     0     0     0     0     0     0     1     0     0     0     0
## X1215     0     0     0     1     0     0     1     0     1     1     0     1
## X1216     0     0     0     0     0     0     0     0     1     0     0     0
## X1217     0     0     0     1     0     0     0     1     0     0     0     0
## X1219     0     0     0     0     0     0     0     0     0     0     1     0
## X1220     0     0     0     1     1     0     0     1     0     1     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     0     0     0     0     0     0     0     0     0     0     0
## X1226     1     0     1     0     0     0     0     1     0     0     0     0
## X1228     0     0     1     0     0     0     0     0     0     0     1     0
## X1229     0     0     0     0     1     0     1     0     1     1     0     1
## X1230     1     1     0     0     0     0     0     1     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     0     0     1     0     0     0     1     1     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     0     0     0     0     1     0     1     0     0     0
## X1237     0     1     1     1     0     0     0     1     0     0     1     0
## X1239     0     1     1     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     1     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     0     1     0     1     0
## X1247     0     0     0     0     0     0     0     0     0     0     1     1
## X1249     0     0     1     1     0     0     0     1     0     0     1     1
## X1250     0     0     0     1     0     0     0     0     1     0     0     0
## X1251     0     0     0     1     0     0     0     0     0     0     0     0
## X1253     0     0     1     1     0     0     0     0     0     0     0     1
## X1254     0     0     0     1     0     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     1     0     0     0     0     0     0     0     0
## X1259     0     0     0     1     0     0     0     1     1     0     0     0
## X1260     0     0     0     1     0     0     0     0     0     0     0     0
## X1262     0     0     0     0     0     0     0     0     0     0     1     1
## X1264     0     0     0     1     0     0     0     0     1     0     0     0
## X1265     0     0     0     1     0     0     0     0     0     0     0     0
## X1266     0     0     1     1     0     0     0     0     0     0     0     0
## X1267     0     0     1     0     0     0     0     0     0     0     1     0
## X1268     0     0     0     0     1     0     0     0     0     1     0     0
## X1273     0     0     0     1     0     0     0     0     0     0     0     0
## X1274     0     0     0     0     1     0     0     0     0     1     0     1
## X1275     0     0     0     1     0     0     0     0     1     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     1     0     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     1     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     1     0     0     0     0     0     0     0     0
## X1282     0     0     0     1     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     1     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     1     0     0     0     0     0     0     0     0
## X1288     0     0     0     1     0     0     0     0     0     0     0     0
## X1299     0     1     1     0     0     0     1     0     1     0     0     0
## X1301     0     0     0     0     1     0     0     0     1     1     0     0
## X1302     0     0     0     1     0     0     0     0     0     0     0     0
## X1307     0     1     1     1     0     0     0     1     0     0     1     1
## X1309     0     0     1     1     0     0     0     0     0     0     0     0
## X1310     0     0     0     1     0     0     0     0     1     0     0     0
## X447      0     0     0     1     0     0     0     0     0     1     1     1
## X448      0     1     0     1     1     1     1     0     0     0     1     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     1     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     0     1     0     0     1     0
## X454      1     1     1     0     0     1     1     1     0     0     1     0
## X455      0     0     0     1     0     0     0     0     0     0     1     0
## X456      1     1     0     0     1     1     0     1     0     0     0     1
## X458      1     0     1     0     0     1     1     1     0     0     1     0
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     1     0     0     0     0     0     0     0     0
## X462      0     0     0     0     0     0     0     0     1     0     0     0
## X463      1     0     0     0     1     1     0     0     1     1     0     0
## X464      0     0     1     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     1     0     0     1     0     0     1     0
## X466      1     1     1     1     0     0     1     0     1     1     0     0
## X468      0     1     1     0     1     0     0     0     0     0     0     1
## X471      1     0     0     0     0     1     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     1     0     0     0
## X476      0     0     0     0     0     0     0     0     0     1     0     0
## X477      1     1     1     0     0     0     1     1     0     0     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     1     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      1     0     0     0     0     1     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     1
## X487      0     0     0     0     0     0     0     0     0     0     1     1
## X488      0     0     0     0     0     0     0     0     0     0     1     1
## X489      0     0     0     1     0     0     0     0     0     0     0     0
## X490      1     1     0     0     0     1     0     0     0     0     0     1
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     1     1     0     0     0     1     1     0     0     0     0
## X493      0     0     0     0     1     0     0     0     0     1     0     0
## X494      1     0     0     1     0     1     0     1     0     0     0     0
## X495      0     0     0     0     1     0     0     1     0     0     1     0
## X496      1     0     0     0     0     0     0     1     0     0     0     0
## X497      0     0     0     0     0     0     0     1     0     0     0     0
## X498      0     0     0     1     0     0     0     0     0     0     1     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      1     1     1     1     0     1     1     0     1     0     0     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      1     1     0     0     1     0     0     1     1     0     0     0
## X505      1     1     0     1     0     1     0     0     0     0     0     0
## X506      1     0     1     0     0     1     1     1     0     0     0     0
## X507      1     0     1     0     1     1     0     1     0     0     1     0
## X508      0     0     0     1     1     0     0     0     0     1     1     0
## X509      0     1     0     0     0     1     1     0     0     0     1     0
## X510      1     1     0     1     0     1     0     1     0     0     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      1     1     1     0     0     1     1     0     1     0     0     0
## X515      0     0     0     0     0     0     0     0     0     0     1     0
## X516      0     0     0     0     0     0     0     0     0     0     1     0
## X518      1     1     1     0     0     1     1     0     0     0     1     0
## X521      1     1     1     0     0     1     1     1     0     0     1     0
## X523      0     0     0     0     0     0     0     0     0     0     0     1
## X524      1     1     0     1     0     1     0     0     0     1     0     0
## X525      0     1     1     0     1     0     1     1     0     0     0     0
## X526      0     0     0     0     1     0     0     0     0     1     0     1
## X530      1     0     0     0     0     1     0     0     0     0     0     0
## X531      0     1     0     0     0     0     0     0     0     0     0     0
## X532      1     0     1     0     0     1     0     1     0     0     0     0
## X533      1     0     1     1     0     0     1     1     0     0     0     0
## X534      0     1     1     0     1     0     1     0     0     1     0     0
## X535      0     0     0     1     0     0     0     0     0     0     0     0
## X536      0     0     0     0     1     0     0     1     0     0     0     0
## X538      0     0     0     0     0     0     0     1     0     0     1     0
## X539      0     0     0     0     1     0     0     1     0     0     0     0
## X542      0     0     0     0     1     0     1     0     1     1     0     1
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      0     1     0     0     1     1     1     0     0     0     1     0
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     1     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     1     0
## X549      0     0     0     1     0     0     0     0     0     0     0     0
## X551      0     0     1     0     0     0     0     0     0     0     0     0
## X552      0     0     0     0     0     0     0     1     1     0     1     1
## X553      1     1     0     0     0     1     0     1     0     0     0     1
## X554      1     0     1     1     0     1     0     1     0     0     0     0
## X556      0     0     0     0     0     0     0     0     0     0     1     0
## X557      1     1     0     1     0     1     0     0     0     1     1     0
## X558      0     0     1     0     0     0     0     0     1     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     1     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      1     0     0     1     0     1     0     0     0     0     0     0
## X567      1     1     1     0     0     1     1     0     0     0     0     0
## X568      1     1     0     1     0     1     0     0     0     0     0     0
## X569      1     1     0     0     0     1     0     0     0     0     0     1
## X571      1     0     0     1     0     1     0     0     0     0     0     0
## X572      1     0     0     0     1     1     0     0     0     1     0     1
## X574      0     0     0     0     0     0     0     0     0     0     0     0
## X576      1     1     1     0     0     1     1     1     0     0     1     0
## X577      0     1     1     0     0     0     0     0     0     0     1     0
## X579      1     1     0     0     0     1     0     0     1     0     0     0
## X580      0     0     0     1     0     0     0     0     0     0     1     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      1     1     0     0     0     0     0     1     1     0     0     1
## X586      0     1     1     0     0     0     1     0     1     0     0     1
## X587      0     0     0     0     0     0     0     1     0     0     0     0
## X588      0     1     1     0     1     0     1     1     0     0     0     0
## X589      0     0     0     0     1     0     0     0     1     1     0     0
## X591      0     0     0     0     1     0     0     1     0     0     1     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     0     1     0     0     0     0     1     1     0     0
## X594      0     0     0     0     0     0     0     0     0     0     0     0
## X595      0     0     1     0     0     0     0     0     0     0     0     0
## X596      0     1     1     0     1     0     1     0     0     1     0     0
## X597      0     0     0     0     0     0     0     0     0     0     1     1
## X598      0     0     0     0     1     0     0     0     0     1     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     1     0     0     0     1     0     1     0     1     1
## X603      0     0     0     0     1     0     0     0     0     1     0     0
## X604      0     1     1     0     1     0     1     1     0     0     0     0
## X605      0     0     0     0     0     0     1     0     1     0     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     1
## X608      0     0     0     1     0     0     0     0     0     0     0     0
## X609      1     0     1     0     0     1     1     1     0     0     0     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     1     1     1     0     1     0     0     0     0     0     0
## X613      0     0     0     1     0     0     0     0     0     0     0     0
## X614      0     0     0     1     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     1     0     0     0     0     0     0     0     0     1     0
## X619      1     0     1     0     0     0     1     1     0     1     0     0
## X620      0     0     0     1     0     0     0     0     0     0     0     0
## X621      1     1     0     0     0     1     0     0     0     0     1     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      1     1     0     1     0     0     0     0     0     0     0     0
## X625      0     1     0     1     0     0     0     0     1     0     1     0
## X628      0     0     0     1     1     0     1     0     1     1     0     1
## X629      0     0     0     0     1     0     0     0     1     1     0     0
## X630      1     0     0     0     1     0     0     0     0     1     0     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     1     0     0     0     0     0     0     0     0     0
## X633      0     0     0     1     1     0     0     0     0     1     1     1
## X635      0     1     1     0     1     1     1     0     0     1     0     0
## X636      0     0     0     1     1     0     1     0     1     1     0     1
## X637      0     0     0     0     0     0     1     0     1     0     0     0
## X638      0     0     0     0     0     0     1     0     0     0     0     0
## X639      1     0     1     0     0     1     1     1     0     0     0     0
## X641      1     1     0     0     0     1     1     0     1     0     1     0
## X648      1     1     1     1     0     1     1     0     0     0     1     0
## X650      0     0     1     0     0     0     1     0     1     0     1     1
## X651      1     1     0     0     0     1     1     0     1     0     0     0
## X653      0     0     0     0     1     0     0     0     1     1     0     0
## X654      0     0     0     0     0     0     0     0     0     0     1     1
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     1     0     0     0     0     0     0     0     0
## X657      1     0     0     0     0     1     0     0     0     0     0     1
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     1     0     0
## X1084     0     0     0     0     1     0     0     0     0     1     0     0
## X1086     0     0     0     1     0     0     0     0     0     0     0     0
## X1088     1     1     1     1     0     1     0     0     0     0     0     0
## X1089     0     0     0     0     1     0     0     0     1     1     0     0
## X1090     0     0     0     0     1     0     0     0     0     1     1     0
## X1091     0     0     0     0     1     0     0     0     0     0     1     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     0     1     1     1     0     0     1     0     1     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     1     0     0     0     0     1     0     1     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     1     1     0     1     0     1     1     1     0     0     0
## X1101     1     0     1     1     0     0     1     1     0     0     0     0
## X1103     0     0     0     0     0     0     0     1     1     1     1     1
## X1104     1     0     1     0     0     1     1     1     0     0     0     0
## X1105     1     0     0     0     0     0     0     1     0     0     0     0
## X1106     0     0     0     0     1     0     0     0     0     1     0     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     1     0     0     0     0     0     0     0     0
## X1112     1     0     1     0     0     1     1     1     0     0     0     0
## X1113     0     0     0     0     0     0     0     0     0     0     1     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     1     0     0     1     0     1     0     0     0     0     0     0
## X1117     1     0     0     0     0     1     0     0     0     0     0     0
## X1119     0     0     0     1     0     0     0     0     0     1     1     1
## X1120     0     0     0     0     1     0     1     0     1     1     0     1
## X1121     1     0     1     0     0     1     1     1     0     1     0     0
## X1122     0     0     0     0     1     0     1     0     1     1     0     1
## X1124     0     0     0     0     0     0     1     0     0     0     0     0
## X1125     0     0     1     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     1     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     1     0     0     0
## X1128     1     1     0     1     0     1     0     0     0     0     0     0
## X1129     0     0     0     1     0     0     0     0     0     0     0     0
## X1130     0     0     0     1     0     0     0     0     0     1     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     1     1     0     1     0     1     0     1     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     0     0     1     0     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     1     1     1     0     1     0     0
## X1139     0     0     0     0     1     0     1     0     1     1     0     1
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     1     0     0     0     0     0     0     0     0
## X1143     1     1     0     0     0     1     1     0     1     0     0     0
## X1144     0     0     0     0     0     0     0     1     1     0     1     0
## X1145     1     1     1     1     0     0     1     1     0     1     0     0
## X1146     0     1     1     0     1     0     0     0     0     0     0     1
## X1147     0     1     1     0     0     0     0     0     0     0     0     0
## X1149     1     1     1     1     0     1     0     0     0     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     1
## X1151     0     1     1     0     0     1     0     0     0     0     0     0
## X1152     0     1     0     0     0     0     0     1     1     0     1     1
## X1153     0     0     0     1     0     0     0     0     1     0     0     0
## X1156     0     0     0     0     1     0     0     0     0     1     0     0
## X1158     0     0     0     0     0     0     0     1     0     0     1     0
## X1159     0     0     0     0     0     0     0     1     1     0     1     0
## X1160     0     0     0     0     0     0     1     1     0     0     1     1
##       FP121 FP122 FP123 FP124 FP125 FP126 FP127 FP128 FP129 FP130 FP131 FP132
## X661      0     0     0     0     0     0     0     0     0     0     0     0
## X662      1     0     0     0     0     1     0     0     0     0     1     0
## X663      0     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     1     0     0     0     0     0     0     0     0     0
## X668      1     0     0     0     0     0     1     0     0     0     1     0
## X669      1     0     1     0     0     0     0     0     0     0     0     0
## X670      1     0     0     0     0     0     1     0     0     1     1     0
## X671      0     0     0     0     0     0     0     0     0     0     0     0
## X672      0     1     1     0     0     0     0     0     1     0     0     0
## X673      0     1     0     0     0     0     1     0     0     0     0     0
## X674      0     0     0     0     1     0     0     0     1     0     0     0
## X676      0     0     1     0     0     0     0     0     1     0     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     1     0     0     0
## X682      0     0     0     1     0     0     0     0     0     0     0     0
## X683      1     0     0     1     0     1     1     1     0     1     1     0
## X684      1     1     0     0     0     0     0     0     0     0     1     0
## X685      0     1     0     0     0     0     0     0     1     0     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     1     0     0     0     0     1     0     0     0
## X689      1     0     0     1     0     0     0     0     0     0     1     0
## X690      1     0     0     0     1     0     0     1     0     0     0     0
## X691      1     1     0     0     0     1     1     0     0     0     0     0
## X692      0     0     0     0     0     0     0     0     0     1     0     0
## X693      0     1     0     0     1     1     1     0     0     1     0     0
## X695      1     0     0     1     0     1     0     0     0     0     1     0
## X696      0     0     0     0     0     0     0     0     0     0     1     1
## X698      0     0     0     1     0     0     0     0     1     0     0     0
## X699      0     0     0     0     0     0     0     0     0     0     0     0
## X700      0     0     1     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      0     0     1     1     1     0     0     0     0     0     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     1     0     0     0     0     0     0     1     0     0     0
## X712      0     0     1     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     1     0     0     0     0     0     0
## X714      0     1     1     0     1     0     0     0     1     0     0     0
## X715      0     0     1     0     0     0     0     0     0     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      1     0     0     1     0     0     0     0     0     0     1     0
## X721      0     0     0     0     0     0     1     0     0     0     1     0
## X722      1     0     1     1     0     1     0     0     0     0     0     0
## X723      0     0     1     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     0     0     0     0     0     1     0     0
## X726      0     0     0     0     0     0     0     0     0     0     0     0
## X728      0     0     0     0     0     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     0     0     0     0     0     0     0     0
## X733      0     0     0     0     0     0     1     0     0     0     1     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     1     1     0     0     0     0     0     1     0     0     0
## X736      0     0     0     0     0     0     0     0     0     0     0     1
## X737      0     0     0     0     0     0     0     0     0     0     0     0
## X739      0     0     1     1     1     0     0     0     1     0     0     0
## X740      1     0     0     1     0     0     0     1     0     0     0     0
## X741      0     1     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     1     0     0     0     0     0     0     0     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      0     0     0     0     0     0     0     0     0     0     0     0
## X747      0     1     0     0     0     0     0     0     0     0     0     0
## X749      1     0     0     0     0     0     0     0     0     0     1     0
## X752      0     1     1     0     1     0     0     0     1     0     0     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      1     0     0     1     0     0     0     0     0     0     1     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     0
## X759      1     0     0     0     0     0     0     0     0     1     0     0
## X760      0     0     0     0     0     0     0     0     0     0     0     0
## X761      0     1     1     0     1     0     0     0     1     0     0     0
## X762      0     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     0     0     0     0     0     0     0     1
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      0     0     0     0     0     0     0     0     1     0     0     0
## X767      0     0     1     0     0     0     0     0     1     0     0     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      1     0     0     1     0     0     0     0     0     0     1     0
## X771      0     0     1     0     0     1     0     1     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     1     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     0     0     0     0     0     0     0     0
## X776      0     1     0     1     1     1     1     1     0     1     0     0
## X777      0     0     0     0     0     0     0     0     0     1     0     0
## X778      0     1     0     0     0     0     0     1     1     0     0     0
## X779      0     0     0     0     0     0     0     0     0     0     0     1
## X780      0     0     1     0     0     0     0     0     0     0     0     0
## X781      0     0     1     1     0     0     0     0     1     0     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     0
## X784      0     0     0     0     0     0     0     0     0     0     0     1
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     0     0     0     0     0     0     0     0
## X788      0     0     1     0     0     0     0     0     1     0     0     0
## X789      0     0     0     0     0     0     0     0     0     0     0     0
## X791      0     0     0     0     0     0     0     0     0     0     0     0
## X792      1     0     0     1     0     0     0     0     0     0     1     0
## X794      0     1     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     0     0     0     0     0     0     0     0
## X799      1     0     1     0     1     0     0     1     0     1     0     0
## X800      0     1     0     0     0     0     0     0     1     0     0     0
## X804      1     0     0     1     0     0     1     0     0     0     1     0
## X805      0     1     1     0     1     0     0     0     1     0     0     0
## X807      0     0     0     0     0     0     0     0     0     1     0     0
## X808      1     0     1     1     0     0     0     1     0     0     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     0     1     0     0     0     0     0     1     0     0     0
## X813      0     1     0     0     0     0     0     0     0     0     0     0
## X814      1     0     0     0     0     1     0     1     1     1     1     0
## X818      0     0     0     0     0     0     0     0     0     0     0     0
## X819      0     0     0     0     1     1     1     1     0     0     0     0
## X820      0     1     0     0     0     0     0     0     0     0     0     0
## X821      0     0     0     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     1
## X827      0     0     1     0     0     0     0     0     1     0     0     0
## X828      0     0     0     0     0     0     0     0     0     0     0     0
## X829      1     0     0     0     1     1     0     1     0     1     0     0
## X831      0     0     1     0     0     0     0     0     0     0     0     0
## X832      0     0     0     0     0     0     0     0     0     0     0     0
## X833      0     0     0     0     0     0     0     0     0     0     0     0
## X834      0     0     0     0     0     0     0     0     0     0     0     0
## X835      0     0     0     0     0     0     0     0     0     0     0     0
## X836      0     0     0     0     0     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     1     0     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     0     0     0     0     0     0     0     0
## X849      0     0     0     0     0     0     0     0     0     0     0     0
## X851      0     0     1     0     0     0     0     0     1     0     0     0
## X854      0     0     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     0     0
## X857      0     0     0     0     0     0     0     0     0     0     0     0
## X858      0     0     0     0     0     0     0     0     0     0     0     0
## X859      0     0     0     0     0     0     0     0     0     0     0     0
## X860      0     0     0     0     0     0     0     0     0     0     0     0
## X862      0     0     0     0     0     0     0     0     0     0     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      1     0     0     0     0     0     1     0     1     1     1     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      0     0     0     0     0     0     0     0     0     0     0     0
## X872      0     0     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     1     1     0     0     0     0     0     1     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     1     1     0     1     0     0     0     1     0     0     0
## X1195     0     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     1     0     0     1     0     0     0     1     0
## X1200     0     0     0     0     0     0     0     0     0     1     0     0
## X1201     1     0     0     1     1     0     0     0     0     0     0     0
## X1202     0     1     1     0     1     0     0     0     1     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     0     1     1     1     1     1     1     0     1     0     0
## X1205     0     0     0     0     0     1     1     0     0     0     0     0
## X1206     0     0     1     0     0     0     0     0     0     0     0     0
## X1207     1     0     0     1     0     0     0     0     0     0     0     0
## X1208     0     0     1     0     0     0     0     0     1     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     1     0     0     0     0     0     0     1     0     0     0
## X1212     0     1     1     0     0     0     0     0     1     0     0     0
## X1213     1     0     0     1     0     0     0     0     0     0     1     0
## X1215     0     1     1     0     1     0     0     0     1     0     0     0
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     0     0     0     1     1     0     1     0     1     0
## X1219     0     0     0     0     0     0     0     0     0     0     0     0
## X1220     1     0     0     0     0     1     0     0     1     0     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     1     0     1     1     0     0     0     0     0     0     0     0
## X1226     1     0     0     1     0     0     0     0     0     0     1     0
## X1228     0     0     0     1     0     0     0     0     0     1     0     0
## X1229     0     1     1     0     1     0     0     0     1     0     0     0
## X1230     0     0     0     0     0     1     0     1     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     1     0     0     0     0     0     1     0     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     1     0     0     0     0     0     1     0     0     0
## X1237     0     0     0     1     0     1     0     1     0     1     0     0
## X1239     1     0     1     0     0     0     0     0     0     0     0     0
## X1242     0     0     1     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     0     1     0     0     0
## X1247     0     0     1     0     0     0     0     0     1     0     0     0
## X1249     0     0     1     0     1     0     0     0     0     1     0     0
## X1250     0     0     1     0     0     0     0     0     1     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     0     0     1     0     0
## X1254     0     0     0     0     0     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     0     0     0     0     0     0     0     0
## X1259     0     0     1     0     0     0     0     0     1     0     0     0
## X1260     0     0     0     0     0     0     0     0     0     0     0     0
## X1262     0     0     1     0     0     0     0     0     1     0     0     0
## X1264     0     0     1     0     0     0     0     0     1     0     0     0
## X1265     0     0     0     0     0     0     0     0     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     0     0     0
## X1267     0     0     0     0     1     0     0     0     0     1     0     0
## X1268     0     1     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     0     0     0     0     0     0     0     0     0     0
## X1274     0     1     0     0     0     0     0     0     0     0     0     0
## X1275     0     0     1     0     0     0     0     0     1     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     0     0
## X1282     0     0     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     0     0     1     1     1     1     1     0     0     0
## X1301     0     1     1     0     0     0     0     0     1     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     1     0     1     0     1     0     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     0
## X1310     0     0     1     0     0     0     0     0     1     0     0     0
## X447      0     0     0     0     0     0     0     0     0     0     0     0
## X448      1     1     1     1     1     1     0     1     1     0     0     1
## X451      0     0     1     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     1     0     0     0     0     0     0
## X454      0     0     0     1     0     1     1     1     0     1     1     1
## X455      0     0     0     0     0     0     0     0     0     0     0     0
## X456      0     1     1     0     1     1     0     1     0     0     0     0
## X458      0     0     0     1     0     1     1     0     0     1     1     1
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     1     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     0     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      1     1     0     0     0     0     1     0     0     0     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     1     0     1     1     0     1     0     1     0
## X466      1     0     0     0     0     0     0     0     0     0     0     0
## X468      0     1     0     0     0     0     0     0     0     0     0     1
## X471      0     0     0     0     0     0     0     0     0     0     0     1
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     0     0
## X477      1     0     0     0     1     1     1     1     0     1     1     0
## X478      0     0     1     0     0     0     0     0     0     0     0     0
## X479      0     0     1     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     0     0     0     1     0
## X482      0     0     0     0     0     0     0     0     1     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     1
## X486      0     0     0     0     0     0     0     0     0     0     0     0
## X487      1     0     0     0     0     0     0     0     0     0     0     0
## X488      0     0     0     0     0     0     0     0     0     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     0     0
## X490      1     0     0     1     0     0     0     1     0     0     0     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      1     1     1     1     1     1     1     1     1     0     1     0
## X493      0     1     0     0     0     0     0     0     0     0     0     0
## X494      0     0     0     0     0     0     0     0     0     0     1     1
## X495      1     1     1     1     0     0     0     0     0     0     0     0
## X496      0     0     0     0     0     0     1     0     0     0     1     0
## X497      0     0     0     0     0     0     0     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      1     0     0     1     1     1     1     0     0     1     0     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      1     1     0     1     0     1     0     1     1     0     0     0
## X505      0     0     0     0     0     0     0     1     0     0     0     0
## X506      0     0     0     0     0     1     1     0     0     1     1     1
## X507      0     0     0     1     1     0     1     0     0     0     1     1
## X508      0     0     0     0     0     0     0     0     0     0     0     1
## X509      1     0     1     1     1     1     0     1     1     0     0     1
## X510      1     0     1     0     0     1     0     1     0     1     1     1
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     1     1     0     1     0     1     1     1
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     1     1     0     0     0     0     0     0     0     0
## X518      1     0     0     1     0     1     1     0     1     0     0     0
## X521      0     0     0     1     1     1     1     1     0     1     1     1
## X523      0     0     1     0     0     0     0     0     0     0     0     0
## X524      0     0     0     0     0     0     0     1     0     0     0     0
## X525      0     1     1     0     1     1     1     1     1     0     1     0
## X526      0     1     0     0     0     0     0     0     0     0     0     0
## X530      1     0     0     0     0     0     0     0     0     0     0     0
## X531      0     0     0     0     0     0     0     1     0     1     0     0
## X532      0     0     0     1     0     0     1     0     0     0     1     0
## X533      0     0     0     0     0     1     1     0     0     1     1     1
## X534      0     1     0     0     1     1     1     0     0     1     0     0
## X535      0     0     0     0     0     0     0     0     0     0     0     0
## X536      1     1     1     0     0     0     0     0     0     0     0     0
## X538      0     0     1     0     1     0     0     0     0     0     0     0
## X539      1     1     1     0     0     0     0     0     0     0     0     0
## X542      0     1     1     0     1     0     0     0     1     0     0     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      1     1     1     1     1     1     0     1     1     0     0     1
## X545      1     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     1     1     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      1     0     0     1     1     1     0     0     0     0     0     0
## X553      0     1     1     0     1     1     0     1     0     0     0     0
## X554      0     0     0     0     0     0     1     0     1     0     1     0
## X556      0     0     0     0     1     0     0     0     0     0     0     0
## X557      1     1     0     1     1     1     0     1     0     0     0     1
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     1     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     0     1
## X567      0     0     0     0     0     0     0     1     0     1     1     0
## X568      0     0     0     0     0     0     0     1     0     0     0     0
## X569      1     0     0     1     1     0     0     1     0     0     0     0
## X571      0     0     0     1     0     0     0     0     0     0     0     1
## X572      0     1     0     0     0     0     0     0     0     0     0     1
## X574      0     0     1     0     0     0     0     0     0     0     0     0
## X576      0     0     0     1     0     1     1     1     0     1     0     1
## X577      0     0     0     1     0     0     0     0     0     0     0     0
## X579      0     0     0     0     1     1     0     1     0     0     0     0
## X580      0     0     0     0     1     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      1     0     1     0     1     1     0     1     1     0     1     0
## X586      1     0     0     0     1     0     0     1     0     1     0     0
## X587      0     0     0     0     0     0     0     0     0     0     0     0
## X588      0     1     0     0     1     1     1     1     1     0     1     0
## X589      0     1     0     0     0     0     0     0     1     0     0     0
## X591      1     1     1     1     0     0     0     0     0     0     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      1     0     0     0     0     1     1     0     1     1     1     0
## X594      0     0     0     1     0     0     0     0     0     0     0     0
## X595      1     0     1     0     0     0     0     0     0     0     0     0
## X596      0     1     0     0     1     1     1     0     0     1     0     0
## X597      1     0     1     1     0     0     0     0     0     0     0     0
## X598      0     1     1     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     1     0     0     0     0     1     1     0     0
## X603      0     1     0     0     0     0     0     0     0     0     0     0
## X604      0     1     1     0     1     1     1     1     1     0     1     0
## X605      0     0     1     0     0     0     0     0     1     0     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     1     1     0     0     1     1     1
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     0     0     1     0     0     1     0     0     1     0     0
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     0     0     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     1     0     0     0
## X617      1     0     0     0     0     0     0     1     0     0     0     0
## X619      0     0     0     0     0     1     1     0     0     1     1     1
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     1     1     0     1     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     0     0     0     0     0     1     0     0     1     0
## X625      1     0     0     0     0     1     1     1     1     1     1     0
## X628      0     1     1     0     1     0     0     0     1     0     0     0
## X629      0     1     0     0     0     0     0     0     1     0     0     0
## X630      1     0     0     1     0     0     0     0     0     0     1     0
## X631      0     0     1     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     1     0     0     0     0     0     0     0     0     0     0
## X635      1     1     0     0     1     1     1     0     0     1     0     0
## X636      0     1     1     0     1     0     0     0     1     0     0     0
## X637      0     0     1     0     0     0     0     0     1     0     0     0
## X638      0     0     0     0     0     0     0     0     0     0     0     0
## X639      0     0     0     0     0     1     1     0     0     1     0     1
## X641      1     0     0     0     1     1     0     1     0     1     1     0
## X648      0     0     0     0     1     1     0     1     0     1     0     1
## X650      0     0     0     0     0     0     0     0     0     1     0     1
## X651      1     0     0     0     1     1     0     1     0     1     1     0
## X653      0     1     0     0     0     0     0     0     1     0     0     0
## X654      1     0     0     0     0     0     0     0     0     0     0     0
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     1
## X1082     0     0     0     0     0     0     0     0     1     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     0     1     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     1     0     0     1     0     0     1     0     0     1     0     0
## X1089     0     1     0     0     0     0     0     0     0     0     0     1
## X1090     0     0     0     0     0     0     0     0     0     0     0     1
## X1091     0     1     0     0     1     0     0     0     0     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     1     0     0     0     1     1     1     1     1     1     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     0     0     1     0     0     1     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     1     1     0     1     1     1     1     1     0     1     0
## X1101     0     0     0     0     0     1     1     0     0     1     1     1
## X1103     0     1     1     0     1     0     0     0     1     0     0     0
## X1104     0     0     0     0     0     1     1     0     0     1     0     1
## X1105     0     0     0     0     0     0     1     0     0     0     1     0
## X1106     0     1     0     0     0     0     0     0     0     0     0     1
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     0     0     0     1     1     0     0     1     1     1
## X1113     0     0     0     0     0     0     0     0     1     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     1     0     0     1     0     0     1     0     0     0     0     0
## X1117     0     0     0     1     0     1     0     0     0     0     0     0
## X1119     0     0     0     0     0     0     0     0     0     0     0     0
## X1120     0     1     1     0     1     0     0     0     1     0     0     0
## X1121     1     1     1     0     1     1     1     0     0     0     1     0
## X1122     0     1     1     0     1     0     0     0     1     0     0     0
## X1124     0     0     1     0     0     0     0     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     1     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     0     0
## X1130     0     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     1     0     1     0     0     1     0     1     0     1     1     1
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     0     1     1     0     1     1     0     0     0     0     0     1
## X1139     0     1     1     0     1     0     0     0     1     0     0     0
## X1141     0     0     1     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     1     0     0     0     1     1     0     1     0     1     1     0
## X1144     1     1     1     1     0     0     0     0     1     0     0     0
## X1145     0     0     0     0     0     1     1     1     0     1     1     1
## X1146     0     1     0     0     0     0     0     0     0     0     0     1
## X1147     1     0     0     0     0     0     0     0     0     0     0     0
## X1149     0     0     0     0     0     0     0     0     0     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     0
## X1151     1     0     0     0     0     0     0     0     0     0     0     0
## X1152     1     0     1     0     0     0     0     1     0     0     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     1     0     0     0     0     0     0     0     0     0     0
## X1158     0     1     0     0     1     0     0     0     0     0     0     0
## X1159     0     0     1     1     1     0     0     0     0     0     0     0
## X1160     0     0     1     0     1     0     0     0     0     0     0     0
##       FP133 FP134 FP135 FP136 FP137 FP138 FP139 FP140 FP141 FP142 FP143 FP144
## X661      0     0     0     1     0     0     0     0     0     0     0     0
## X662      0     1     1     0     1     1     0     0     1     1     0     0
## X663      1     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     0     0     0     0     0     0     0     0     0
## X668      0     0     0     1     1     1     0     0     0     1     0     1
## X669      1     1     0     0     1     0     0     0     1     0     0     0
## X670      0     0     1     1     1     1     1     1     0     0     0     0
## X671      0     0     0     0     0     0     0     0     0     0     0     0
## X672      0     0     0     0     0     0     0     0     0     0     0     0
## X673      0     0     1     0     0     0     0     0     0     0     0     0
## X674      1     0     0     0     0     0     0     0     0     0     0     0
## X676      0     0     0     0     0     0     0     0     0     0     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     0     0     0     0
## X679      1     0     0     0     0     0     0     0     0     0     0     0
## X682      0     0     0     0     0     0     0     0     0     0     0     0
## X683      1     1     0     1     0     1     1     0     1     1     1     1
## X684      0     1     1     0     1     1     0     0     1     1     0     1
## X685      0     0     0     0     0     0     0     0     0     0     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     0     0     0     0     0     0     0     0     0
## X689      1     0     1     0     1     1     0     0     0     1     0     0
## X690      0     0     1     0     1     1     0     0     0     1     0     0
## X691      0     0     1     0     1     1     0     0     0     1     0     0
## X692      1     1     1     0     0     1     1     0     1     0     1     1
## X693      0     1     1     0     0     0     1     0     1     0     1     0
## X695      1     1     0     0     1     1     0     0     1     1     0     0
## X696      0     0     0     1     0     0     0     0     0     0     0     0
## X698      1     0     0     0     0     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      1     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      1     0     0     0     0     0     0     0     0     0     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     0     0     0     0     0     0     0     0     0     0
## X712      0     0     0     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     0     0     0     0     0     0     0
## X714      0     0     0     0     0     0     0     0     0     0     0     0
## X715      0     0     0     0     0     0     0     0     0     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      0     1     1     0     1     1     0     0     1     1     0     0
## X721      1     0     0     1     0     0     0     0     0     0     0     0
## X722      0     0     0     0     1     0     0     0     0     0     0     0
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     0     0     1     0     0     0     0     0
## X726      0     0     0     0     0     0     0     0     0     0     0     0
## X728      0     0     0     0     0     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     0     0     0     0     0     0     0     0
## X733      0     0     0     1     0     1     0     0     0     0     0     1
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     0     0     0     0     0     0     0     0     0     0     0
## X736      0     0     0     0     0     0     0     0     0     0     0     0
## X737      0     1     0     0     0     0     0     0     0     0     0     0
## X739      0     0     0     0     0     0     0     1     0     0     0     0
## X740      0     0     0     1     1     0     0     1     0     0     0     0
## X741      0     0     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     0     0     0     0     0     0     0     0     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      1     0     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     0     0     0     0     0     0     1
## X749      0     1     1     0     1     1     0     0     1     1     0     0
## X752      0     0     0     0     0     0     0     0     0     0     0     1
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     1     1     0     1     1     0     0     1     1     0     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     0
## X759      0     1     0     0     1     1     0     0     1     1     0     0
## X760      0     0     0     0     0     0     0     0     0     0     0     0
## X761      0     0     0     0     0     0     0     0     0     0     0     1
## X762      0     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      1     0     0     0     0     0     0     0     0     0     0     0
## X767      0     0     0     0     0     0     0     0     0     0     0     0
## X768      0     0     0     1     0     0     0     1     0     0     0     0
## X770      1     1     1     0     1     1     0     0     1     1     0     0
## X771      0     0     0     0     0     0     0     0     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     0     0     0     0     0     0     0     0
## X776      0     1     1     0     0     1     1     0     1     0     1     1
## X777      0     1     0     0     0     0     0     0     1     0     1     0
## X778      0     0     1     0     0     1     0     0     0     0     0     1
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      1     0     0     0     0     0     0     0     0     0     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     0
## X784      0     0     1     0     0     0     0     0     0     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     0     0     0     0     0     0     0     0
## X788      0     0     0     0     0     0     0     0     0     0     0     0
## X789      0     0     0     0     0     0     0     0     0     0     0     0
## X791      0     0     0     0     0     0     0     0     0     0     0     0
## X792      1     1     1     0     1     1     0     0     1     1     0     0
## X794      0     0     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     1     0     0     0     0     0     0     0     0
## X799      0     1     0     0     0     0     1     1     1     0     0     0
## X800      0     1     0     0     0     0     0     0     1     0     0     0
## X804      0     0     0     0     1     0     0     0     0     0     0     0
## X805      1     0     0     0     0     0     0     0     0     0     0     0
## X807      0     1     0     0     0     0     0     0     1     0     1     0
## X808      0     0     0     1     1     0     0     1     0     0     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     0     0     0     0     0     0     0     0     0     0     0
## X814      1     0     0     0     0     0     1     1     0     0     0     0
## X818      0     0     0     0     0     0     0     0     0     0     0     0
## X819      0     0     0     0     0     0     0     0     0     0     0     0
## X820      0     0     0     0     0     0     0     0     0     0     0     1
## X821      0     0     0     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     0     0     0     0     0     0     0     0     0     0
## X829      0     1     1     0     1     0     0     1     1     0     1     0
## X831      0     0     0     0     0     0     0     0     0     0     0     0
## X832      0     0     0     0     0     0     0     0     0     0     0     0
## X833      0     0     0     0     0     0     0     0     0     0     0     0
## X834      0     0     0     0     0     0     0     0     0     0     0     0
## X835      0     0     0     0     0     0     0     0     0     0     0     0
## X836      0     0     0     0     0     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     0     0     0     0     0     0     0     0
## X849      0     0     0     0     0     0     0     0     0     0     0     0
## X851      0     0     0     0     0     0     0     1     0     0     0     0
## X854      0     0     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     1     0     0     0     1     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     0     0
## X857      0     0     0     0     0     0     0     0     0     0     0     0
## X858      0     0     0     0     0     0     0     0     0     0     0     0
## X859      0     0     0     0     0     0     0     0     0     0     0     0
## X860      0     0     0     0     0     0     0     0     0     0     0     0
## X862      0     0     0     0     0     0     0     0     0     0     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     1     0     0     1     1     0     0     0     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      0     0     0     0     0     0     0     0     0     0     0     0
## X872      0     0     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     0     0     0     0     0     0     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     0     0     0     0     0     0     0     0     0
## X1195     0     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     1     1     0     1     0     0     0     0     1     0     0     0
## X1200     0     1     0     0     0     0     0     0     1     1     1     0
## X1201     0     0     1     0     1     1     0     1     0     1     0     0
## X1202     0     0     0     0     0     0     0     0     0     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     1     0     1     0     0     1     0     1     0     1     0
## X1205     0     0     0     1     0     0     0     0     0     0     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     1     1     1     0     1     1     0     0     1     1     0     0
## X1208     0     1     0     0     0     0     0     1     1     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     0     0     0     0     0     0     0     0     0     0     0
## X1212     0     0     0     0     0     0     0     0     0     0     0     0
## X1213     1     1     1     0     1     1     0     0     1     1     0     0
## X1215     1     0     0     0     0     0     0     1     0     0     0     1
## X1216     0     1     0     0     0     0     0     1     1     0     0     0
## X1217     0     0     0     1     0     0     0     0     0     0     0     0
## X1219     0     0     0     0     0     0     0     0     0     0     0     0
## X1220     0     0     1     0     1     1     0     0     0     1     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     1     0     1     0     1     1     0     0     0     1     0     0
## X1226     0     1     1     0     1     1     0     0     1     1     0     0
## X1228     0     1     0     0     0     0     0     0     1     0     1     0
## X1229     1     0     0     0     0     0     0     0     0     0     0     0
## X1230     0     0     0     0     0     0     0     0     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     0     0     0     0     0     0     0     0     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     0     0     0     0     0     0     0     0     0     0
## X1237     0     1     0     1     0     0     0     0     1     0     1     0
## X1239     1     1     0     0     1     0     0     0     1     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     0     0     0     0     0
## X1247     1     0     0     0     0     0     0     0     0     0     0     0
## X1249     0     1     0     0     0     0     0     0     1     0     1     0
## X1250     0     0     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     1     0     0     0     0     0     0     1     0     1     0
## X1254     0     0     0     0     0     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     0     0     0     0     0     0     0     0
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     0     0     0     0     0     0     0     0     0     0
## X1262     1     0     0     0     0     0     0     0     0     0     0     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     0     0     0     0     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     0     0     0
## X1267     0     0     0     0     0     0     0     0     0     0     1     0
## X1268     0     0     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     0     0     0     0     0     0     0     0     0     0
## X1274     0     0     0     0     0     0     0     0     0     0     0     1
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     0     0
## X1282     0     0     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     0     0     0     0     0     1     0     0     0     0
## X1301     0     0     0     0     0     0     0     0     0     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     1     0     1     0     0     0     0     1     0     1     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      0     0     0     0     0     0     0     0     0     0     0     0
## X448      1     0     0     0     1     0     0     0     0     1     0     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     1     0     0     0     0     0     0     0     0
## X454      0     1     0     1     0     0     1     0     1     0     1     0
## X455      0     0     0     0     0     0     0     0     0     0     0     0
## X456      0     0     0     0     0     0     0     0     0     0     0     0
## X458      0     1     0     1     0     0     1     0     1     0     1     0
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     0     0     0
## X462      0     1     0     0     0     0     0     1     1     0     0     0
## X463      0     0     1     0     1     1     0     1     0     1     0     1
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     1     0     0     0     0     0     0     0     0
## X466      0     1     0     0     1     1     0     1     1     0     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     0     0
## X477      1     1     0     0     0     0     1     0     1     0     1     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     1     0     0     0     0     0     0     0     0
## X482      1     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     0
## X487      0     0     1     0     1     1     0     0     0     1     0     0
## X488      0     0     0     0     0     0     0     0     0     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     0     0
## X490      0     0     1     0     1     0     0     0     0     1     0     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     0     0     0     1     0     0     0     0     0     0     0
## X493      0     0     0     0     0     0     0     0     0     0     0     0
## X494      0     0     0     1     0     0     0     0     0     0     0     0
## X495      0     0     1     1     1     1     0     0     0     1     0     0
## X496      0     1     0     1     0     0     0     0     1     0     0     0
## X497      0     0     0     1     0     0     0     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      0     0     0     0     1     0     1     1     0     0     1     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      0     0     1     0     1     0     0     1     0     0     0     0
## X505      0     0     0     0     0     0     0     0     0     0     0     0
## X506      0     1     0     1     0     0     1     0     1     0     1     0
## X507      0     0     0     1     0     0     0     0     0     0     0     0
## X508      0     0     1     0     0     0     0     0     0     0     0     0
## X509      1     0     0     0     1     0     0     0     0     1     0     0
## X510      0     0     0     0     0     0     1     0     0     0     0     0
## X513      1     0     0     0     0     0     0     0     0     0     0     0
## X514      0     1     0     1     0     0     1     1     1     0     1     0
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     0
## X518      1     0     0     0     1     0     0     0     0     1     0     0
## X521      0     1     0     1     0     0     1     0     1     0     1     0
## X523      0     0     0     0     0     0     0     0     0     0     0     0
## X524      0     0     1     0     0     0     0     0     0     0     0     0
## X525      0     0     0     0     0     0     0     0     0     0     0     0
## X526      0     0     0     0     0     0     0     0     0     0     0     1
## X530      0     0     0     0     1     1     0     0     0     1     0     0
## X531      1     0     0     0     0     0     1     0     0     0     1     0
## X532      1     1     0     1     0     1     0     0     1     0     0     1
## X533      0     1     0     0     0     0     1     0     1     0     1     0
## X534      0     1     1     0     0     1     1     0     1     0     1     1
## X535      0     0     0     0     0     0     0     0     0     0     0     0
## X536      0     0     1     1     1     1     0     0     0     1     0     0
## X538      0     0     0     0     0     0     0     0     0     0     0     0
## X539      0     0     1     1     1     1     0     0     0     1     0     0
## X542      0     0     0     0     0     0     0     0     0     0     0     1
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      1     0     0     0     1     0     0     0     0     1     0     0
## X545      0     0     1     0     1     1     0     0     0     1     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     1     0     1     1     0     1     0     1     0     0
## X553      0     1     0     0     0     0     0     0     1     0     0     0
## X554      1     0     0     1     0     1     0     0     0     0     0     1
## X556      0     0     0     0     0     0     0     0     0     0     0     0
## X557      0     0     1     0     1     1     0     0     0     1     0     1
## X558      0     1     0     1     0     0     0     1     1     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     0     0
## X567      0     1     0     0     0     0     1     0     1     0     1     0
## X568      0     0     0     0     0     0     0     0     0     0     0     0
## X569      0     0     1     0     1     1     0     0     0     1     0     0
## X571      0     0     0     0     0     0     0     0     0     0     0     0
## X572      0     0     1     0     0     1     0     0     0     1     0     1
## X574      0     0     0     0     0     0     0     0     0     0     0     0
## X576      0     1     0     1     0     0     1     0     1     0     1     0
## X577      0     0     0     0     0     0     0     0     0     0     0     0
## X579      0     0     0     0     0     0     0     1     0     0     0     0
## X580      0     0     0     0     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     0     1     0     1     1     0     1     0     1     0     0
## X586      0     1     0     0     0     0     1     1     1     0     1     0
## X587      0     0     0     1     0     0     0     0     0     0     0     0
## X588      0     1     0     0     0     0     0     0     1     0     0     0
## X589      0     0     0     0     0     0     0     0     0     0     0     0
## X591      0     0     1     1     1     1     0     0     0     1     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     1     1     0     1     1     1     0     0     0     0
## X594      0     0     0     0     0     0     0     0     0     0     0     0
## X595      0     1     0     0     1     1     0     0     1     1     0     0
## X596      0     1     1     0     0     1     1     0     1     0     1     1
## X597      1     0     1     0     1     1     0     0     0     1     0     0
## X598      0     0     0     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      1     1     0     0     0     0     0     1     0     0     1     0
## X603      0     0     0     0     0     0     0     0     0     0     0     0
## X604      0     1     0     0     0     0     0     0     1     0     0     0
## X605      0     0     0     0     0     0     0     0     0     0     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     1     0     1     0     0     1     0     1     0     1     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     0     0     0     0     1     0     0     0     1     0
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     0     0     0     0     0     0     0     0     0     0
## X616      1     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     0     0     1     1     0     0     0     1     0     0
## X619      0     1     1     0     0     0     1     0     1     0     1     0
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     0     0     0     0     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     0     0     0     0     0     0     0     0     0     0
## X625      1     0     0     1     0     0     1     1     0     0     0     0
## X628      0     0     0     0     0     0     0     0     0     0     0     1
## X629      0     0     0     0     0     0     0     0     0     0     0     0
## X630      0     0     1     0     1     1     0     0     0     1     0     1
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     0     0     0     0     0     0     0     0     0     0
## X635      0     1     1     0     0     1     1     0     1     1     1     0
## X636      0     0     0     0     0     0     0     0     0     0     0     1
## X637      0     0     0     0     0     0     0     0     0     0     0     0
## X638      0     0     0     0     0     0     0     0     0     0     0     0
## X639      0     1     0     1     0     0     1     0     1     0     1     0
## X641      0     0     0     0     0     0     1     1     0     0     0     0
## X648      0     1     0     0     0     0     1     0     1     0     1     0
## X650      0     1     0     1     0     0     1     1     1     0     1     0
## X651      0     0     0     0     0     0     1     1     0     0     0     0
## X653      0     0     0     0     0     0     0     0     0     0     0     0
## X654      0     0     1     0     1     1     0     0     0     1     0     0
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     0
## X1082     1     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     1     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     0     0     0     0     1     0     0     0     1     0
## X1089     0     0     1     1     0     0     0     1     0     0     0     0
## X1090     0     0     1     0     0     0     0     0     0     0     0     0
## X1091     0     0     0     0     0     0     0     0     0     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     1     0     0     0     0     0     1     1     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     0     0     0     0     0     1     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     0     0     0     0     0     0     0     0     0     0
## X1101     0     1     0     0     0     0     1     0     1     0     1     0
## X1103     0     0     0     0     0     0     0     0     0     0     0     0
## X1104     0     1     0     1     0     0     1     0     1     0     1     0
## X1105     0     1     0     1     0     0     0     0     1     0     0     0
## X1106     0     0     1     0     0     1     0     0     0     0     0     1
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     1     0     1     0     0     1     0     1     0     1     0
## X1113     1     0     0     0     0     0     0     0     0     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     1     0     0     0     1     0     0     0     0     1     0     0
## X1117     0     0     0     0     0     0     0     0     0     0     0     0
## X1119     0     0     0     0     0     0     0     0     0     0     0     0
## X1120     0     0     0     0     0     0     0     0     0     0     0     1
## X1121     0     0     1     1     1     1     0     0     0     1     0     1
## X1122     0     0     0     0     0     0     0     0     0     0     0     1
## X1124     0     0     0     0     0     0     0     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     0     0
## X1130     0     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     0     0     1     0     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     0     0     0     0     0     0     0
## X1139     0     0     0     0     0     0     0     0     0     0     0     1
## X1141     1     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     0     0     0     0     0     0     1     1     0     0     0     0
## X1144     0     0     1     0     1     1     0     1     0     1     0     0
## X1145     0     1     1     0     0     0     1     0     1     0     1     0
## X1146     0     0     0     0     0     0     0     0     0     0     0     0
## X1147     0     1     1     0     1     1     0     0     1     1     0     0
## X1149     1     0     0     0     0     0     0     0     0     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     0
## X1151     0     1     1     0     1     1     0     0     1     0     0     0
## X1152     0     0     1     0     1     1     0     1     0     1     0     0
## X1153     0     0     0     1     0     0     0     1     0     0     0     0
## X1156     0     0     0     0     0     0     0     0     0     0     0     0
## X1158     0     0     0     0     0     0     0     0     0     0     0     0
## X1159     0     0     0     0     0     0     0     1     0     0     0     0
## X1160     0     0     0     0     0     0     0     0     0     0     0     0
##       FP145 FP146 FP147 FP148 FP149 FP150 FP151 FP152 FP153 FP155 FP156 FP157
## X661      0     0     0     0     0     1     0     0     0     0     0     0
## X662      0     0     0     0     0     0     0     0     1     0     0     0
## X663      0     0     0     0     0     0     0     0     0     0     0     0
## X665      0     1     0     0     0     0     0     0     0     1     0     0
## X668      0     0     0     0     0     0     0     0     0     0     0     0
## X669      0     1     0     0     0     0     0     0     0     0     0     0
## X670      0     0     0     0     1     1     0     0     0     0     0     0
## X671      0     0     0     0     0     0     0     0     0     0     0     0
## X672      0     1     1     0     0     0     0     0     0     1     0     0
## X673      0     0     0     0     0     0     0     0     0     0     0     0
## X674      0     0     0     0     0     0     0     0     0     0     0     0
## X676      0     1     0     0     0     0     0     0     0     1     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     0     0     0     0
## X682      0     0     0     0     0     0     0     0     0     0     0     0
## X683      0     0     0     0     0     0     0     1     0     0     1     0
## X684      1     0     0     0     0     1     0     0     1     0     0     0
## X685      0     0     0     0     0     0     0     0     0     0     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     1     0     0     0     0     0     0     0     0     0
## X689      0     0     0     0     0     0     0     0     1     0     0     0
## X690      0     0     0     0     0     0     0     0     0     0     0     0
## X691      0     0     0     0     0     1     0     0     1     0     0     0
## X692      0     0     0     0     0     0     1     1     0     0     1     0
## X693      0     0     0     0     0     0     1     1     0     0     1     0
## X695      0     0     0     0     0     0     0     0     1     0     0     0
## X696      0     0     0     0     0     0     0     0     0     0     0     0
## X698      0     0     0     0     0     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      0     1     0     0     0     0     0     0     0     1     0     1
## X708      0     0     0     0     1     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     0     0     0     0     0     0     0     0     0     0
## X712      0     1     0     0     0     0     0     0     0     1     0     0
## X713      0     0     0     1     0     0     0     0     0     0     0     0
## X714      0     1     1     0     0     0     0     0     0     1     0     0
## X715      0     0     0     0     0     0     0     0     0     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      0     0     0     0     0     1     0     0     1     0     0     0
## X721      0     0     0     1     0     0     0     0     0     0     0     0
## X722      0     1     0     0     1     0     0     0     1     1     0     0
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     0     1     0     0     0     0     0     0     0     0     0
## X728      0     0     0     0     1     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     1     0     0     0     0     0     0     0
## X733      0     0     0     1     0     0     0     0     0     0     0     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     1     0     0     0     0     0     0     0     1     0     0
## X736      0     0     0     0     0     0     0     0     0     0     0     0
## X737      0     0     0     0     0     0     0     1     0     0     0     0
## X739      0     1     1     0     0     0     0     0     0     0     0     1
## X740      0     0     0     0     0     0     0     0     1     0     0     0
## X741      0     0     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     0     0     0     0     0     0     0     0     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      0     0     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     0     0     0     0     0     0     0
## X749      1     0     0     0     0     1     0     0     1     0     0     0
## X752      0     1     1     0     0     0     0     0     0     1     0     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     0     0     0     0     0     0     0     1     0     0     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     0
## X759      0     0     0     0     0     0     0     1     0     0     1     0
## X760      0     0     0     0     1     0     0     0     0     0     0     0
## X761      0     1     1     0     0     0     0     0     0     1     0     0
## X762      0     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     1     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      0     0     1     0     0     0     0     0     0     0     0     0
## X767      0     1     1     0     0     0     0     0     0     1     0     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      0     0     0     0     0     0     0     0     1     0     0     0
## X771      1     1     0     0     0     0     0     0     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     1     0     0     0     0     0     0     0
## X776      0     0     0     0     0     0     1     1     0     0     1     0
## X777      0     0     0     0     0     0     0     0     0     0     1     0
## X778      1     0     0     0     0     0     0     0     0     0     0     0
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     1     0     0     0     0     0     0     0     0     0     0
## X781      0     1     0     0     0     0     0     0     0     1     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     0
## X784      1     0     0     0     0     0     0     0     0     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     1     0     0     0     0     0     0     0
## X788      0     1     0     0     0     0     0     0     0     1     0     0
## X789      0     0     0     0     1     0     0     0     0     0     0     0
## X791      0     0     0     0     1     0     0     0     0     0     0     0
## X792      0     0     0     0     0     0     0     0     1     0     0     0
## X794      0     0     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     1     1     0     0     0     0     0     0
## X799      0     0     0     0     0     0     0     0     1     0     1     0
## X800      0     0     0     0     0     0     0     0     0     0     0     0
## X804      0     0     0     0     0     0     0     0     0     0     0     0
## X805      0     1     1     0     0     0     0     0     0     1     0     0
## X807      0     0     0     0     0     0     0     1     0     0     1     0
## X808      0     0     0     0     0     0     0     0     1     0     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     1     0     0     0     0     0     0     0     0     0     0
## X813      0     0     0     0     0     0     0     0     0     0     0     0
## X814      1     0     0     0     1     0     0     0     1     0     0     1
## X818      0     0     0     0     1     0     0     0     0     0     0     0
## X819      0     0     0     0     0     0     0     0     0     0     0     0
## X820      0     0     0     0     0     0     0     0     0     0     0     0
## X821      0     0     0     0     1     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      0     1     0     0     0     0     0     0     0     0     0     1
## X828      0     0     0     0     1     0     0     0     0     0     0     0
## X829      0     0     0     0     0     0     0     1     1     0     1     0
## X831      0     1     0     0     0     0     0     0     0     1     0     0
## X832      0     0     0     0     1     0     0     0     0     0     0     0
## X833      0     0     0     0     1     0     0     0     0     0     0     0
## X834      0     0     0     0     0     0     0     0     0     0     0     0
## X835      0     0     0     0     1     0     0     0     0     0     0     0
## X836      0     0     0     0     1     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     1     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     1     0     0     0     0     0     0     0     1     0     0
## X846      0     0     0     0     1     0     0     0     0     0     0     0
## X848      0     0     0     0     1     0     0     0     0     0     0     0
## X849      0     0     0     0     1     0     0     0     0     0     0     0
## X851      0     1     0     0     0     0     0     0     0     1     0     1
## X854      0     0     0     0     1     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     0     0     1     0     0     0     0     0     0     0
## X857      0     0     0     0     1     0     0     0     0     0     0     0
## X858      0     0     0     0     1     0     0     0     0     0     0     0
## X859      0     0     0     0     1     0     0     0     0     0     0     0
## X860      0     0     0     0     1     0     0     0     0     0     0     0
## X862      0     0     0     0     1     0     0     0     0     0     0     0
## X863      0     0     0     0     1     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     1     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     0     0     1     0     0     1     0     0     0
## X870      0     0     0     0     1     0     0     0     0     0     0     0
## X871      0     0     0     0     1     0     0     0     0     0     0     0
## X872      0     0     0     0     1     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     1     0     0     0     0     0     0     0
## X876      0     0     0     0     1     0     0     0     0     0     0     0
## X877      0     0     0     0     1     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     1     0     0     0     0     0     0     0     1     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     1     1     0     0     0     0     0     0     1     0     0
## X1195     0     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     1     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     1     0     0     1     0
## X1201     1     0     1     0     1     0     0     0     1     0     0     1
## X1202     0     1     1     0     0     0     0     0     0     1     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     1     0     1     0     1     0     1     1     0     1     0
## X1205     0     0     0     1     0     0     0     0     0     0     0     0
## X1206     0     1     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     0     0     0     1     0     0     1     0     0     0
## X1208     0     1     0     0     0     0     0     0     0     1     0     1
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     0     0     0     0     0     0     0     0     0     0     0
## X1212     0     0     0     0     0     0     0     0     0     0     0     0
## X1213     0     0     0     0     0     0     0     0     1     0     0     0
## X1215     0     1     1     0     0     0     0     0     0     1     0     1
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     0     0     0     0     0     0     0     0     0     0
## X1219     0     0     0     0     0     0     0     0     0     0     0     0
## X1220     0     0     0     0     1     0     0     0     1     0     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     1     0     0     0     0     0     0     0     1     0     0
## X1226     0     0     0     0     0     1     0     0     1     0     0     0
## X1228     0     0     0     0     0     0     0     1     0     0     1     0
## X1229     0     1     1     0     0     0     0     0     0     1     0     0
## X1230     0     0     0     0     1     0     0     0     0     0     0     1
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     1     0     0     0     0     0     0     0     1     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     1     0     0     0     0     0     0     0     1     0     0
## X1237     0     0     0     0     0     0     0     1     0     0     1     0
## X1239     0     1     0     0     0     0     0     0     0     0     0     0
## X1242     0     1     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     1     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     0     0     0     0     0
## X1247     0     1     0     0     0     0     0     0     0     1     0     0
## X1249     0     1     0     0     0     0     0     1     0     1     1     1
## X1250     0     1     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     1     0     0     1     0
## X1254     0     0     0     0     1     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     1     0     0     0     0     0     0     0
## X1259     0     1     0     0     0     0     0     0     0     0     0     1
## X1260     0     0     0     0     1     0     0     0     0     0     0     0
## X1262     0     1     0     0     0     0     0     0     0     0     0     0
## X1264     0     1     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     1     0     0     0     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     0     0     0
## X1267     0     0     1     0     0     0     0     0     0     0     0     0
## X1268     0     0     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     0     0     1     0     0     0     0     0     0     0
## X1274     0     0     0     0     0     0     0     0     0     0     0     0
## X1275     0     1     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     1     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     1     0     0     0     0     0     0     0
## X1282     0     0     0     0     1     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     1     0     0     0     0     0     0     0
## X1288     0     0     0     0     1     0     0     0     0     0     0     0
## X1299     1     0     0     0     1     1     0     0     0     0     0     0
## X1301     0     1     0     0     0     0     0     0     0     1     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     0     1     0     0     1     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     0
## X1310     0     1     0     0     0     0     0     0     0     0     0     0
## X447      0     0     1     0     0     0     0     0     0     0     0     0
## X448      1     1     1     1     0     0     0     0     0     1     0     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     0     0     0     0     0     0
## X454      0     0     0     0     0     0     1     1     0     0     1     0
## X455      0     0     1     0     0     0     0     0     0     0     0     0
## X456      0     1     0     0     0     0     0     0     0     1     0     1
## X458      1     0     0     0     0     0     1     1     0     0     1     0
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     0     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     0     0     0     1     0     0     0     0     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     0     0     0     0     0     0     0     0
## X466      1     0     0     0     0     0     0     0     1     0     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     0     0
## X477      0     0     0     0     0     0     1     1     1     0     1     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     0     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     1     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     0
## X487      1     0     0     0     0     0     0     0     0     0     0     0
## X488      0     0     0     0     0     0     0     0     0     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     0     0
## X490      1     0     0     0     0     0     0     0     0     0     0     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     1     0     0     1     0     0     0     1     1     0     0
## X493      0     0     0     0     0     0     0     0     0     0     0     0
## X494      1     0     0     0     0     0     0     0     0     0     0     0
## X495      1     0     0     0     0     0     0     0     0     0     0     0
## X496      0     0     0     0     0     1     0     1     0     0     0     0
## X497      0     0     0     0     0     0     0     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      1     0     1     0     1     1     0     0     1     0     0     1
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      0     0     0     0     0     1     0     0     1     0     0     0
## X505      0     0     0     0     0     0     0     0     0     0     0     0
## X506      0     0     0     0     0     0     1     1     0     0     1     0
## X507      0     0     1     1     0     0     0     0     0     0     0     0
## X508      1     0     0     0     0     0     0     0     0     0     0     0
## X509      1     1     1     1     0     0     0     0     0     1     0     0
## X510      1     1     0     0     1     1     0     0     1     0     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     0     1     1     1     0     0     1     1
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     0
## X518      0     0     0     0     0     0     0     0     0     0     0     0
## X521      0     0     0     0     0     0     1     1     0     0     1     0
## X523      0     0     0     0     0     0     0     0     0     0     0     0
## X524      0     0     0     0     0     0     0     0     0     0     0     0
## X525      0     1     0     1     1     0     0     0     0     1     0     0
## X526      0     0     0     0     0     0     0     0     0     0     0     0
## X530      0     0     0     0     0     0     0     0     0     0     0     0
## X531      0     0     1     0     0     0     1     0     0     0     0     0
## X532      0     0     0     1     0     0     0     0     0     0     0     0
## X533      0     0     0     0     0     0     1     1     0     0     1     0
## X534      0     0     0     0     0     0     1     1     0     0     1     0
## X535      0     0     0     0     0     0     0     0     0     0     0     0
## X536      1     0     0     0     0     0     0     0     0     0     0     0
## X538      0     1     1     1     1     0     0     0     0     0     0     1
## X539      1     0     0     0     0     0     0     0     0     0     0     0
## X542      0     1     1     1     0     0     0     0     0     1     0     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      1     1     1     1     0     0     0     0     0     1     0     0
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      1     0     1     0     1     0     0     0     1     0     0     1
## X553      0     1     0     0     0     0     0     0     0     0     0     1
## X554      0     0     0     1     0     1     0     0     0     0     0     0
## X556      0     0     0     0     0     0     0     0     0     0     0     0
## X557      0     0     0     0     0     1     0     0     0     0     0     0
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     0     0
## X567      0     0     0     1     0     0     1     1     0     0     1     0
## X568      0     0     0     0     0     0     0     0     0     0     0     0
## X569      0     0     0     0     0     0     0     0     0     0     0     0
## X571      0     0     0     0     0     0     0     0     0     0     0     0
## X572      1     0     0     0     0     0     0     0     0     0     0     0
## X574      0     1     0     0     0     0     0     0     0     1     0     0
## X576      1     0     0     0     0     1     1     1     0     0     1     0
## X577      0     0     0     0     0     0     0     0     0     0     0     0
## X579      0     0     0     0     0     0     0     0     0     0     0     1
## X580      0     0     0     1     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     1     0     0     0     0     0     0     0     1     0     1
## X586      0     0     0     0     0     0     0     1     1     0     1     0
## X587      0     0     0     0     0     0     0     0     0     0     0     0
## X588      0     0     0     1     0     0     0     1     0     0     0     0
## X589      0     0     0     0     0     0     0     0     0     0     0     0
## X591      1     0     0     0     0     0     0     0     0     0     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      1     0     0     0     0     1     0     0     1     0     0     0
## X594      0     0     0     0     0     0     0     0     0     0     0     0
## X595      0     1     0     0     0     0     0     1     0     0     0     0
## X596      0     0     0     0     0     0     1     1     0     0     1     0
## X597      0     1     0     0     0     0     0     0     0     1     0     1
## X598      0     0     0     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     0     0     0     0     1     0     0     1     1
## X603      0     0     0     0     0     0     0     0     0     0     0     0
## X604      0     0     0     1     0     0     0     1     0     0     0     0
## X605      0     1     0     0     0     0     0     0     0     1     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     0     1     1     0     0     1     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     0     1     0     0     0     0     0     0     0     0     0
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     0     0     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      1     0     1     0     0     0     0     0     0     0     0     0
## X619      0     0     0     1     0     0     1     1     0     0     1     0
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     1     0     0     0     0     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      1     0     1     0     1     1     0     0     0     0     0     0
## X625      1     0     1     0     0     1     0     0     1     0     0     0
## X628      0     1     1     1     0     0     0     0     0     1     0     0
## X629      0     0     0     0     0     0     0     0     0     0     0     0
## X630      0     0     0     0     0     0     0     0     1     0     0     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     0     0     0     0     0     0     0     0     0     0
## X635      1     0     0     0     0     1     1     1     1     0     1     0
## X636      0     1     1     1     0     0     0     0     0     1     0     0
## X637      0     1     0     0     0     0     0     0     0     1     0     0
## X638      0     0     0     0     0     0     0     0     0     0     0     0
## X639      0     0     0     0     0     1     1     1     0     0     1     0
## X641      1     0     0     0     1     0     0     0     1     0     0     0
## X648      0     0     0     1     0     0     1     1     0     0     1     0
## X650      1     0     0     0     0     1     1     1     0     0     1     0
## X651      1     0     0     0     1     0     0     0     1     0     0     0
## X653      0     0     0     0     0     0     0     0     0     0     0     0
## X654      1     0     0     0     0     0     0     0     0     0     0     0
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     0     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     1     0     1     0     0     0     0     0     0     0     0     0
## X1089     0     0     0     0     0     0     0     0     0     0     0     0
## X1090     1     0     0     0     0     0     0     0     0     0     0     0
## X1091     0     0     0     1     0     0     0     0     0     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     1     0     0     0     0     1     0     0     1     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     0     0     0     0     0     0     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     1     0     1     1     0     0     0     0     1     0     0
## X1101     0     0     0     1     0     0     1     1     0     0     1     0
## X1103     0     1     1     0     0     0     0     0     0     1     0     1
## X1104     0     0     0     0     0     0     1     1     0     0     1     0
## X1105     0     0     0     0     0     1     0     1     0     0     0     0
## X1106     0     0     0     0     0     0     0     0     0     0     0     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     0     0     0     0     1     1     0     0     1     0
## X1113     0     0     0     0     0     0     0     0     0     0     0     0
## X1115     0     0     1     0     0     0     0     0     0     0     0     0
## X1116     0     0     0     0     0     0     0     0     0     0     0     0
## X1117     0     0     0     1     0     0     0     0     0     0     0     0
## X1119     0     0     1     0     0     0     0     0     0     0     0     0
## X1120     0     1     1     1     0     0     0     0     0     1     0     0
## X1121     0     1     0     0     1     1     0     0     1     1     0     0
## X1122     0     1     1     1     0     0     0     0     0     1     0     0
## X1124     0     1     0     0     0     0     0     0     0     1     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     0     0
## X1130     0     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     1     1     0     0     1     1     0     0     1     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     1     0     1     1     0     0     0     0     0     0     0     1
## X1139     0     1     1     1     0     0     0     0     0     1     0     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     1     0     0     0     1     0     0     0     1     0     0     0
## X1144     0     0     1     0     0     0     0     0     1     0     0     1
## X1145     0     0     0     1     0     0     1     1     0     0     1     0
## X1146     0     0     0     0     0     0     0     0     0     0     0     0
## X1147     0     0     0     0     0     0     0     0     0     0     0     0
## X1149     0     0     0     0     0     0     0     0     0     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     0
## X1151     0     0     0     0     0     0     0     0     0     0     0     0
## X1152     0     0     1     0     0     0     0     0     1     0     0     1
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     0     0     0     0     0     0     0     0     0     0
## X1158     0     0     1     1     1     0     0     0     0     0     0     1
## X1159     0     0     1     0     0     0     0     0     0     0     0     1
## X1160     0     1     0     0     0     0     0     0     0     1     0     1
##       FP158 FP159 FP160 FP161 FP162 FP163 FP164 FP165 FP166 FP167 FP168 FP169
## X661      0     0     0     0     1     0     1     0     0     0     1     0
## X662      0     1     0     0     1     0     1     0     1     0     1     1
## X663      0     0     0     0     1     1     1     1     0     1     1     0
## X665      0     0     0     0     0     0     1     1     0     0     1     0
## X668      0     0     0     0     0     0     0     0     0     0     1     0
## X669      0     0     0     0     0     1     0     1     0     1     0     0
## X670      0     0     0     0     1     0     1     0     1     0     1     1
## X671      0     0     0     0     0     1     0     1     0     1     0     0
## X672      0     0     0     0     0     1     1     1     0     1     1     0
## X673      1     0     0     0     1     1     1     1     1     1     1     0
## X674      0     0     0     0     1     1     1     1     1     1     1     0
## X676      0     0     0     0     0     1     1     0     0     0     1     0
## X677      0     0     0     0     1     0     1     0     1     0     1     0
## X678      0     0     0     0     1     0     1     0     1     0     1     1
## X679      0     0     0     0     1     0     1     0     1     0     1     0
## X682      0     0     0     0     1     1     1     1     0     1     1     1
## X683      0     0     0     0     0     1     0     0     0     0     1     0
## X684      0     1     0     0     1     0     1     0     1     0     1     1
## X685      0     0     0     0     0     1     0     0     0     0     1     0
## X686      0     0     0     0     1     0     1     0     1     0     1     0
## X688      0     0     0     0     1     1     1     1     1     1     1     1
## X689      0     0     0     0     1     0     1     0     1     0     1     0
## X690      0     0     0     0     1     1     1     1     1     1     1     0
## X691      0     0     0     0     0     1     0     0     0     0     0     0
## X692      0     1     1     0     1     1     1     0     1     0     1     0
## X693      1     1     1     0     1     1     1     1     0     1     1     0
## X695      0     1     0     0     1     0     1     0     1     0     1     1
## X696      0     0     0     0     1     0     1     0     1     0     1     1
## X698      0     0     0     0     0     1     1     1     0     1     1     1
## X699      0     0     0     0     1     0     1     0     1     0     1     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     1     0     1     0     1     0     1     1
## X706      0     0     0     0     1     1     1     1     0     0     1     0
## X708      0     0     0     0     1     0     1     0     1     0     1     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     0     0     0     1     0     1     0     1     0     0
## X712      0     0     0     0     1     0     1     1     0     0     1     0
## X713      0     0     0     0     1     1     1     1     1     1     1     1
## X714      0     0     0     0     0     1     1     1     0     1     1     0
## X715      0     0     0     0     1     1     1     1     1     1     1     1
## X717      0     0     0     0     1     0     1     0     1     0     1     1
## X718      0     1     0     0     1     0     1     0     1     0     1     1
## X721      0     0     0     0     0     0     0     0     0     0     1     0
## X722      0     0     0     0     1     1     1     0     1     0     1     1
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     1     0     1     0     1     0     1     0
## X726      0     0     0     0     1     0     1     0     0     0     1     1
## X728      0     0     0     0     1     1     1     1     1     1     1     1
## X729      0     0     0     0     1     0     1     0     0     0     1     1
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     1     0     1     0     1     0     1     0
## X733      0     0     0     0     0     0     0     0     0     0     1     0
## X734      0     0     0     0     1     0     1     0     0     0     1     0
## X735      0     0     0     0     0     1     1     0     0     0     1     0
## X736      0     0     0     0     1     1     1     1     0     1     1     0
## X737      0     0     0     0     1     0     1     0     1     0     1     0
## X739      0     0     0     0     0     1     1     0     0     0     1     1
## X740      0     0     0     0     1     1     1     1     0     1     1     1
## X741      0     0     0     0     0     1     0     1     0     1     0     0
## X742      0     0     0     0     0     1     0     1     0     1     0     0
## X743      0     0     0     0     0     0     1     0     0     0     1     1
## X744      0     0     0     0     1     0     1     0     1     0     1     0
## X746      0     0     0     0     1     1     1     1     1     1     1     0
## X747      0     0     0     0     0     0     0     0     0     0     0     0
## X749      0     1     0     0     1     1     1     1     1     1     1     1
## X752      0     0     0     0     0     1     1     1     0     1     1     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     1     0     0     1     0     1     0     1     0     1     0
## X755      0     0     0     0     1     0     1     0     1     0     1     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     1     0     1     0     1     0     1     1
## X759      0     0     0     0     0     0     0     1     0     0     0     0
## X760      0     0     0     0     1     0     1     0     1     0     1     1
## X761      0     0     0     0     0     1     1     1     0     1     1     0
## X762      0     0     0     0     1     0     1     0     1     0     1     0
## X763      0     0     0     0     1     0     1     0     0     0     1     1
## X764      0     0     0     0     1     0     1     0     1     0     1     0
## X765      0     0     0     0     1     1     1     1     0     1     1     0
## X767      0     0     0     0     0     1     1     1     0     1     1     0
## X768      0     0     0     0     1     0     1     0     1     0     1     0
## X770      0     1     0     0     1     0     1     0     1     0     1     1
## X771      0     0     0     0     1     1     1     1     1     1     1     0
## X772      0     0     0     0     1     0     1     0     1     0     1     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     1     1     1     1     1     1     1     0
## X776      1     1     1     0     1     1     1     1     0     1     1     1
## X777      0     0     0     0     0     1     0     0     0     0     0     0
## X778      0     0     0     1     0     1     0     1     0     1     0     0
## X779      0     0     0     0     1     0     1     0     1     0     1     1
## X780      0     0     0     0     0     0     0     0     0     0     1     0
## X781      0     0     0     0     0     1     0     1     0     1     0     0
## X782      0     0     0     0     1     1     1     0     1     0     1     0
## X784      0     0     0     1     1     1     1     1     0     1     1     1
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     1     0     1     0     1     0     1     1
## X788      0     0     0     0     0     1     1     1     0     1     1     0
## X789      0     0     0     0     1     0     1     0     1     0     1     0
## X791      0     0     0     0     1     0     1     0     1     0     1     0
## X792      0     1     0     0     1     0     1     0     1     0     1     1
## X794      0     0     0     0     0     1     0     1     0     1     0     0
## X798      0     0     0     0     1     0     1     0     1     0     1     0
## X799      0     0     1     0     0     1     1     0     0     0     1     0
## X800      0     0     0     0     0     0     0     0     0     0     0     0
## X804      0     0     0     0     1     0     1     0     0     0     1     1
## X805      0     0     0     0     0     1     1     1     0     1     1     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     0     0     0     1     1     1     1     1     1     1     1
## X809      0     0     0     0     1     1     1     1     1     1     1     0
## X810      0     0     0     0     0     0     1     0     0     0     1     0
## X813      0     0     0     0     0     1     0     1     0     1     0     0
## X814      0     0     0     0     0     1     1     0     0     0     1     1
## X818      0     0     0     0     1     0     1     0     1     0     1     1
## X819      1     0     0     0     1     1     1     1     1     1     1     0
## X820      0     0     0     0     0     0     0     0     0     0     0     0
## X821      0     0     0     0     1     0     1     0     1     0     1     1
## X822      0     0     0     0     1     0     1     0     1     0     1     0
## X823      0     0     0     0     1     0     1     0     1     0     1     1
## X827      0     0     0     0     0     0     0     0     0     0     1     0
## X828      0     0     0     0     1     0     1     0     1     0     1     1
## X829      0     0     0     0     1     1     1     0     1     0     1     0
## X831      0     0     0     0     1     0     1     1     1     0     1     0
## X832      0     0     0     0     1     0     1     0     1     0     1     1
## X833      0     0     0     0     1     0     1     0     1     0     1     1
## X834      0     0     0     0     1     0     1     0     1     0     1     0
## X835      0     0     0     0     1     0     1     0     0     0     1     0
## X836      0     0     0     0     1     0     1     0     0     0     1     1
## X839      0     0     0     0     1     0     1     0     1     0     1     0
## X840      0     0     0     0     1     0     1     0     1     0     1     0
## X841      0     0     0     0     1     0     1     0     1     0     1     1
## X842      0     0     0     0     1     0     1     0     1     0     1     1
## X843      0     0     0     0     1     0     1     1     0     0     1     0
## X846      0     0     0     0     1     0     1     0     1     0     1     0
## X848      0     0     0     0     1     0     1     0     1     0     1     1
## X849      0     0     0     0     1     0     1     0     0     0     1     1
## X851      0     0     0     0     0     0     1     0     0     0     1     0
## X854      0     0     0     0     1     0     1     0     1     0     1     0
## X855      0     0     0     0     1     0     1     0     1     0     1     0
## X856      0     0     0     0     1     0     1     0     0     0     1     1
## X857      0     0     0     0     1     0     1     0     1     0     1     1
## X858      0     0     0     0     1     0     1     0     0     0     1     1
## X859      0     0     0     0     1     0     1     0     0     0     1     1
## X860      0     0     0     0     1     0     1     0     0     0     1     1
## X862      0     0     0     0     1     0     1     0     1     0     1     0
## X863      0     0     0     0     0     0     1     0     0     0     1     1
## X864      0     0     0     0     1     0     1     0     1     0     1     1
## X865      0     0     0     0     1     0     1     0     1     0     1     0
## X866      0     0     0     0     1     0     1     0     0     0     1     0
## X867      0     0     0     0     1     0     1     0     1     0     1     1
## X869      0     0     0     0     1     0     1     0     1     0     1     1
## X870      0     0     0     0     0     0     1     0     0     0     1     1
## X871      0     0     0     0     1     0     1     0     1     0     1     1
## X872      0     0     0     0     0     0     1     0     0     0     1     1
## X873      0     0     0     0     1     0     1     0     1     0     1     0
## X875      0     0     0     0     0     0     1     0     0     0     1     1
## X876      0     0     0     0     0     0     1     0     0     0     1     1
## X877      0     0     0     0     0     0     0     0     0     0     1     0
## X1190     0     0     0     0     1     0     1     0     1     0     1     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     0     0     1     1     0     0     0     1     0
## X1193     0     0     0     0     0     0     1     0     0     0     1     1
## X1194     0     0     0     0     0     1     1     1     0     1     1     0
## X1195     0     0     0     0     1     0     1     0     1     0     1     0
## X1197     0     0     0     0     1     0     1     0     1     0     1     0
## X1198     0     0     0     0     1     0     1     0     0     0     1     0
## X1199     0     1     1     0     0     0     0     0     0     0     1     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     0     1     1     1     0     0     0     1     1
## X1202     0     0     0     0     0     1     1     1     0     1     1     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     1     0     0     1     1     1     1     1     1     1     0
## X1205     0     0     0     0     1     1     1     1     1     1     1     1
## X1206     0     0     0     0     0     0     0     1     0     0     0     0
## X1207     0     1     0     0     1     0     1     0     1     0     1     0
## X1208     0     0     1     0     0     1     1     1     0     1     1     0
## X1209     0     0     0     0     0     0     0     0     0     0     1     0
## X1210     0     0     0     0     0     1     0     1     0     1     0     0
## X1212     0     0     0     0     1     0     1     0     0     0     1     1
## X1213     0     1     0     0     1     0     1     0     1     0     1     0
## X1215     0     0     0     0     0     1     1     1     0     1     1     0
## X1216     0     0     0     0     1     0     1     0     1     0     1     0
## X1217     0     0     0     0     1     0     1     0     1     0     1     0
## X1219     0     0     0     0     1     0     1     0     0     0     1     0
## X1220     0     0     0     0     1     1     1     1     0     1     1     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     0     0     0     1     0     1     0     1     0     1     0
## X1226     0     1     0     0     1     0     1     0     1     0     1     1
## X1228     0     1     1     0     1     0     1     0     0     0     1     1
## X1229     0     0     0     0     0     1     1     1     0     1     1     0
## X1230     0     0     0     0     1     1     1     0     1     0     1     0
## X1231     0     0     0     0     1     0     1     0     1     0     1     0
## X1233     0     0     0     0     0     1     1     1     0     1     1     0
## X1234     0     0     0     0     1     0     1     0     1     0     1     1
## X1236     0     0     0     0     0     1     1     1     0     1     1     0
## X1237     0     0     0     0     0     0     1     0     0     0     1     1
## X1239     0     0     0     0     0     1     0     1     0     1     0     0
## X1242     0     0     0     0     0     0     0     1     0     0     0     0
## X1244     0     0     0     0     1     0     1     0     1     0     1     0
## X1245     0     0     0     0     1     0     1     0     1     0     1     0
## X1246     0     0     0     0     1     1     1     0     0     0     1     1
## X1247     0     0     0     0     1     1     1     1     1     1     1     1
## X1249     0     0     0     0     1     1     1     0     0     0     1     1
## X1250     0     0     0     0     0     0     1     0     0     0     1     0
## X1251     0     0     0     0     0     0     0     0     0     0     1     0
## X1253     0     1     1     0     1     0     1     0     0     0     1     0
## X1254     0     0     0     0     1     0     1     0     1     0     1     1
## X1255     0     0     0     0     1     0     1     0     1     0     1     1
## X1256     0     0     0     0     1     0     1     0     0     0     1     0
## X1257     0     0     0     0     1     0     1     0     1     0     1     1
## X1259     0     0     0     0     0     0     0     0     0     0     1     0
## X1260     0     0     0     0     1     0     1     0     0     0     1     1
## X1262     0     0     0     0     1     1     1     1     1     1     1     1
## X1264     0     0     0     0     0     0     1     0     0     0     1     0
## X1265     0     0     0     0     1     0     1     0     0     0     1     1
## X1266     0     0     0     0     1     0     1     0     1     0     1     0
## X1267     0     0     0     0     1     1     1     0     1     0     1     1
## X1268     0     0     0     0     0     1     0     1     0     1     0     0
## X1273     0     0     0     0     1     0     1     0     1     0     1     1
## X1274     0     0     0     0     0     0     0     0     0     0     0     0
## X1275     0     0     0     0     0     0     1     0     0     0     1     0
## X1276     0     0     0     0     1     0     1     0     1     0     1     0
## X1277     0     0     0     0     1     0     1     0     0     0     1     1
## X1278     0     0     0     0     1     0     1     0     1     0     1     1
## X1279     0     0     0     0     1     0     1     0     1     0     1     0
## X1281     0     0     0     0     1     0     1     0     0     0     1     1
## X1282     0     0     0     0     1     0     1     0     1     0     1     1
## X1283     0     0     0     0     1     0     1     0     1     0     1     1
## X1284     0     0     0     0     1     0     1     0     1     0     1     1
## X1285     0     0     0     0     1     0     1     0     0     0     1     0
## X1288     0     0     0     0     0     0     1     0     0     0     1     1
## X1299     1     0     0     1     1     1     1     0     1     0     1     0
## X1301     0     0     0     0     0     1     1     0     0     0     1     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     1     0     0     0     1     1
## X1309     0     0     0     0     1     0     1     0     0     0     1     0
## X1310     0     0     0     0     0     0     0     0     0     0     1     0
## X447      0     0     0     0     1     1     1     1     0     1     1     1
## X448      0     0     0     1     1     1     1     1     0     1     1     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     1     0     1     0     0     0     1     0
## X453      0     0     0     0     1     0     1     0     1     0     1     0
## X454      0     1     1     0     1     1     1     0     0     0     1     1
## X455      0     0     0     0     1     1     1     1     0     1     1     1
## X456      0     0     0     0     1     1     1     1     1     1     1     0
## X458      0     1     1     0     1     1     1     0     0     0     1     0
## X459      0     0     0     0     0     1     0     1     0     1     0     0
## X460      0     0     0     0     0     0     1     0     0     0     0     0
## X461      0     0     0     0     1     1     1     1     1     1     1     1
## X462      0     0     0     0     1     0     1     0     1     0     1     0
## X463      0     0     0     0     1     0     1     0     1     0     1     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     1     0     1     0     0     0     1     0
## X466      0     1     0     0     1     1     1     1     1     1     1     0
## X468      0     0     0     0     0     1     0     1     0     1     0     0
## X471      0     0     0     0     1     1     1     1     0     1     1     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     1     1     1     1     1     1     1     0
## X477      0     0     0     0     1     1     1     0     1     0     1     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     1     0     1     0     1     0     1     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     1     0     1     0     0     0     1     0
## X486      0     0     0     0     0     1     0     1     0     1     0     0
## X487      0     0     0     0     1     1     1     1     0     1     1     0
## X488      0     0     0     0     1     1     1     1     0     1     1     0
## X489      0     0     0     0     1     1     1     1     1     1     1     0
## X490      0     0     0     0     1     1     1     1     1     1     1     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      1     0     0     0     0     1     1     0     0     0     1     0
## X493      0     0     0     0     0     1     0     1     0     1     0     0
## X494      0     0     0     0     0     1     0     1     0     1     1     0
## X495      0     0     0     0     1     0     1     0     0     0     1     1
## X496      0     0     1     0     0     0     1     0     0     0     1     0
## X497      0     0     0     0     1     0     1     0     1     0     1     0
## X498      0     0     0     0     0     0     1     0     0     0     1     1
## X499      0     0     0     0     1     0     1     0     1     0     1     0
## X501      1     0     0     0     1     1     1     0     0     0     1     1
## X502      0     0     0     0     1     0     1     0     1     0     1     1
## X503      0     0     0     0     1     0     1     0     1     0     1     0
## X505      0     0     0     0     1     1     1     1     0     1     1     0
## X506      0     1     1     0     1     1     1     0     0     0     1     0
## X507      0     0     0     0     0     0     1     0     0     0     1     1
## X508      0     0     0     1     0     1     1     1     0     1     1     1
## X509      0     0     0     1     1     1     1     1     1     1     1     0
## X510      0     0     0     0     1     1     1     0     1     0     1     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     1     1     0     1     1     1     0     0     0     1     0
## X515      0     0     0     0     1     0     1     0     1     0     1     0
## X516      0     0     0     0     1     0     1     0     0     0     1     0
## X518      1     0     0     0     1     1     1     1     1     1     1     1
## X521      1     1     1     0     1     1     1     0     0     0     1     1
## X523      0     0     0     0     1     1     1     1     1     1     1     0
## X524      0     0     0     0     1     1     1     1     0     1     1     1
## X525      1     0     0     0     0     1     1     0     0     0     1     0
## X526      0     0     0     0     0     0     0     0     0     0     0     0
## X530      0     0     0     0     1     0     1     0     1     0     1     0
## X531      0     0     0     0     1     1     1     1     0     1     1     0
## X532      0     1     1     0     0     0     0     0     0     0     1     0
## X533      0     1     1     0     0     1     1     0     0     0     1     1
## X534      1     1     1     0     1     1     1     1     1     1     1     0
## X535      0     0     0     0     1     0     1     0     1     0     1     0
## X536      0     0     0     0     1     0     1     0     1     0     1     0
## X538      0     0     0     0     1     1     1     0     0     0     1     1
## X539      0     0     0     0     1     0     1     0     1     0     1     0
## X542      0     0     0     0     0     1     1     1     0     1     1     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      0     0     0     1     1     1     1     1     1     1     1     0
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     1     0     1     0     0     0     1     0
## X549      0     0     0     0     1     0     1     0     0     0     1     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     0     0     1     1     1     0     0     0     1     1
## X553      0     0     0     0     1     1     1     1     1     1     1     0
## X554      0     0     0     0     0     0     0     0     0     0     1     0
## X556      0     0     0     0     1     1     1     1     1     1     1     0
## X557      0     0     0     0     0     1     1     1     0     1     1     1
## X558      0     1     1     0     1     0     1     0     1     0     1     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     1     0     1     0     1     0     1     0
## X561      0     0     0     0     1     0     1     0     1     0     1     1
## X562      0     0     0     0     1     0     1     0     1     0     1     0
## X563      0     0     0     0     1     1     1     1     1     1     1     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     1     0     1     0     0     0     1     1
## X567      0     0     0     0     0     1     1     1     0     1     1     1
## X568      0     0     0     0     1     1     1     1     0     1     1     0
## X569      0     0     0     0     1     1     1     1     1     1     1     0
## X571      0     0     0     0     0     1     1     1     0     1     1     1
## X572      0     0     0     0     1     1     1     1     0     1     1     0
## X574      0     0     0     0     0     0     1     0     0     0     1     0
## X576      0     1     1     0     1     1     1     0     0     0     1     0
## X577      0     0     0     0     1     1     1     1     1     1     1     0
## X579      0     0     0     0     1     1     1     1     1     1     1     0
## X580      0     0     0     0     0     1     1     1     0     1     1     1
## X582      0     0     0     0     0     1     0     1     0     1     0     0
## X583      0     0     0     0     1     0     1     0     0     0     1     1
## X584      0     0     0     0     1     1     1     0     1     0     1     0
## X586      0     0     0     0     1     1     1     0     1     0     1     0
## X587      0     0     0     0     1     0     1     0     1     0     1     0
## X588      0     0     1     0     0     1     0     0     0     0     1     0
## X589      0     0     0     0     0     1     0     1     0     1     0     0
## X591      0     0     0     0     1     0     1     0     0     0     1     1
## X592      0     0     0     0     1     0     1     0     1     0     1     0
## X593      0     0     0     0     1     0     1     0     1     0     1     0
## X594      0     0     0     0     0     1     0     1     0     1     0     0
## X595      0     0     0     0     0     0     0     1     0     0     0     0
## X596      1     1     1     0     1     1     1     1     0     1     1     0
## X597      0     0     0     0     1     0     1     0     1     0     1     0
## X598      0     0     0     0     0     1     0     1     0     1     0     0
## X599      0     0     0     0     0     0     1     0     0     0     1     1
## X600      0     0     0     0     1     1     1     0     0     0     1     1
## X603      0     0     0     0     0     1     0     1     0     1     0     0
## X604      0     0     1     0     0     1     0     0     0     0     1     0
## X605      0     0     0     0     0     1     1     0     0     0     1     0
## X606      0     0     0     0     1     1     1     1     1     1     1     0
## X608      0     0     0     0     1     0     1     0     1     0     1     0
## X609      0     1     1     0     1     1     1     0     1     0     1     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     0     0     0     1     1     1     1     0     1     1     1
## X613      0     0     0     0     1     0     1     0     1     0     1     1
## X614      0     0     0     0     1     0     1     0     1     0     1     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     0     0     1     1     1     1     1     1     1     0
## X619      0     1     1     0     1     1     1     0     1     0     1     1
## X620      0     0     0     0     1     0     1     0     0     0     1     1
## X621      0     0     0     0     1     1     1     1     1     1     1     0
## X622      0     0     0     0     1     0     1     0     1     0     1     0
## X623      0     0     0     1     1     1     1     0     1     0     1     1
## X625      0     0     0     0     1     1     1     1     0     1     1     0
## X628      0     0     0     0     0     1     1     1     0     1     1     0
## X629      0     0     0     0     0     1     0     1     0     1     0     0
## X630      0     0     0     0     1     0     1     0     1     0     1     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     0     0     1     1     1     1     0     1     1     1
## X635      1     1     1     0     1     1     1     1     0     1     1     0
## X636      0     0     0     1     0     1     1     1     0     1     1     0
## X637      0     0     0     0     0     1     1     0     0     0     1     0
## X638      0     0     0     0     1     1     1     1     1     1     1     1
## X639      0     1     1     0     1     1     1     0     0     0     1     0
## X641      0     0     0     0     1     1     1     0     1     0     1     0
## X648      0     1     1     0     1     1     1     1     1     1     1     1
## X650      0     1     1     0     1     1     1     0     0     0     1     1
## X651      0     0     0     0     1     1     1     0     1     0     1     0
## X653      0     0     0     0     0     1     0     1     0     1     0     0
## X654      0     0     0     0     1     1     1     1     0     1     1     0
## X655      0     0     0     0     1     0     1     0     1     0     1     0
## X656      0     0     0     0     1     0     1     0     1     0     1     0
## X657      0     0     0     0     1     1     1     1     0     1     1     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     1     0     1     0     1     0     1     0
## X1084     0     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     1     0     1     0     1     0     1     0
## X1088     1     0     0     0     1     1     1     1     0     1     1     0
## X1089     0     0     0     0     1     0     1     0     1     0     1     0
## X1090     0     0     0     1     1     1     1     1     0     1     1     0
## X1091     0     0     0     0     1     0     1     0     0     0     1     1
## X1092     0     0     0     0     0     1     0     1     0     1     0     0
## X1093     1     0     0     0     0     1     0     0     0     0     1     0
## X1094     0     0     0     0     1     1     1     1     0     1     1     0
## X1095     0     0     0     0     1     1     1     0     1     0     1     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     1     0     0     0     0     1     1     0     0     0     1     0
## X1101     0     1     1     0     0     1     1     0     0     0     1     1
## X1103     0     0     0     1     1     1     1     0     0     0     1     0
## X1104     0     1     1     0     1     1     1     0     1     0     1     0
## X1105     0     0     1     0     0     0     1     0     0     0     1     0
## X1106     0     0     0     0     0     0     0     0     0     0     0     0
## X1108     0     0     0     0     1     0     1     0     0     0     1     0
## X1110     0     0     0     0     1     0     1     0     1     0     1     0
## X1112     0     1     1     0     1     1     1     0     0     0     1     0
## X1113     0     0     0     0     1     0     1     0     0     0     1     0
## X1115     0     0     0     0     1     1     1     1     1     1     1     0
## X1116     0     0     0     0     1     0     1     0     0     0     1     1
## X1117     0     0     0     0     1     1     1     1     1     1     1     0
## X1119     0     0     0     0     0     1     1     1     0     1     1     1
## X1120     0     0     0     0     0     1     1     1     0     1     1     0
## X1121     0     0     0     0     0     1     1     1     0     1     1     0
## X1122     0     0     0     0     0     1     1     1     0     1     1     0
## X1124     0     0     0     0     1     1     1     0     1     0     1     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     1     0     1     0     1     0     1     1
## X1127     0     0     0     0     1     0     1     0     1     0     1     0
## X1128     0     0     0     0     1     1     1     1     0     1     1     0
## X1129     0     0     0     0     1     0     1     0     0     0     1     0
## X1130     0     0     0     0     1     1     1     1     0     1     1     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     1     1     1     0     1     0     1     0
## X1135     0     0     0     0     0     1     0     0     0     0     0     0
## X1136     0     0     0     0     1     0     1     0     0     0     1     0
## X1138     0     0     0     1     0     1     1     1     0     1     1     0
## X1139     0     0     0     0     0     1     1     1     0     1     1     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     1     0     1     0     0     0     1     0
## X1143     0     0     0     0     1     1     1     1     1     1     1     0
## X1144     0     0     0     0     1     0     1     0     0     0     1     0
## X1145     0     1     1     0     0     1     1     0     0     0     1     1
## X1146     0     0     0     0     0     1     0     1     0     1     0     0
## X1147     0     0     0     0     0     1     0     1     0     1     0     0
## X1149     0     0     0     0     1     1     1     1     1     1     1     1
## X1150     0     0     0     0     0     1     0     1     0     1     0     0
## X1151     0     0     0     0     0     1     0     1     0     1     0     0
## X1152     0     0     0     0     1     1     1     1     0     1     1     1
## X1153     0     0     0     0     0     0     0     0     0     0     1     0
## X1156     0     0     0     0     0     1     0     1     0     1     0     0
## X1158     0     0     0     1     1     1     1     0     0     0     1     1
## X1159     0     0     0     0     1     1     1     0     0     0     1     1
## X1160     0     0     0     0     1     1     1     1     1     1     1     0
##       FP170 FP171 FP172 FP173 FP174 FP175 FP176 FP177 FP178 FP179 FP180 FP181
## X661      0     0     0     0     0     0     1     0     0     1     0     0
## X662      1     0     0     1     0     0     0     0     1     0     0     0
## X663      0     1     0     0     0     0     0     0     0     0     1     0
## X665      1     0     0     1     0     0     0     0     0     1     0     0
## X668      0     0     1     0     0     0     1     1     0     0     0     0
## X669      0     1     0     0     0     0     0     0     0     0     0     0
## X670      1     0     1     0     0     0     1     0     0     1     0     0
## X671      0     0     0     0     0     1     0     0     1     0     0     0
## X672      1     0     0     1     1     0     0     0     0     0     0     1
## X673      1     0     0     1     0     0     0     1     0     0     0     0
## X674      0     0     0     1     1     0     0     0     0     0     0     0
## X676      1     0     0     1     1     0     0     0     0     0     0     1
## X677      0     0     0     0     0     0     0     0     0     1     0     0
## X678      0     0     1     0     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     0     0     0     0
## X682      0     1     0     0     0     0     0     0     0     0     1     0
## X683      0     0     0     0     0     1     1     1     1     1     0     0
## X684      1     0     1     0     0     0     0     0     1     0     0     0
## X685      1     0     0     1     1     0     0     0     0     0     0     1
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     1     0     0     0     0     0     0     0     0     1
## X689      1     0     0     0     0     0     0     0     1     0     0     0
## X690      0     0     0     0     0     1     0     0     1     0     0     0
## X691      1     1     0     0     0     0     0     1     0     0     0     0
## X692      0     1     0     0     0     0     0     1     0     0     0     0
## X693      1     0     0     1     0     0     0     1     0     1     0     0
## X695      0     1     0     0     0     0     0     0     0     0     0     0
## X696      0     0     0     0     0     0     1     0     0     0     0     0
## X698      0     0     0     0     0     0     0     1     0     0     0     0
## X699      0     0     1     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     1     0     0     1     0     0     0
## X702      0     1     0     0     0     0     0     0     0     0     0     0
## X703      1     0     0     1     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     1     0     0
## X706      0     0     0     0     1     0     0     0     0     0     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      1     0     0     1     0     0     0     0     0     0     0     0
## X711      1     1     0     1     0     0     0     0     0     0     1     1
## X712      0     0     0     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     0     0     1     0     0     1     0
## X714      1     0     0     1     1     0     0     0     0     0     0     1
## X715      0     0     1     0     0     0     0     1     0     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      1     0     1     0     0     0     0     0     1     0     0     0
## X721      0     1     1     0     0     0     1     1     0     0     0     0
## X722      0     0     0     0     1     0     0     0     0     0     0     0
## X723      0     0     0     0     0     1     0     0     1     0     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     0     1     0     0     0     0     0     0     0     0     0
## X728      0     1     0     0     0     0     0     0     0     0     1     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     1     0     0     1     0     0     0
## X732      0     0     1     0     0     0     0     0     0     0     0     0
## X733      0     0     1     0     0     0     1     1     0     0     0     0
## X734      0     0     1     0     0     0     0     0     0     0     0     0
## X735      1     0     0     1     1     0     0     0     0     0     0     1
## X736      0     0     0     0     0     1     0     0     1     0     0     0
## X737      0     0     0     0     0     0     0     0     0     0     0     0
## X739      1     0     1     1     1     0     0     0     0     0     0     1
## X740      0     0     1     0     0     0     0     0     0     1     1     0
## X741      0     0     0     0     0     1     0     0     1     0     1     0
## X742      0     0     0     0     0     1     0     0     1     0     0     0
## X743      0     0     1     0     0     0     0     0     0     0     0     0
## X744      1     0     0     0     0     0     0     0     0     0     0     0
## X746      0     1     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     1     0     0     1     0     0     0
## X749      1     0     1     0     0     0     0     0     1     0     0     0
## X752      1     0     0     1     1     1     0     0     1     0     0     1
## X753      1     0     0     1     0     1     0     0     0     0     0     0
## X754      1     0     0     1     0     0     0     0     0     0     0     0
## X755      0     0     0     0     0     0     0     0     0     1     0     0
## X757      0     0     0     0     0     1     0     0     1     0     0     0
## X758      0     0     0     0     0     0     0     0     0     1     0     0
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      0     0     1     0     0     0     0     0     0     0     0     0
## X761      1     0     0     1     1     0     0     0     0     0     0     1
## X762      1     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     1     0     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     1     0     0
## X765      0     1     0     0     0     0     0     0     0     0     0     0
## X767      1     0     1     1     1     0     0     0     0     0     0     1
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      0     0     1     0     0     0     0     0     1     0     0     0
## X771      0     1     1     0     1     0     0     1     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     1     0     0     1     0     0     0
## X774      0     0     0     0     0     1     0     0     1     0     0     0
## X775      0     0     0     0     0     0     0     0     0     0     1     0
## X776      1     0     1     1     0     0     0     1     0     0     0     0
## X777      0     0     0     0     0     1     0     0     1     0     0     0
## X778      1     1     0     1     0     0     0     1     0     0     1     1
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     1     0     0     0     0     0     0     0     0     1
## X781      0     1     0     0     0     0     0     0     1     0     0     0
## X782      0     0     0     0     1     0     0     0     0     0     0     0
## X784      0     1     0     0     0     0     0     0     0     0     1     0
## X786      0     0     0     0     0     1     0     0     1     0     0     0
## X787      0     0     1     0     0     0     0     0     0     0     0     0
## X788      1     0     0     1     1     0     0     0     0     1     0     1
## X789      0     0     1     0     0     0     0     0     0     0     0     0
## X791      0     0     1     0     0     0     0     0     0     0     0     0
## X792      0     0     0     0     0     0     0     0     1     0     0     0
## X794      0     0     0     0     0     1     0     0     1     0     1     0
## X798      0     0     0     0     0     0     1     0     0     0     0     0
## X799      1     1     0     1     1     0     0     0     0     0     0     0
## X800      1     0     0     1     0     0     0     0     0     0     0     1
## X804      0     0     0     0     0     0     0     0     0     1     0     0
## X805      1     0     0     1     1     0     0     0     0     0     0     1
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     0     0     0     0     0     0     0     0     1     1     0
## X809      0     0     0     0     0     1     0     0     1     0     0     0
## X810      1     0     1     1     0     0     0     0     0     0     0     1
## X813      0     0     0     0     0     1     0     0     1     0     1     0
## X814      0     1     1     0     1     0     1     0     0     0     0     0
## X818      0     0     1     0     0     0     0     0     0     0     0     0
## X819      0     0     1     0     0     0     0     1     0     0     0     0
## X820      0     0     0     0     0     1     0     0     1     0     0     0
## X821      0     0     1     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      1     0     1     1     0     0     0     0     0     0     0     1
## X828      0     0     1     0     0     0     0     0     0     0     0     0
## X829      0     1     0     0     1     0     0     0     0     0     0     0
## X831      0     0     1     0     0     0     0     0     0     0     0     0
## X832      0     0     1     0     0     0     0     0     0     0     0     0
## X833      0     0     1     0     0     0     0     0     0     0     0     0
## X834      0     1     1     0     0     0     0     0     0     0     0     0
## X835      0     0     1     0     0     0     0     0     0     0     0     0
## X836      0     0     1     0     0     0     0     0     0     0     0     0
## X839      1     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     1     0     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     1     0     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     1     0     0     0     0     0     0     0     0     0
## X849      0     0     1     0     0     0     0     0     0     0     0     0
## X851      1     0     0     1     0     0     0     0     0     0     0     1
## X854      0     0     1     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     1     0     0     0     0     0     0     0     0     0
## X857      0     0     1     0     0     0     0     0     0     0     0     0
## X858      0     0     1     0     0     0     0     0     0     0     0     0
## X859      0     0     1     0     0     0     0     0     0     0     0     0
## X860      0     0     1     0     0     0     0     0     0     0     0     0
## X862      0     0     1     0     0     0     0     0     0     0     0     0
## X863      0     0     1     0     0     0     0     0     0     0     0     0
## X864      1     0     0     0     0     0     0     0     0     1     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     1     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     0     0     0     1     0     0     0     0     0
## X870      0     0     1     0     0     0     0     0     0     0     0     0
## X871      0     0     1     0     0     0     0     0     0     0     0     0
## X872      0     0     1     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     1     0     0     0     0     0     0     0     0     0
## X876      0     0     1     0     0     0     0     0     0     0     0     0
## X877      0     0     1     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     1     0     0     1     0     0     0
## X1192     1     0     0     1     1     0     0     0     0     0     0     1
## X1193     0     0     0     0     0     0     0     0     0     1     0     0
## X1194     1     0     0     1     1     0     0     0     0     0     0     1
## X1195     0     0     1     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     1     0     0     1     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     1     0     0     0     0     1     1     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     1     0     0     1     1     0     0     0     0     0     0     0
## X1202     1     0     0     1     1     0     0     0     0     0     0     1
## X1203     1     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     0     0     0     0     0     1     1     0     0     0     0
## X1205     0     0     0     0     0     0     1     1     0     0     1     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     1     0     0     0     0     0     0     0     0     0     0
## X1208     1     0     0     1     1     0     0     0     0     0     0     1
## X1209     0     0     1     0     0     0     0     0     0     0     0     0
## X1210     1     1     0     1     0     0     0     0     0     0     1     1
## X1212     1     0     0     1     0     0     0     0     0     0     0     1
## X1213     0     0     0     0     0     0     0     0     1     0     0     0
## X1215     1     0     0     1     1     0     0     0     0     0     0     1
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     1     0     0     0     1     0     0     0     0     0
## X1219     0     1     0     0     0     0     0     0     0     0     0     0
## X1220     1     0     1     0     0     0     0     0     1     0     0     1
## X1221     0     0     0     0     0     1     0     0     1     0     0     0
## X1222     1     0     0     0     0     0     0     0     0     0     0     0
## X1226     1     0     0     0     0     0     0     0     1     0     0     0
## X1228     0     0     0     0     0     0     0     0     0     1     0     0
## X1229     1     0     0     1     1     0     0     0     0     0     0     1
## X1230     0     0     0     0     1     0     1     0     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     1     0     0     1     0     0     0     0     0     0     0     1
## X1234     0     0     0     0     0     0     0     0     0     1     0     0
## X1236     1     0     0     1     1     0     0     0     0     0     0     1
## X1237     0     0     1     0     0     0     1     0     0     0     0     0
## X1239     0     1     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     1     0     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     1     0     0     1     0     0     0
## X1246     1     0     0     1     1     0     0     0     0     0     0     1
## X1247     0     0     0     1     0     0     0     0     0     0     0     1
## X1249     0     0     1     0     1     0     0     0     0     1     0     0
## X1250     0     0     1     1     0     0     0     0     0     0     0     1
## X1251     0     0     1     0     0     0     0     0     0     0     0     0
## X1253     0     0     1     0     0     0     0     0     0     0     0     0
## X1254     0     0     1     0     0     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     1     0     0
## X1256     1     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     1     0     0     0     0     0     0     0     0     0
## X1259     1     0     1     1     0     0     0     0     0     0     0     1
## X1260     0     0     1     0     0     0     0     0     0     0     0     0
## X1262     0     0     0     1     0     0     0     0     0     0     0     1
## X1264     0     0     1     1     0     0     0     0     0     0     0     1
## X1265     0     0     1     0     0     0     0     0     0     0     0     0
## X1266     0     1     1     0     0     0     0     0     0     0     0     0
## X1267     0     0     0     0     0     0     0     0     0     1     0     0
## X1268     0     0     0     0     0     1     0     0     1     0     1     0
## X1273     0     0     1     0     0     0     0     0     0     0     0     0
## X1274     0     0     0     0     0     1     0     0     1     0     0     0
## X1275     1     0     1     1     0     0     0     0     0     0     0     1
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     1     0     0     0     0     0     0     0     0     0
## X1278     1     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     1     0     0     0     0     0     0     0     0     0
## X1282     0     0     1     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     1     0     0     0     0     0     0     0     0     0
## X1288     0     0     1     0     0     0     0     0     0     0     0     0
## X1299     0     0     0     0     1     0     0     0     0     0     0     1
## X1301     1     0     0     1     1     0     0     0     0     0     0     1
## X1302     0     0     0     1     0     0     0     0     0     0     0     0
## X1307     0     0     1     0     0     0     1     0     0     0     0     0
## X1309     0     1     1     0     0     0     0     0     0     0     0     0
## X1310     1     0     1     1     0     0     0     0     0     0     0     1
## X447      0     0     1     0     0     0     0     0     0     0     1     0
## X448      1     0     1     1     1     0     0     0     0     0     0     1
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     1     0     0     0     0     0
## X454      0     0     0     0     0     0     1     1     0     1     0     0
## X455      0     1     1     0     0     0     0     0     0     1     1     0
## X456      1     0     0     0     0     0     0     1     0     1     0     0
## X458      0     0     0     0     0     0     1     1     0     0     0     0
## X459      0     0     0     0     0     1     0     0     1     0     0     0
## X460      1     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     1     0     0     0     0     0     0     0     1     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      1     0     0     0     0     0     1     0     0     0     0     0
## X464      0     1     0     0     0     0     0     0     0     0     0     0
## X465      1     0     0     1     0     0     1     0     0     0     0     0
## X466      0     0     1     0     1     0     0     0     0     0     1     0
## X468      0     0     0     0     0     1     0     0     1     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     1     0     0     0     1     0     0     0     0     0     0
## X473      1     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     1     0
## X477      0     1     0     0     1     0     0     0     0     0     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     1     0     0     0     0     0     0
## X480      0     0     0     0     0     0     1     0     0     0     0     0
## X482      0     1     0     0     0     0     0     0     0     0     0     0
## X483      0     1     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     1     0     0     1     0     0     0
## X487      0     0     0     0     0     0     0     0     0     0     0     0
## X488      0     0     0     0     0     1     0     0     1     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     1     0
## X490      0     1     0     0     0     0     0     0     0     1     0     0
## X491      0     0     0     0     0     1     0     0     1     0     0     0
## X492      1     0     0     0     1     0     0     0     0     0     0     1
## X493      0     0     0     0     0     1     0     0     1     0     1     0
## X494      0     0     1     0     0     0     1     0     0     0     1     0
## X495      1     1     0     1     0     0     1     0     0     0     0     0
## X496      0     0     0     0     0     0     1     0     0     0     0     0
## X497      0     0     0     0     0     0     1     0     0     0     0     0
## X498      0     0     1     0     0     0     0     0     0     1     0     0
## X499      0     0     0     0     0     0     0     0     0     1     0     0
## X501      0     0     1     0     1     0     0     0     0     0     0     0
## X502      0     0     0     0     0     0     0     0     0     1     0     0
## X503      1     0     0     1     0     0     0     0     0     0     0     1
## X505      0     0     1     0     0     0     0     1     0     0     0     0
## X506      0     0     0     0     0     0     1     1     0     1     0     0
## X507      0     0     0     0     0     0     1     0     0     0     0     0
## X508      0     1     0     0     0     0     0     0     0     0     1     0
## X509      0     0     0     1     1     0     0     0     0     0     0     1
## X510      0     0     1     0     1     0     1     0     0     0     0     0
## X513      0     1     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     0     0     1     1     0     1     0     0
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     0
## X518      0     0     0     0     0     0     0     1     0     0     0     0
## X521      0     0     0     0     0     0     1     1     0     0     0     0
## X523      0     0     0     0     0     0     0     0     0     0     0     0
## X524      0     0     1     0     0     0     0     1     0     0     0     0
## X525      1     0     0     0     1     0     0     0     0     0     0     1
## X526      0     0     0     0     0     1     0     0     1     0     0     0
## X530      0     0     0     0     0     0     0     0     0     0     0     0
## X531      0     1     0     0     0     0     0     1     0     0     0     0
## X532      0     1     0     0     0     0     1     1     0     0     0     0
## X533      0     0     1     0     0     0     1     0     0     0     0     0
## X534      0     0     0     0     0     1     0     1     1     0     0     0
## X535      0     0     1     0     0     0     0     0     0     0     0     0
## X536      1     1     0     1     0     0     1     0     0     0     0     0
## X538      0     0     0     0     1     0     0     0     0     0     0     0
## X539      1     1     0     1     0     0     1     0     0     0     0     0
## X542      1     0     0     1     1     0     0     0     0     0     0     1
## X543      0     0     0     0     0     1     0     0     1     0     0     0
## X544      1     0     0     1     1     0     0     0     0     0     0     1
## X545      0     0     0     0     0     1     0     0     1     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      1     0     0     1     1     0     0     0     0     0     0     0
## X553      1     0     0     0     0     0     0     1     0     1     0     0
## X554      0     0     1     0     0     0     1     1     0     0     0     0
## X556      0     0     0     0     0     0     0     0     0     0     0     0
## X557      0     0     1     0     0     0     0     1     0     0     0     0
## X558      0     0     0     0     0     0     1     0     0     0     0     0
## X559      0     0     0     0     0     1     0     0     1     0     0     0
## X560      0     0     0     0     0     0     0     0     0     1     0     0
## X561      0     0     1     0     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     1     0     0
## X563      0     1     0     0     0     0     0     0     0     0     1     0
## X565      0     0     0     0     0     1     0     0     1     0     0     0
## X566      0     0     1     0     0     0     0     0     0     0     0     0
## X567      0     0     0     0     0     0     0     1     0     1     0     0
## X568      0     0     0     0     0     0     0     1     0     0     0     0
## X569      0     0     0     0     0     0     0     0     0     0     0     0
## X571      0     0     1     0     0     0     0     0     0     0     0     0
## X572      0     0     0     0     0     1     0     1     1     0     0     0
## X574      1     0     0     0     0     0     0     0     0     1     0     0
## X576      0     0     0     0     0     0     1     1     0     0     0     0
## X577      0     0     0     0     0     0     0     1     0     0     0     0
## X579      0     0     0     0     0     0     0     1     0     1     0     0
## X580      0     0     0     0     0     0     0     0     0     0     1     0
## X582      0     0     0     0     0     1     0     0     1     0     0     0
## X583      0     0     0     0     0     0     0     0     0     1     0     0
## X584      1     0     0     1     1     0     0     0     0     0     0     1
## X586      0     0     0     0     1     0     0     0     0     0     0     0
## X587      0     0     0     0     0     0     1     0     0     0     0     0
## X588      0     1     0     0     1     1     0     0     0     0     0     1
## X589      1     1     0     1     0     0     0     0     0     0     1     1
## X591      1     1     0     1     0     0     1     0     0     0     0     0
## X592      0     0     0     0     0     1     0     0     0     0     0     0
## X593      0     0     0     0     0     0     1     0     0     0     0     0
## X594      0     0     0     0     0     1     0     0     1     0     0     0
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     0     0     0     0     1     0     1     1     1     0     0
## X597      1     0     0     0     0     0     0     0     0     0     0     0
## X598      0     0     0     0     0     0     0     0     1     0     1     0
## X599      0     0     0     0     0     0     0     0     0     1     0     0
## X600      0     0     0     1     0     0     0     0     0     0     0     1
## X603      0     0     0     0     0     1     0     0     1     0     1     0
## X604      0     1     0     0     1     1     0     0     0     0     0     1
## X605      1     0     0     1     1     0     0     0     0     0     0     1
## X606      0     0     0     0     0     1     0     0     1     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     0     1     1     0     0     0     0
## X611      1     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     1     0     0     0     0     1     0     0     0     0
## X613      0     0     0     0     0     0     0     0     0     1     0     0
## X614      0     0     1     0     0     0     0     0     0     1     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     1     0     0     0     0     0     0     0     0     0     0
## X619      0     0     0     1     0     0     0     0     0     0     0     0
## X620      0     0     1     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     0     0     0     1     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     1     1     1     0     1     0     0     0     0     0
## X625      0     1     1     0     0     0     1     0     0     0     0     0
## X628      1     0     0     1     1     0     0     0     0     0     0     1
## X629      1     1     0     1     0     0     0     0     0     0     1     1
## X630      1     0     0     0     0     0     0     1     1     0     0     0
## X631      0     0     0     0     0     1     0     0     1     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     1     0     0     0     0     0     1     0     1     0
## X635      1     0     0     0     0     0     0     1     0     1     0     0
## X636      1     0     0     1     1     0     0     0     0     0     0     1
## X637      1     0     0     1     1     0     0     0     0     0     0     1
## X638      0     1     0     0     0     0     0     0     0     0     1     0
## X639      0     0     0     0     0     0     1     1     0     0     0     0
## X641      0     0     0     1     1     1     0     0     1     0     0     0
## X648      0     0     1     0     0     0     0     1     0     1     0     0
## X650      0     0     0     0     0     0     1     0     0     0     0     0
## X651      0     0     0     1     1     1     0     0     1     0     0     0
## X653      1     1     0     1     0     0     0     0     0     0     1     1
## X654      0     0     0     0     0     1     0     0     1     0     0     0
## X655      0     1     0     0     0     0     0     0     0     0     0     0
## X656      0     0     1     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     1     0     0     1     0     0     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     1     0     0     0     0     0     0     0     0     0     0
## X1084     1     1     0     1     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     1     0     0     0     0     1     0     0     0     0
## X1089     0     1     0     0     0     0     0     0     0     0     0     0
## X1090     0     1     0     0     0     0     0     0     0     0     1     0
## X1091     0     0     0     0     0     1     0     0     1     0     0     0
## X1092     0     0     0     0     0     1     0     0     1     0     0     0
## X1093     0     0     0     0     1     0     0     0     0     0     0     1
## X1094     0     0     0     0     0     0     0     0     0     1     1     0
## X1095     0     0     0     0     1     0     0     0     0     0     0     0
## X1097     0     1     0     0     0     0     0     0     0     0     0     0
## X1098     1     0     0     1     1     0     0     0     0     0     0     1
## X1101     0     1     1     1     0     0     0     0     0     0     0     0
## X1103     1     0     0     0     1     0     0     0     0     0     0     1
## X1104     0     0     0     0     0     0     1     1     0     0     0     0
## X1105     0     0     0     0     0     0     1     0     0     0     0     0
## X1106     0     0     0     0     0     1     0     0     1     0     0     0
## X1108     0     0     0     0     0     0     0     0     0     1     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     0     0     0     0     1     1     0     1     0     0
## X1113     0     0     0     0     0     0     0     0     0     0     0     0
## X1115     0     1     0     0     0     0     0     0     0     0     0     0
## X1116     0     0     1     0     0     0     0     0     0     1     0     0
## X1117     0     0     0     0     0     0     0     1     0     0     1     0
## X1119     0     0     1     0     0     0     0     0     0     0     1     0
## X1120     1     0     0     1     1     0     0     0     0     0     0     1
## X1121     1     0     0     0     1     0     1     0     0     0     1     0
## X1122     1     0     0     1     1     0     0     0     0     0     0     1
## X1124     0     0     0     0     1     0     0     0     0     1     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     1     0     0     0     0     0     0     0     0     0
## X1127     1     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     1     0     0     0     0
## X1129     0     0     1     0     0     0     0     0     0     1     0     0
## X1130     0     0     1     0     0     0     0     0     0     0     1     0
## X1131     1     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     1     0     1     0     0     0     0     0
## X1135     0     0     0     0     0     1     0     0     1     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     1     0     0
## X1138     1     0     0     1     1     0     0     0     0     0     1     1
## X1139     1     0     0     1     1     0     0     0     0     0     0     1
## X1141     0     1     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     1     0     0     0     0     0     0     0     0     0
## X1143     0     0     0     1     1     0     0     0     0     0     0     0
## X1144     1     0     0     1     0     0     0     0     0     0     0     1
## X1145     0     0     1     1     1     0     0     0     0     0     0     0
## X1146     0     0     0     0     0     1     0     0     1     0     0     0
## X1147     0     0     0     0     0     1     0     0     1     0     0     0
## X1149     0     1     1     0     0     0     0     1     0     0     0     0
## X1150     0     0     0     0     0     1     0     0     1     0     0     0
## X1151     1     0     0     1     0     0     0     0     0     0     0     0
## X1152     1     0     0     0     0     0     0     0     0     0     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     0     0     0     1     0     0     1     0     1     0
## X1158     1     0     0     1     1     0     0     0     0     0     0     0
## X1159     0     0     0     0     1     0     0     0     0     0     0     0
## X1160     0     1     0     0     1     0     0     0     0     0     0     0
##       FP182 FP183 FP184 FP185 FP186 FP187 FP188 FP189 FP190 FP191 FP192 FP193
## X661      0     0     0     0     0     0     0     0     0     0     0     0
## X662      0     0     0     1     0     0     0     1     0     0     0     0
## X663      1     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     1     0     0     1     0     0     0     0     0
## X668      0     0     0     0     0     0     0     0     0     0     1     0
## X669      1     0     0     0     0     0     0     0     0     1     1     0
## X670      0     0     1     0     0     0     0     0     1     0     0     1
## X671      0     0     0     0     0     0     0     0     0     0     0     0
## X672      0     0     0     1     0     0     1     0     0     0     0     0
## X673      0     0     0     1     0     0     0     0     0     0     0     0
## X674      0     0     0     0     0     1     0     0     0     0     0     1
## X676      0     0     0     1     0     0     0     0     0     0     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     1     0     0     0
## X679      0     0     0     0     0     1     0     0     0     0     0     0
## X682      1     0     0     0     1     0     0     0     0     0     0     0
## X683      0     0     0     0     0     0     0     0     0     0     1     0
## X684      0     0     0     0     0     0     0     1     1     0     0     0
## X685      0     0     0     1     0     0     0     0     0     0     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     0     1     0     0     0     1     0     0     1
## X689      0     0     0     0     0     0     0     1     0     0     1     0
## X690      0     0     0     0     0     0     0     0     0     0     1     0
## X691      0     0     0     0     0     1     0     1     0     1     0     0
## X692      1     0     0     0     0     0     0     0     0     0     0     0
## X693      0     0     0     1     0     0     0     0     0     0     0     0
## X695      1     0     0     0     1     0     0     1     0     0     1     0
## X696      0     0     0     0     0     0     0     0     0     0     0     0
## X698      0     0     0     0     0     1     0     0     0     0     0     0
## X699      0     0     1     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      1     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     1     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      0     0     0     0     1     0     1     0     0     1     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     1     0     0     0     0     0     0     0     0
## X711      1     0     0     1     0     0     0     0     0     0     0     0
## X712      0     1     0     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     1     0     0     0     0     0     0
## X714      0     0     0     1     0     0     1     0     0     0     0     0
## X715      0     0     0     0     0     0     0     0     1     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      0     0     0     0     0     0     0     1     1     0     0     0
## X721      1     0     0     0     0     0     0     0     0     0     0     0
## X722      0     0     0     0     0     1     0     1     0     0     0     0
## X723      0     0     0     0     0     0     0     0     0     1     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     1     1     0     0     0     0     0     1     0     0     0
## X728      1     0     0     0     0     0     0     0     0     0     0     1
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     1     0     0     0     0     0     0     0     0     1
## X733      0     0     0     0     0     0     0     0     0     0     0     0
## X734      0     0     1     0     0     0     0     0     0     0     0     0
## X735      0     0     0     1     0     0     0     0     0     0     0     0
## X736      0     0     0     0     0     0     0     0     0     0     0     0
## X737      0     0     0     0     0     0     0     0     0     0     0     0
## X739      0     0     0     0     1     0     0     0     0     0     0     0
## X740      0     0     0     0     1     0     0     0     1     0     0     0
## X741      0     0     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     0     1     0     0     0     0     0     0     0
## X743      0     0     1     0     0     0     0     0     1     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      1     0     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     0     0     0     0     0     0     0
## X749      0     0     0     0     0     0     1     1     1     0     0     0
## X752      0     0     0     1     0     0     0     0     0     0     0     0
## X753      0     0     0     1     0     0     0     0     0     0     0     0
## X754      0     0     0     1     0     0     0     1     0     0     0     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     0
## X759      0     0     0     0     0     0     0     0     0     0     1     0
## X760      0     0     0     0     0     0     0     0     1     0     0     0
## X761      0     0     0     1     0     0     1     0     0     0     0     0
## X762      0     0     0     0     0     0     0     0     0     0     0     1
## X763      0     0     1     0     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      1     0     0     0     0     1     0     0     0     0     0     0
## X767      0     0     0     1     0     0     1     0     0     0     0     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      0     0     0     0     0     0     0     1     1     0     1     0
## X771      0     0     0     0     0     0     0     0     0     0     0     1
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     1     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     0     0     0     0     0     0     0     0
## X776      0     0     0     1     1     0     0     0     1     0     0     0
## X777      0     0     0     0     0     0     0     0     0     0     0     0
## X778      1     0     0     1     0     0     0     0     0     0     0     0
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      1     0     0     0     1     1     1     0     0     1     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     1
## X784      0     1     0     0     0     0     0     0     0     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     1     0     0     0     0     0     1     0     0     1
## X788      0     0     0     1     0     0     1     0     0     0     0     0
## X789      0     0     1     0     0     0     0     0     0     0     0     1
## X791      0     0     1     0     0     0     0     0     1     0     0     1
## X792      0     0     0     0     0     1     0     1     0     0     1     0
## X794      0     0     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     0     0     0     0     0     0     0     0
## X799      0     0     0     0     0     1     0     1     0     0     0     0
## X800      0     0     0     1     0     0     0     0     0     0     0     0
## X804      0     0     0     0     0     0     0     0     0     1     1     0
## X805      0     0     0     1     0     1     0     0     0     0     0     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     0     0     0     1     0     0     0     0     1     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     0     0     0     0     0     0     0     0     0     0     0
## X814      1     0     1     0     0     1     0     1     0     0     0     0
## X818      0     0     1     0     0     0     0     0     1     0     0     1
## X819      0     0     0     0     0     0     0     0     1     0     0     0
## X820      0     0     0     0     0     0     0     0     0     0     0     0
## X821      0     0     1     0     0     0     0     0     1     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     1     0     0     0     0     0     0     0     0     1
## X829      0     0     0     0     0     0     0     1     0     0     0     1
## X831      0     0     1     0     0     0     0     0     1     0     0     0
## X832      0     0     1     0     0     0     0     0     0     0     0     0
## X833      0     0     1     0     0     0     0     0     1     0     0     1
## X834      0     0     1     0     0     0     0     0     1     0     0     0
## X835      0     0     0     0     0     0     0     0     1     0     0     0
## X836      0     0     1     0     0     0     0     0     1     0     0     1
## X839      0     0     0     0     0     0     0     0     0     0     0     1
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     1     0     0     0     0     0     1     0     0     1
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     1     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     1     0     0     0     0     0     0     0     0     1
## X849      0     0     1     0     0     0     0     0     1     0     0     1
## X851      0     0     0     1     0     0     0     0     0     0     0     0
## X854      0     0     1     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     1     0     0     0     0     0     1     0     0     1
## X857      0     0     1     0     0     0     0     0     0     0     0     1
## X858      0     0     1     0     0     0     0     0     0     0     0     0
## X859      0     0     1     0     0     0     0     0     1     0     0     1
## X860      0     0     1     0     0     0     0     0     1     0     0     1
## X862      0     0     0     0     0     0     0     0     0     0     0     0
## X863      0     0     1     0     0     0     0     0     0     0     0     1
## X864      0     0     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     1
## X866      0     0     1     0     0     0     0     0     0     0     0     1
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     0     0     1     0     0     0     0     0     0
## X870      0     0     1     0     0     0     0     0     0     0     0     1
## X871      0     0     1     0     0     0     0     0     0     0     0     1
## X872      0     0     1     0     0     0     0     0     1     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     1     0     0     0     0     0     0     0     0     0
## X876      0     0     1     0     0     0     0     0     0     0     0     1
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     1     0     0     0     0     0     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     1     0     0     1     0     0     0     0     0
## X1195     0     0     1     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     1     0     0     0     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     0     1     0     0     1     0     0     0     0
## X1202     0     0     0     1     0     0     1     0     0     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     1     0     0     0     0     0     1     0     0     0     1
## X1205     0     0     0     0     0     1     0     0     0     0     0     0
## X1206     0     0     0     0     0     0     0     0     0     1     0     0
## X1207     1     0     0     0     0     0     0     1     0     0     1     0
## X1208     0     0     0     1     0     0     1     0     0     0     0     0
## X1209     0     1     0     0     0     0     0     0     0     0     0     0
## X1210     1     0     0     1     0     0     0     0     0     0     0     0
## X1212     0     1     0     1     0     0     0     0     0     0     0     0
## X1213     0     0     0     0     0     0     0     1     0     0     1     0
## X1215     0     0     0     1     0     0     0     0     0     0     0     0
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     1     0     0     1     0     0     1     0     0     0
## X1219     0     1     0     0     0     0     0     0     0     0     0     0
## X1220     0     0     0     0     0     0     0     1     1     0     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     0     0     0     0     0     0     0     0     1     1     1
## X1226     0     0     0     0     0     1     0     1     0     0     0     0
## X1228     0     0     0     0     1     0     0     0     0     0     0     0
## X1229     0     0     0     1     0     1     0     0     0     0     0     0
## X1230     0     0     0     0     0     0     0     0     0     0     0     1
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     0     1     0     0     1     0     0     0     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     0     1     0     0     1     0     0     0     0     0
## X1237     0     0     1     0     1     0     0     0     0     0     0     0
## X1239     1     0     0     0     0     0     0     0     0     0     1     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     0     1     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     1     0     1     0     0     0     0     0     0     0     0
## X1247     0     0     0     0     0     0     1     0     0     1     0     0
## X1249     0     0     0     0     0     0     0     0     0     0     0     1
## X1250     0     0     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     0     1     0     0     0
## X1254     0     0     0     0     0     0     0     0     1     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     1     0     0     0     0     0     1     0     0     1
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     1     0     0     0     0     0     1     0     0     1
## X1262     0     0     0     0     0     0     0     0     0     1     0     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     1     0     0     0     0     0     1     0     0     1
## X1266     0     0     1     0     0     1     0     0     1     0     0     0
## X1267     0     1     0     0     0     0     0     0     0     0     0     0
## X1268     0     0     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     1     0     0     0     0     0     0     0     0     1
## X1274     0     0     0     0     0     0     0     0     0     0     0     0
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     1     0     0     0     0     0     1     0     0     1
## X1278     0     0     0     0     0     0     0     0     0     0     0     1
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     1     0     0     0     0     0     0     0     0     1
## X1282     0     0     1     0     0     0     0     0     0     0     0     1
## X1283     0     0     0     0     0     0     0     0     0     0     0     1
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     1     0     0     0     0     0     0     0     0     0
## X1288     0     0     1     0     0     0     0     0     0     0     0     1
## X1299     0     0     0     0     0     0     0     0     0     0     0     0
## X1301     0     0     0     1     0     0     0     0     0     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     1     0     0     0     0     0     0     0     0     0
## X1309     0     0     0     0     0     1     0     0     1     0     0     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      0     0     1     0     0     0     0     0     1     0     0     0
## X448      0     1     1     0     0     0     0     0     0     0     1     0
## X451      0     0     0     0     0     0     0     0     0     1     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     1     0     0     0     0     0     0     0     0     0     0
## X454      0     0     0     0     1     0     0     0     0     0     0     0
## X455      1     0     0     0     0     0     0     0     1     0     0     0
## X456      0     0     0     0     0     0     0     0     0     0     0     0
## X458      0     0     0     0     1     0     0     0     0     0     0     0
## X459      0     0     0     0     0     0     1     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     1     0     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     0     0     0     0     0     0     0     0     1     0
## X464      0     0     0     0     0     1     0     0     0     0     0     0
## X465      0     0     0     1     1     1     0     0     0     0     0     0
## X466      0     0     1     0     0     0     0     1     0     0     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      1     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     0     0
## X477      1     0     0     0     0     0     0     1     0     0     0     1
## X478      0     0     0     0     0     0     0     0     0     1     0     0
## X479      0     0     0     0     0     0     0     0     0     1     0     0
## X480      0     0     0     0     0     0     0     0     0     0     0     0
## X482      1     0     0     0     0     1     0     0     0     0     0     0
## X483      1     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     0
## X487      0     0     0     0     0     0     0     0     0     0     1     0
## X488      0     1     0     0     0     0     0     0     0     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     0     0
## X490      1     0     0     0     1     0     0     0     0     0     1     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     0     0     0     0     0     0     1     0     0     0     0
## X493      0     0     0     0     0     0     0     0     0     0     0     0
## X494      0     0     0     0     0     0     0     0     0     0     0     0
## X495      0     0     0     1     1     0     0     1     0     1     0     0
## X496      0     0     0     0     0     0     0     0     0     0     0     0
## X497      0     0     0     0     0     0     0     0     0     0     0     0
## X498      0     1     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      0     0     1     0     0     0     0     1     0     0     0     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      0     0     0     0     0     0     0     1     0     0     0     0
## X505      0     0     0     0     0     0     1     0     1     0     0     0
## X506      0     0     0     0     0     0     0     0     0     0     0     0
## X507      0     0     0     0     1     0     0     0     0     0     0     0
## X508      0     1     0     0     0     0     0     0     0     0     0     0
## X509      0     1     0     0     0     0     0     0     0     0     1     0
## X510      0     0     0     0     0     0     0     1     0     0     0     0
## X513      1     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     0     0     0     0     0     0     0     0
## X515      0     1     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     1     0     0     0     0     1     0     0
## X518      0     0     0     0     0     1     0     0     0     0     1     0
## X521      0     0     0     0     1     0     0     0     0     0     0     0
## X523      0     0     0     0     0     0     0     0     0     1     0     0
## X524      0     0     1     0     0     0     0     0     0     0     0     0
## X525      0     0     0     0     0     0     0     0     0     0     0     0
## X526      0     0     0     0     0     0     0     0     0     0     0     0
## X530      0     0     0     0     0     0     0     0     0     0     1     0
## X531      1     0     0     0     0     0     0     0     0     0     0     0
## X532      1     0     0     0     0     0     0     0     0     0     0     0
## X533      0     0     1     0     0     0     0     0     0     0     0     0
## X534      0     0     0     0     0     0     0     0     0     0     0     0
## X535      0     0     1     0     0     0     0     0     0     0     0     0
## X536      0     0     0     1     0     0     0     1     0     1     0     0
## X538      0     1     0     0     0     0     0     0     0     0     0     1
## X539      0     0     0     1     0     0     0     1     0     1     0     0
## X542      0     0     0     1     0     0     0     0     0     0     0     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      0     1     0     0     0     0     0     0     0     0     1     0
## X545      0     0     0     0     0     0     0     0     0     0     1     0
## X546      0     0     0     0     0     1     0     0     0     0     0     0
## X548      0     0     0     0     1     0     0     0     0     1     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     1     0     0     0     0     0     0
## X552      0     0     0     0     1     0     0     1     0     0     0     0
## X553      0     0     0     0     0     0     0     0     0     0     0     0
## X554      0     0     0     0     0     1     0     0     0     0     0     0
## X556      0     1     0     0     0     0     0     0     0     0     0     0
## X557      0     0     1     0     1     0     0     0     0     0     1     0
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     1     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     1     0     0
## X566      0     0     1     0     0     0     0     0     0     0     0     0
## X567      0     0     0     0     0     1     1     0     0     0     0     0
## X568      0     0     0     0     0     0     1     0     0     0     0     0
## X569      0     0     0     0     1     0     0     0     0     0     1     0
## X571      0     0     0     0     1     0     0     0     1     0     0     0
## X572      0     0     0     0     0     0     0     0     0     0     0     0
## X574      0     0     0     0     0     0     0     0     0     0     0     0
## X576      0     0     0     0     1     0     0     0     0     0     0     0
## X577      0     0     0     0     0     0     0     0     0     0     0     0
## X579      0     0     0     0     0     0     0     0     0     0     0     0
## X580      0     1     0     0     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     1     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     0     0     0     0     0     0     1     0     0     0     0
## X586      0     0     0     0     0     0     0     1     0     0     0     1
## X587      0     0     0     0     0     0     0     0     0     0     0     0
## X588      1     0     0     0     0     0     0     0     0     0     0     0
## X589      1     0     0     1     0     0     0     0     0     0     0     0
## X591      0     0     0     1     1     0     0     1     0     1     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     0     0     0     1     0     0     0     0     0     0
## X594      0     0     0     0     1     0     0     0     0     0     0     0
## X595      0     0     0     0     0     0     0     0     0     0     1     0
## X596      0     0     0     0     0     0     0     0     0     0     0     0
## X597      0     0     0     0     0     0     0     0     0     1     1     1
## X598      0     0     0     0     0     0     0     0     0     1     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     0     0     0     0     0     0     0     0     0
## X603      0     0     0     0     0     0     0     0     0     0     0     0
## X604      1     0     0     0     0     0     0     0     0     1     0     0
## X605      0     0     0     1     0     0     0     0     0     0     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     0     0     0     0     0     0     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     1     0     1     0     0     0     0     0     1     0
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     1     0     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     1     0     0     0     0     0     0
## X617      1     0     0     0     0     0     0     0     0     0     1     0
## X619      0     0     0     0     0     1     0     0     0     0     0     0
## X620      0     0     1     0     0     0     0     0     1     0     0     0
## X621      0     1     0     0     0     0     0     0     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     1     0     0     0     0     0     1     0     0     1
## X625      0     0     0     0     0     1     0     0     1     0     0     0
## X628      0     0     0     1     0     0     0     0     0     0     0     0
## X629      1     0     0     1     0     0     0     0     0     0     0     0
## X630      0     0     0     0     0     0     0     1     0     0     0     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     1     0     0     0     0     0     0
## X633      0     0     1     0     0     0     0     0     1     0     0     0
## X635      0     0     0     0     0     0     0     1     0     0     0     0
## X636      0     0     0     1     0     0     0     0     0     0     0     0
## X637      0     0     0     1     0     0     0     0     0     0     0     0
## X638      1     0     0     0     0     0     0     0     0     0     0     0
## X639      0     0     0     0     0     0     0     0     0     0     0     0
## X641      0     1     0     0     0     0     0     1     0     0     0     0
## X648      0     1     1     0     0     0     0     0     0     0     0     0
## X650      0     0     0     0     0     0     0     0     0     0     0     0
## X651      0     0     0     0     0     0     0     1     0     0     0     0
## X653      1     0     0     1     0     0     0     0     0     0     0     0
## X654      0     0     0     0     0     0     0     0     0     0     1     0
## X655      1     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     1     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     0
## X1082     0     0     0     0     0     1     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     1     0     0     1     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     0     0     1     0     0     0     1     0     1     0
## X1089     0     0     0     0     0     0     0     0     0     0     0     0
## X1090     0     1     0     0     0     0     0     0     0     0     0     0
## X1091     0     1     0     0     0     0     0     0     0     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     0     0     0     0     0     0     0     1     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     0     0     0     0     0     0     0     0     0     1
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     0     1     0     0     0     0     0     0     0     0
## X1101     0     0     1     0     0     0     0     0     0     0     0     0
## X1103     0     1     0     0     0     0     0     0     0     0     0     1
## X1104     0     0     0     0     0     0     0     0     0     0     0     0
## X1105     0     0     0     0     0     0     0     0     0     0     0     0
## X1106     0     0     0     0     0     0     0     0     0     0     0     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     0     0     0     0     0     0     0     0     0     0
## X1113     0     1     0     0     0     1     0     0     0     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     0     0     0     0     0     0     0     0     1     1     1     0
## X1117     0     0     0     0     0     0     0     0     0     0     0     0
## X1119     0     0     1     0     0     0     0     0     0     0     0     0
## X1120     0     0     0     1     0     0     0     0     0     0     0     0
## X1121     0     0     0     0     0     0     0     1     0     0     0     1
## X1122     0     0     0     1     0     0     0     0     0     0     0     0
## X1124     0     0     0     0     0     0     0     0     0     0     0     1
## X1125     0     0     0     0     0     1     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     1     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     1     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     1     0     0     0
## X1130     0     0     1     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     0     0     0     1     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     1     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     0     0     0     0     0     0     0
## X1139     0     0     0     1     0     0     0     0     0     0     0     0
## X1141     1     0     0     0     0     0     0     0     0     1     0     0
## X1142     0     0     0     0     0     0     0     0     1     0     0     0
## X1143     0     0     0     0     0     0     1     1     0     0     0     0
## X1144     0     1     0     0     0     0     0     1     0     0     0     0
## X1145     0     0     1     0     0     0     0     0     0     0     0     1
## X1146     0     0     0     0     0     0     0     0     0     0     0     0
## X1147     0     0     0     0     0     0     0     0     0     0     1     0
## X1149     1     0     0     0     0     0     0     0     1     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     0
## X1151     0     0     0     1     0     0     0     0     0     0     1     0
## X1152     0     0     0     0     0     0     0     1     0     1     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     0     0     0     0     0     0     0     0     0     0
## X1158     0     1     0     0     0     0     0     0     0     0     0     0
## X1159     0     0     0     0     1     0     0     0     0     0     0     0
## X1160     0     1     0     0     0     0     0     0     0     0     0     1
##       FP194 FP195 FP196 FP197 FP198 FP201 FP202 FP203 FP204 FP205 FP206 FP207
## X661      0     0     0     0     0     1     0     0     0     0     0     0
## X662      0     0     0     0     0     0     1     0     0     0     0     0
## X663      0     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     1     0     0     0     0     0     0     0     0
## X668      0     0     0     0     0     0     0     0     0     0     0     0
## X669      0     0     0     0     0     0     0     0     0     0     0     0
## X670      0     0     0     0     0     0     1     0     0     0     0     1
## X671      0     0     0     0     0     0     0     0     1     0     1     0
## X672      0     0     1     0     0     0     0     0     0     0     0     0
## X673      0     0     0     0     0     0     1     1     0     0     0     0
## X674      0     0     0     0     0     0     1     0     0     0     0     0
## X676      0     0     1     1     0     0     0     0     0     0     0     0
## X677      0     0     0     0     0     0     1     0     0     0     0     0
## X678      0     0     0     0     0     0     1     0     0     0     0     1
## X679      0     0     0     0     0     0     1     1     0     0     0     0
## X682      0     0     0     0     0     0     0     0     0     0     0     0
## X683      0     0     0     0     0     0     0     0     1     0     0     0
## X684      0     0     0     0     1     0     1     0     0     0     0     1
## X685      0     0     1     1     0     0     0     0     0     0     0     0
## X686      0     0     0     0     0     0     1     0     0     1     0     0
## X688      0     0     0     0     0     0     1     0     0     0     0     1
## X689      0     0     0     1     0     0     1     0     0     0     0     0
## X690      0     0     0     0     0     0     0     0     1     1     0     0
## X691      0     0     0     0     0     0     0     0     0     0     0     0
## X692      0     0     0     0     0     0     1     1     0     0     0     0
## X693      0     0     0     0     0     0     0     0     0     0     0     0
## X695      0     0     0     0     0     0     1     0     0     0     0     0
## X696      1     0     0     0     0     0     1     0     0     1     0     0
## X698      0     0     0     0     0     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     0     0     0     1     0     0
## X700      0     0     0     0     0     0     0     0     1     0     1     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     1     0     0     0     0     0
## X706      0     0     0     0     0     0     0     0     0     0     0     0
## X708      0     0     0     0     0     0     1     1     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     1     0     0     0     0     0     0     0     0     0
## X712      0     0     0     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     0     1     0     0     1     0     0
## X714      0     0     1     1     0     0     0     0     0     0     0     0
## X715      0     0     0     0     0     0     0     0     0     1     0     0
## X717      0     0     0     0     0     0     1     0     0     0     0     0
## X718      0     0     0     0     0     0     1     0     0     0     0     1
## X721      0     0     0     0     0     0     0     0     0     0     0     0
## X722      0     0     0     0     0     0     1     1     0     1     0     0
## X723      0     0     0     0     0     0     0     0     1     0     1     0
## X724      0     0     0     0     0     0     1     1     0     0     0     0
## X726      0     0     0     0     0     0     0     0     0     0     0     1
## X728      0     0     0     0     0     0     1     1     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     1     0     1     0
## X732      0     0     0     0     0     0     1     1     0     0     0     0
## X733      0     0     0     0     0     0     0     0     0     0     0     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     0     1     1     0     0     0     0     0     0     0     0
## X736      1     0     0     0     0     0     0     0     1     0     1     0
## X737      0     0     0     0     0     0     1     0     0     1     0     0
## X739      0     0     0     0     0     0     0     0     0     0     0     0
## X740      0     0     0     0     0     0     0     0     0     0     0     1
## X741      0     0     0     0     0     0     0     0     1     0     1     0
## X742      0     0     0     0     0     0     0     0     1     0     1     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     1     0     0     0     0     0     1     0     0
## X746      0     0     0     0     0     0     1     0     0     0     0     0
## X747      0     0     0     0     1     0     0     0     1     0     1     0
## X749      0     0     0     0     0     0     1     0     0     0     0     1
## X752      0     0     1     1     1     0     0     0     1     0     0     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     0     0     0     0     0     1     0     0     0     0     0
## X755      0     0     0     0     0     0     0     0     0     1     0     0
## X757      0     0     0     0     0     0     0     0     1     0     1     0
## X758      0     0     0     0     0     0     0     0     0     1     0     0
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      0     0     0     0     0     0     1     1     0     1     0     0
## X761      0     0     1     1     1     0     0     0     0     0     0     0
## X762      0     0     0     0     0     0     1     0     0     0     0     0
## X763      1     0     0     0     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     1     0     0
## X765      0     0     0     0     0     0     0     0     0     0     0     0
## X767      0     0     1     0     0     0     0     0     0     0     0     0
## X768      0     0     0     0     0     0     1     0     0     0     0     0
## X770      0     0     0     0     0     0     1     0     0     0     0     1
## X771      0     0     0     0     0     0     1     0     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     1     0     0
## X773      0     0     0     0     0     0     0     0     1     0     1     0
## X774      0     0     0     0     0     0     0     0     1     0     1     0
## X775      0     0     0     0     0     0     1     1     0     0     0     0
## X776      0     0     0     0     0     0     0     0     0     0     0     1
## X777      0     0     0     0     0     0     0     0     1     0     0     0
## X778      0     0     1     0     0     0     0     0     0     0     0     0
## X779      1     0     0     0     0     0     1     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      0     0     0     0     0     0     0     0     0     0     0     0
## X782      0     0     0     0     0     0     1     0     0     0     0     0
## X784      0     0     0     0     0     0     0     0     0     0     0     0
## X786      0     0     0     0     0     0     0     0     1     0     1     0
## X787      0     0     0     0     0     0     1     1     0     0     0     1
## X788      0     0     1     1     0     0     0     0     0     0     0     0
## X789      0     0     0     0     0     0     1     0     0     0     0     0
## X791      0     0     0     0     0     0     1     0     0     0     0     1
## X792      0     0     0     0     0     0     1     0     0     0     0     0
## X794      0     0     0     0     0     0     0     0     1     0     1     0
## X798      0     0     0     0     0     0     1     0     0     0     0     0
## X799      0     0     0     0     0     0     0     0     0     0     0     0
## X800      0     0     1     0     0     0     0     0     0     0     0     0
## X804      0     0     0     0     0     0     0     0     0     0     0     0
## X805      0     0     1     1     0     0     0     0     0     0     0     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     0     0     0     0     0     1     1     0     0     0     0
## X809      0     0     0     0     0     0     1     1     1     0     0     0
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     0     0     0     0     0     0     0     1     0     1     0
## X814      0     0     0     0     0     0     0     0     0     0     0     0
## X818      0     0     0     0     0     0     0     0     0     1     0     1
## X819      0     0     0     0     0     0     0     0     0     1     0     1
## X820      0     0     0     0     1     0     0     0     1     0     1     0
## X821      0     0     0     0     0     0     1     1     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     1     0     0
## X823      1     0     0     0     0     0     1     0     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     0     0     0     0     1     0     0     0     0     0
## X829      0     0     0     0     0     0     1     0     0     0     0     0
## X831      0     0     0     0     0     0     1     0     0     0     0     1
## X832      0     0     0     0     0     0     1     1     0     0     0     0
## X833      0     0     0     0     0     0     0     0     0     1     0     1
## X834      0     0     0     0     0     0     1     0     0     0     0     1
## X835      0     0     0     0     0     0     0     0     0     0     0     1
## X836      0     0     0     0     0     0     0     0     0     0     0     1
## X839      0     0     0     0     0     0     1     0     0     0     0     0
## X840      0     0     0     0     0     0     1     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     1     0     1
## X842      0     0     0     0     0     0     1     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     0     0     0     1
## X846      0     0     0     0     0     0     1     1     0     0     0     0
## X848      0     0     0     0     0     0     1     0     0     0     0     0
## X849      0     0     0     0     0     0     0     0     0     0     0     1
## X851      0     0     1     0     0     0     0     0     0     0     0     0
## X854      0     0     0     0     0     0     0     0     0     1     0     0
## X855      0     0     0     0     0     0     1     0     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     0     1
## X857      0     0     0     0     0     0     1     0     0     0     0     0
## X858      0     0     0     0     0     0     0     0     0     0     0     0
## X859      0     0     0     0     0     0     0     0     0     0     0     1
## X860      0     0     0     0     0     0     0     0     0     0     0     1
## X862      0     0     0     0     0     0     1     1     0     0     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     0     0     1     0     0     1     0     0     0     0     0
## X865      0     0     0     0     0     0     1     0     0     1     0     0
## X866      0     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     1     0     0     1     0     0
## X869      0     0     0     0     0     0     1     1     0     1     0     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      0     0     0     0     0     0     0     0     0     1     0     0
## X872      0     0     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     1     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     1     1     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     1     0     1     0
## X1192     0     0     1     1     0     0     0     0     0     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     1     1     0     0     0     0     0     0     0     0
## X1195     0     0     0     0     0     0     0     0     0     1     0     0
## X1197     0     0     0     0     0     0     1     1     1     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     0     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     1     0     0     0     0     0     0     0     0
## X1202     0     0     1     1     0     0     0     0     0     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     0     0     0     0     1     1     0     0     0     0     0
## X1205     0     0     0     0     0     1     0     0     0     1     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     0     0     0     0     1     0     0     0     0     0
## X1208     0     0     1     1     0     0     0     0     0     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     0     1     0     0     0     0     0     0     0     0     0
## X1212     0     0     1     1     0     0     0     0     0     0     0     0
## X1213     0     0     0     0     0     0     1     0     0     0     0     0
## X1215     0     0     1     1     1     0     0     0     0     0     0     0
## X1216     0     0     0     0     0     0     1     0     0     0     0     0
## X1217     0     0     0     0     0     0     1     0     0     0     0     1
## X1219     0     0     0     0     0     0     0     0     0     0     0     0
## X1220     0     0     0     0     0     0     0     0     0     0     0     1
## X1221     0     0     0     0     0     0     0     0     1     0     1     0
## X1222     0     0     0     1     0     0     1     0     0     0     0     0
## X1226     0     0     0     0     0     0     1     0     0     0     0     0
## X1228     0     0     0     0     0     0     0     0     0     0     0     0
## X1229     0     0     1     1     0     0     0     0     0     0     0     0
## X1230     0     0     0     0     0     0     1     1     0     0     0     0
## X1231     0     0     0     0     0     0     1     1     0     0     0     0
## X1233     0     0     1     0     0     0     0     0     0     0     0     0
## X1234     0     0     0     0     0     0     1     0     0     0     0     0
## X1236     0     0     1     1     0     0     0     0     0     0     0     0
## X1237     0     0     0     0     0     0     0     0     0     0     0     0
## X1239     0     0     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     1     1     0     0     0     1
## X1245     0     0     0     0     0     0     1     1     1     0     1     0
## X1246     0     0     1     1     0     0     0     0     0     0     0     0
## X1247     0     0     1     0     0     0     1     1     0     1     0     0
## X1249     0     0     0     0     0     0     0     0     0     0     0     0
## X1250     0     0     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     0     0     0     0     1
## X1254     0     0     0     0     0     0     0     0     0     1     0     0
## X1255     0     0     0     0     0     0     1     0     0     0     0     0
## X1256     0     0     0     1     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     0     0     1     0     0     0     0     1
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     0     0     0     0     0     0     0     0     0     1
## X1262     0     0     1     0     0     0     1     1     0     1     0     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     0     0     0     0     0     0     0     1
## X1266     0     0     0     0     0     0     1     0     0     0     0     1
## X1267     0     0     0     0     0     0     0     0     0     1     0     0
## X1268     0     0     0     0     0     0     0     0     1     0     1     0
## X1273     0     0     0     0     0     0     1     1     0     0     0     0
## X1274     0     0     0     0     1     0     0     0     1     0     1     0
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     1     0     0     1     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     0     1
## X1278     0     0     0     0     0     0     1     0     0     0     0     0
## X1279     0     0     0     0     0     0     1     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     0     0
## X1282     0     0     0     0     0     0     0     0     0     1     0     0
## X1283     0     0     0     0     0     0     1     0     0     1     0     0
## X1284     0     0     0     0     0     0     1     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     1     0     0     0     0     1     1     0     0     0     0
## X1301     0     0     1     1     0     0     0     0     0     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     0     0     0     0     0     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     1
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      0     0     0     0     0     0     0     0     0     0     0     1
## X448      0     0     0     0     0     0     0     0     0     0     0     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     1     0     0     0     1     0     0
## X454      1     0     0     0     0     0     0     0     0     0     0     0
## X455      0     0     0     0     0     0     0     0     0     0     0     1
## X456      0     0     0     1     0     0     1     1     0     0     0     0
## X458      1     0     0     0     0     1     0     0     0     0     0     0
## X459      0     0     0     0     0     0     0     0     1     0     1     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     1     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     1     0     0     0     0     1     1     0     0     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     0     0     0     0     0     0     0     0
## X466      0     0     0     0     0     0     0     0     0     1     0     0
## X468      0     0     0     0     0     0     0     0     1     0     1     0
## X471      1     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     1     0     0     1     0     0
## X477      0     1     0     0     0     0     1     0     0     0     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     1     0     0     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      1     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     1     0     1     0
## X487      0     0     0     0     0     0     0     0     0     0     0     0
## X488      0     0     0     0     0     0     0     0     1     0     0     0
## X489      0     0     0     0     0     0     1     0     0     0     0     0
## X490      0     0     0     0     0     0     0     0     0     1     0     0
## X491      0     0     0     0     0     0     0     0     1     0     1     0
## X492      0     1     1     1     0     0     0     0     0     0     0     0
## X493      0     0     0     0     0     0     0     0     1     0     1     0
## X494      1     0     0     0     0     0     0     0     0     0     0     0
## X495      0     0     0     0     0     1     0     0     0     0     0     0
## X496      0     1     0     0     0     1     0     0     0     0     0     0
## X497      0     0     0     0     0     1     1     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     1     0     0     0     0     0
## X501      0     0     0     0     0     0     0     0     0     0     0     0
## X502      0     0     0     0     0     0     0     0     0     1     0     0
## X503      0     0     0     0     0     0     1     0     0     0     0     0
## X505      0     0     0     0     0     0     0     0     0     0     0     1
## X506      1     0     0     0     0     1     0     0     0     0     0     0
## X507      1     0     0     0     0     1     0     0     0     0     0     0
## X508      0     0     0     0     0     0     0     0     0     0     0     0
## X509      0     0     0     0     0     0     0     0     0     1     0     0
## X510      1     0     0     0     0     0     1     1     0     0     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      1     0     0     0     0     0     0     0     0     0     0     0
## X515      0     0     0     0     0     0     0     0     0     1     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     0
## X518      0     0     0     0     0     0     0     0     0     1     0     0
## X521      1     0     0     0     0     0     0     0     0     0     0     0
## X523      0     0     0     0     0     0     1     1     0     0     0     0
## X524      0     0     0     0     0     0     0     0     0     0     0     0
## X525      0     1     0     1     0     0     0     0     0     0     0     0
## X526      0     0     0     0     1     0     0     0     1     0     1     0
## X530      0     0     0     0     0     0     1     1     0     0     0     0
## X531      0     0     0     0     0     0     0     0     0     0     0     0
## X532      0     0     0     0     0     0     0     0     0     0     0     0
## X533      0     1     0     0     0     0     0     0     0     0     0     0
## X534      0     0     0     0     0     0     1     1     1     0     0     0
## X535      0     0     0     0     0     0     1     0     0     0     0     0
## X536      0     0     0     0     0     1     1     0     0     0     0     0
## X538      0     0     0     0     0     0     0     0     0     0     0     0
## X539      0     0     0     0     0     1     1     0     0     0     0     0
## X542      0     0     1     1     1     0     0     0     0     0     0     0
## X543      0     0     0     0     0     0     0     0     1     0     1     0
## X544      0     0     1     0     0     0     0     0     0     1     0     0
## X545      0     0     0     0     0     0     0     0     1     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     0     1     0     0     0     0     0     0     0     0
## X553      0     0     0     0     0     0     1     1     0     0     0     0
## X554      0     0     0     0     0     0     0     0     0     0     0     0
## X556      0     0     0     0     0     0     1     1     0     0     0     0
## X557      1     0     0     0     0     0     0     0     0     0     0     0
## X558      0     0     0     0     0     0     1     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     1     0     0     0
## X560      0     0     0     0     0     0     0     0     0     1     0     0
## X561      0     0     0     0     0     0     0     0     0     1     0     0
## X562      0     0     0     0     0     0     1     0     0     0     0     0
## X563      0     0     0     0     0     0     1     1     0     0     0     0
## X565      0     0     0     0     0     0     0     0     1     0     0     0
## X566      1     0     0     0     0     0     0     0     0     0     0     0
## X567      0     0     0     0     0     0     0     0     0     0     0     0
## X568      0     0     0     0     0     0     0     0     0     0     0     0
## X569      0     0     0     0     0     0     0     0     0     1     0     0
## X571      1     0     0     0     0     0     0     0     0     0     0     0
## X572      1     0     0     0     0     0     0     0     1     0     1     0
## X574      0     0     0     1     0     0     0     0     0     0     0     0
## X576      1     0     0     0     0     0     0     0     0     0     0     0
## X577      0     0     0     0     0     0     1     0     0     1     0     0
## X579      0     0     0     0     0     0     1     1     0     0     0     0
## X580      0     0     0     0     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     0     0     1     0     1     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     0     0     0     0     0     1     0     0     0     0     0
## X586      0     0     0     0     0     0     1     0     0     0     0     0
## X587      0     0     0     0     0     1     1     0     0     0     0     0
## X588      0     1     0     0     0     0     0     0     0     0     0     0
## X589      0     0     1     0     0     0     0     0     0     0     0     0
## X591      0     0     0     0     0     1     0     0     0     0     0     0
## X592      0     0     0     0     0     0     1     1     0     0     0     0
## X593      0     0     0     0     0     0     1     0     0     0     0     0
## X594      0     0     0     0     0     0     0     0     1     0     1     0
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     0     0     0     0     0     0     0     1     0     0     0
## X597      0     0     0     0     0     0     1     0     0     0     0     0
## X598      0     0     0     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     1     0     0     0     0     0     0     0     0     0
## X603      0     0     0     0     0     0     0     0     1     0     1     0
## X604      0     1     0     0     0     0     0     0     0     0     0     0
## X605      0     0     1     1     0     0     0     0     0     0     0     0
## X606      0     0     0     0     0     0     1     1     1     0     0     0
## X608      0     0     0     0     0     0     1     0     0     0     0     0
## X609      1     0     0     0     0     1     0     0     0     0     0     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     0     0     0     0     0     0     0     0     0     0
## X613      0     0     0     0     0     0     0     0     0     1     0     0
## X614      0     0     0     0     0     0     1     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     0     0     0     0     1     0     0     1     0     0
## X619      0     1     0     0     0     0     1     1     0     0     0     0
## X620      0     0     0     0     0     0     0     0     0     0     0     1
## X621      0     0     0     0     0     0     1     1     0     0     0     0
## X622      0     0     0     0     0     0     1     0     0     0     0     0
## X623      0     1     0     0     0     0     1     0     0     0     0     1
## X625      0     0     0     0     0     0     0     0     0     0     0     1
## X628      0     0     1     1     1     0     0     0     0     0     0     0
## X629      0     0     1     0     0     0     0     0     0     0     0     0
## X630      0     0     0     1     0     0     1     0     0     0     0     0
## X631      0     0     0     0     0     0     0     0     1     0     1     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     0     0     0     0     0     0     0     0     0     1
## X635      0     0     0     0     0     0     0     0     0     0     0     0
## X636      0     0     1     1     1     0     0     0     0     0     0     0
## X637      0     0     1     1     0     0     0     0     0     0     0     0
## X638      0     0     0     0     0     0     1     1     0     1     0     0
## X639      1     0     0     0     0     1     0     0     0     0     0     0
## X641      0     0     0     0     0     0     1     1     1     0     0     0
## X648      0     0     0     0     0     0     0     0     0     1     0     0
## X650      0     0     0     0     0     0     0     0     0     0     0     0
## X651      0     0     0     0     0     0     1     1     1     0     0     0
## X653      0     0     1     0     0     0     0     0     0     0     0     0
## X654      0     0     0     0     0     0     0     0     1     0     0     0
## X655      0     0     0     0     0     0     1     1     0     0     0     0
## X656      0     0     0     0     0     0     1     0     0     1     0     0
## X657      1     0     0     0     0     0     0     0     1     0     1     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     1     1     0     0     0     0
## X1084     0     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     1     1     0     0     0     0
## X1088     0     0     0     0     0     0     0     0     0     0     0     1
## X1089     0     0     0     0     0     0     1     0     0     0     0     0
## X1090     0     0     0     0     0     0     0     0     0     0     0     0
## X1091     0     0     0     0     0     0     0     0     1     0     1     0
## X1092     0     0     0     0     0     0     0     0     1     0     0     0
## X1093     0     0     1     0     0     0     0     0     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     1     0     0     0     0     1     0     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     1     0     0     0     0     0     0     0     0     0     0
## X1101     0     1     0     0     0     0     0     0     0     0     0     0
## X1103     0     0     0     0     0     0     0     0     0     0     0     0
## X1104     1     0     0     0     0     1     1     0     0     0     0     0
## X1105     0     1     0     0     0     1     0     0     0     0     0     0
## X1106     0     0     0     0     0     0     0     0     1     0     1     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     1     1     0     0     0     0
## X1112     1     0     0     0     0     1     0     0     0     0     0     0
## X1113     0     0     0     0     0     0     0     0     0     0     0     0
## X1115     0     0     0     0     0     0     1     1     0     0     0     0
## X1116     0     0     0     0     0     0     0     0     0     0     0     1
## X1117     0     0     0     0     0     0     1     0     0     0     0     0
## X1119     0     0     0     0     0     0     0     0     0     0     0     0
## X1120     0     0     1     1     1     0     0     0     0     0     0     0
## X1121     0     1     0     0     0     1     0     0     0     0     0     0
## X1122     0     0     1     0     1     0     0     0     0     0     0     0
## X1124     0     0     0     0     0     0     1     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     1     0     0
## X1127     0     0     0     1     0     0     1     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     0     1
## X1130     0     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     1     0     0     0     0     0     1     1     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     1     0     1     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     0     0     0     0     0     0     0
## X1139     0     0     1     1     1     0     0     0     0     0     0     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     1
## X1143     0     0     0     0     0     0     1     1     0     0     0     0
## X1144     0     0     0     0     0     0     0     0     0     0     0     0
## X1145     0     1     0     0     0     0     0     0     0     0     0     0
## X1146     0     0     0     0     0     0     0     0     1     0     1     0
## X1147     0     0     0     0     0     0     0     0     1     0     0     0
## X1149     0     0     0     0     0     0     0     0     0     1     0     0
## X1150     0     0     0     0     0     0     0     0     1     0     1     0
## X1151     0     0     0     0     0     0     0     0     0     0     0     0
## X1152     0     0     0     0     0     0     0     0     0     0     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     0     0     0     0     0     0     1     0     1     0
## X1158     0     0     0     0     0     0     0     0     0     0     0     0
## X1159     0     0     0     0     0     0     0     0     0     0     0     0
## X1160     0     0     0     0     0     0     1     0     0     0     0     0
##       FP208    MolWeight    NumBonds NumMultBonds NumRotBonds  NumDblBonds
## X661      0  0.304017769  0.49840233   1.90489650  -0.9347280 -0.831341597
## X662      0  1.474751336  1.69828720   1.32482715   0.7260405 -0.831341597
## X663      0  0.284237960  0.69697444   0.16468846   0.7260405 -0.005212173
## X665      0 -0.579130036  0.20728011  -0.80209379  -0.5195359  0.820917251
## X668      0  0.508214019  0.56629095  -0.02866799   1.1412327 -0.831341597
## X669      0  0.846130172  0.56629095  -0.80209379   1.1412327  0.820917251
## X670      0  1.343679568  0.99793817   2.29160940  -0.5195359 -0.005212173
## X671      0  0.223329553  0.94039386  -0.99545024   3.2171934 -0.005212173
## X672      0  1.536294032  1.99292450  -0.41538089  -0.5195359  2.473176098
## X673      1  0.531725024  0.99793817   0.16468846  -0.1043438 -0.005212173
## X674      0  0.513009822  0.63244961   0.55140136  -0.1043438  1.647046674
## X676      0  0.981923863  1.69828720  -0.80209379  -0.9347280  0.820917251
## X677      0 -0.294344540  0.12893412   0.93811425  -0.9347280 -0.831341597
## X678      0 -0.211043577 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X679      1 -0.403319666  0.28325136  -0.02866799  -0.1043438 -0.831341597
## X682      0  0.513009822  0.63244961   1.13147070   0.3108484 -0.005212173
## X683      0  1.174798750  1.36999732   0.35804491   2.3868091  0.820917251
## X684      0  1.683069116  1.87027471   1.13147070   1.5564248 -0.831341597
## X685      0  0.996447520  1.78555525  -0.99545024  -0.9347280 -0.005212173
## X686      0 -0.294344540  0.12893412   0.93811425  -0.5195359 -0.831341597
## X688      0  0.880198541  0.63244961   1.32482715  -0.1043438 -0.005212173
## X689      0  0.923239370  1.46773946   1.13147070   0.7260405 -0.831341597
## X690      0  1.144391553  1.46773946   0.16468846   2.3868091 -0.005212173
## X691      0  1.836745684  0.88159159  -0.80209379   0.7260405  0.820917251
## X692      1  1.649573481  1.46773946   0.55140136   3.2171934  1.647046674
## X693      0  1.038577746  1.16359252   0.55140136   0.3108484  1.647046674
## X695      0  1.252510849  1.56220886   1.13147070   1.1412327 -0.831341597
## X696      0  0.158871193  0.28325136   1.90489650  -0.9347280 -0.831341597
## X698      0  0.792852769  1.31981693   0.16468846   0.7260405 -0.005212173
## X699      0 -0.094205025 -1.09071695   0.16468846  -0.9347280 -0.831341597
## X700      0 -0.771172819  0.04803954  -0.99545024   1.1412327 -0.831341597
## X702      0 -1.218301524 -0.12219740  -1.18880668  -0.1043438 -0.831341597
## X703      0 -0.982753213  0.04803954  -1.18880668  -0.9347280 -0.831341597
## X704      0 -0.294344540  0.12893412   0.93811425  -0.9347280 -0.831341597
## X706      0  0.636103875  0.82146772   0.55140136   0.3108484  1.647046674
## X708      1 -0.321429192 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X709      0 -0.982753213  0.04803954  -1.18880668  -0.9347280 -0.831341597
## X711      0  1.706734262  2.47286768  -0.99545024   0.7260405 -0.005212173
## X712      0  0.831678296  1.16359252   1.32482715   0.7260405 -0.005212173
## X713      0  0.929168040  0.56629095   1.32482715   0.3108484 -0.005212173
## X714      0  1.675379106  2.11068236  -0.22202444   0.7260405  3.299305521
## X715      0  0.750468797  0.12893412   0.35804491   0.3108484 -0.005212173
## X717      0  0.291891037 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X718      0  1.522316745  1.69828720   1.13147070   0.7260405 -0.831341597
## X721      0  0.508214019  0.56629095  -0.02866799   0.7260405 -0.831341597
## X722      1  1.257699471  1.10948462   1.71154005  -0.1043438  1.647046674
## X723      0 -0.982753213 -0.03559810  -0.99545024   1.1412327 -0.005212173
## X724      1  0.026037466  0.12893412   1.32482715  -0.1043438 -0.005212173
## X726      0  0.989629709  0.12893412   1.13147070  -0.1043438 -0.831341597
## X728      1  0.635848282  0.63244961   1.32482715   0.3108484 -0.005212173
## X729      0  1.163654675 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X731      0 -1.218301524 -0.12219740  -1.18880668   0.7260405 -0.831341597
## X732      1  0.098097256 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X733      0  0.237099891  0.12893412  -0.02866799   0.7260405 -0.831341597
## X734      0  0.378611406 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X735      0  1.052782459  1.65364219  -0.60873734  -0.9347280  0.820917251
## X736      0  0.558425111  0.99793817   0.16468846   2.3868091 -0.005212173
## X737      0  0.060245711 -0.21200528   1.32482715  -0.5195359  0.820917251
## X739      0  1.400858350  1.26871571   0.55140136   0.3108484  1.647046674
## X740      0  1.430265786  1.26871571   2.29160940   0.7260405  0.820917251
## X741      0  0.223329553  0.94039386  -0.99545024   3.2171934 -0.005212173
## X742      0  0.072232210  0.75995351  -0.99545024   2.8020012 -0.005212173
## X743      0  0.378611406 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X744      0 -0.321429192  0.04803954   0.93811425  -0.9347280 -0.831341597
## X746      0  0.907820092  1.21665476   0.35804491   2.3868091  0.820917251
## X747      0  0.072790642  0.99793817  -1.18880668   3.2171934 -0.831341597
## X749      0  1.889098307  2.07194628   1.32482715   2.3868091 -0.005212173
## X752      0  2.027107324  2.54041376  -0.22202444   1.9716169  3.299305521
## X753      0 -0.982753213  0.04803954  -1.18880668  -0.1043438 -0.831341597
## X754      0  1.135094949  1.46773946   1.13147070  -0.1043438 -0.831341597
## X755      0 -0.294344540  0.12893412   0.93811425  -0.9347280 -0.831341597
## X757      0  0.475066868 -0.12219740  -1.18880668   0.7260405 -0.831341597
## X758      0  0.201609653  0.49840233   1.13147070  -0.1043438 -0.831341597
## X759      0  1.039771029  0.82146772  -0.80209379   1.9716169  0.820917251
## X760      1  0.098097256 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X761      0  1.834687162  2.22396656  -0.22202444   0.7260405  3.299305521
## X762      0 -0.165345469  0.12893412   1.13147070  -0.9347280 -0.831341597
## X763      0  0.710001130  0.28325136   1.13147070  -0.5195359 -0.831341597
## X764      0 -0.115366351  0.35700394   0.93811425  -0.9347280 -0.831341597
## X765      0  1.803708352  1.05428349   1.32482715   1.1412327 -0.005212173
## X767      0  1.677549637  1.95260717  -0.02866799   0.3108484  4.125434945
## X768      0 -0.152986644  0.04803954   1.71154005  -0.9347280 -0.831341597
## X770      0  1.190653352  1.21665476   1.13147070   0.7260405 -0.831341597
## X771      0  1.188302449  0.20728011   0.74475780  -0.5195359  2.473176098
## X772      0  1.163654675 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X773      0 -0.737607576  0.20728011  -0.99545024   1.5564248 -0.005212173
## X774      0  0.147051515  0.12893412  -1.18880668   1.1412327 -0.831341597
## X775      1  0.719516934  0.75995351   1.51818360   1.1412327  0.820917251
## X776      0  2.101817743  2.14892180   1.90489650   2.3868091  2.473176098
## X777      0  1.162199568  1.26871571  -0.99545024   4.0475776 -0.005212173
## X778      0  1.978779123  2.70310385  -0.80209379   1.5564248  0.820917251
## X779      0  0.148236508  0.35700394   1.90489650  -0.9347280 -0.831341597
## X780      0  0.865295430 -1.37754378  -0.80209379  -0.9347280  0.820917251
## X781      0  1.135296034  1.82822307  -0.60873734   3.6323855  1.647046674
## X782      0  0.303418106  0.20728011   1.51818360  -0.9347280  0.820917251
## X784      0  2.675894881  0.88159159   1.32482715   1.1412327 -0.005212173
## X786      0 -0.945628244  0.12893412  -1.18880668   1.1412327 -0.831341597
## X787      1  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X788      0  1.327364381  2.03269881  -0.41538089  -0.5195359  2.473176098
## X789      0  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X791      0  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X792      0  1.398910560  1.36999732   1.13147070   0.7260405 -0.831341597
## X794      0  0.496130384  1.26871571  -0.99545024   4.0475776 -0.005212173
## X798      0  0.735984417  0.82146772   3.06503519  -0.5195359 -0.831341597
## X799      0  1.378795179  0.35700394  -0.60873734  -0.1043438  1.647046674
## X800      0  1.108515489  1.82822307  -1.18880668  -0.9347280 -0.831341597
## X804      0  1.017548306  1.41929339   1.51818360   0.7260405  0.820917251
## X805      0  1.956176482  2.60651481  -0.41538089   1.5564248  2.473176098
## X807      0  1.580162693  1.10948462  -0.80209379   4.0475776  0.820917251
## X808      1  1.380821445  1.46773946   2.48496584   1.1412327  1.647046674
## X809      1  1.147725526  1.31981693   1.51818360   2.8020012  0.820917251
## X810      0  1.317009930  0.04803954  -0.80209379  -0.9347280  0.820917251
## X813      0  0.953373701  1.82822307  -0.99545024   5.7083462 -0.005212173
## X814      0  1.355892859  1.16359252   0.35804491   0.7260405  0.820917251
## X818      0  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X819      0  1.136435150  0.56629095   1.51818360  -0.1043438  0.820917251
## X820      0  0.364681635  1.31981693  -1.18880668   4.0475776 -0.831341597
## X821      1  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X822      0  0.242973688  0.42867850   2.48496584  -0.9347280 -0.831341597
## X823      0  0.627652706  0.82146772   2.87167874  -0.9347280 -0.831341597
## X827      0  1.560421390  0.56629095  -0.99545024  -0.9347280 -0.005212173
## X828      0  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X829      0  1.630165630  1.16359252   0.55140136   1.9716169  1.647046674
## X831      0  1.184902006  0.28325136   1.32482715  -0.1043438 -0.005212173
## X832      1  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X833      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X834      0  1.198080407  0.42867850   1.13147070  -0.1043438 -0.831341597
## X835      0  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X836      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X839      0  0.382560531  0.63244961   2.09825295  -0.9347280 -0.831341597
## X840      0  0.495036672  0.69697444   2.87167874  -0.9347280 -0.831341597
## X841      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X842      0  0.284137074  0.63244961   1.90489650  -0.5195359 -0.831341597
## X843      0  1.184902006  0.28325136   1.32482715  -0.1043438 -0.005212173
## X846      1  0.513371322  0.75995351   2.29160940  -0.1043438 -0.831341597
## X848      0  1.239163633 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X849      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X851      0  1.737322938  2.63904482  -0.99545024  -0.9347280 -0.005212173
## X854      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X855      0  0.823597252  0.99793817   3.64510454  -0.9347280 -0.831341597
## X856      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X857      0  1.239163633 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X858      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X859      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X860      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X862      1  1.239163633 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X863      0  1.637655670 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X864      0  0.831600743  1.16359252   2.87167874  -0.9347280 -0.831341597
## X865      0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X866      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X867      0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X869      1  1.552263693  1.46773946   3.25839164   0.7260405 -0.831341597
## X870      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X871      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X872      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X873      0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X875      0  1.811520606 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X876      0  1.811520606 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X877      0  2.120939599 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1190     1 -0.115977627  0.04803954   1.13147070  -0.1043438 -0.831341597
## X1191     0 -0.603559640 -0.12219740  -1.18880668   0.7260405 -0.831341597
## X1192     0  1.080766715  1.82822307  -0.80209379  -0.9347280  0.820917251
## X1193     0 -0.403319666  0.28325136  -0.02866799  -0.9347280 -0.831341597
## X1194     0  1.675379106  2.11068236  -0.22202444   0.7260405  3.299305521
## X1195     0  0.016880687 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1197     1 -0.610215946  0.04803954  -0.02866799   0.3108484 -0.831341597
## X1198     0  0.563194962 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1199     0  0.611250316  0.82146772  -0.02866799   1.1412327 -0.831341597
## X1200     0  0.769013180  0.42867850  -0.99545024   2.3868091 -0.005212173
## X1201     0  1.574200229  1.74225056   1.32482715   0.3108484 -0.005212173
## X1202     0  2.035474501  2.33314222  -0.02866799   1.5564248  4.125434945
## X1203     0 -0.982753213  0.04803954  -1.18880668  -0.9347280 -0.831341597
## X1204     0  1.270551909  0.99793817   1.90489650  -0.1043438  2.473176098
## X1205     0  0.936481465  0.49840233   1.32482715   0.3108484 -0.005212173
## X1206     0  0.476723028 -1.70965649  -0.80209379  -0.5195359  0.820917251
## X1207     0  0.952788440  1.21665476   1.13147070   0.3108484 -0.831341597
## X1208     0  1.747037108  2.22396656  -0.41538089  -0.1043438  2.473176098
## X1209     0  0.815641020 -1.09071695  -0.02866799  -0.9347280 -0.831341597
## X1210     0  1.623602913  2.43853015  -0.99545024   0.7260405 -0.005212173
## X1212     0  1.038647958  1.56220886   0.16468846  -0.9347280 -0.831341597
## X1213     0  0.952788440  1.21665476   1.13147070   0.7260405 -0.831341597
## X1215     0  1.834687162  2.26079827  -0.41538089  -0.1043438  2.473176098
## X1216     0  0.049093577 -0.03559810   1.71154005  -0.9347280 -0.831341597
## X1217     0  1.269483899  0.88159159   2.29160940   0.3108484 -0.831341597
## X1219     0  0.847285078  1.26871571   1.13147070   1.1412327 -0.831341597
## X1220     0  1.532919242  1.65364219   1.32482715   1.5564248 -0.005212173
## X1221     0 -0.009904078 -0.12219740  -1.18880668   0.7260405 -0.831341597
## X1222     0  0.900780208  1.41929339   1.32482715   0.3108484 -0.005212173
## X1226     0  1.701175131  1.82822307   1.13147070   0.7260405 -0.831341597
## X1228     0  0.907670555  0.56629095   0.16468846   1.1412327 -0.005212173
## X1229     0  1.882368345  2.43853015  -0.22202444   1.1412327  3.299305521
## X1230     1  0.448387506  0.35700394   1.51818360  -0.5195359  0.820917251
## X1231     1  0.026494249  0.42867850   1.13147070   0.3108484 -0.831341597
## X1233     0  1.175127549  1.95260717  -0.80209379  -0.5195359  0.820917251
## X1234     0 -0.294344540  0.12893412   0.93811425  -0.9347280 -0.831341597
## X1236     0  1.327058775  1.87027471  -0.41538089  -0.1043438  1.647046674
## X1237     0  1.214275611 -0.03559810   0.16468846   0.7260405 -0.005212173
## X1239     0  1.095780590  0.56629095  -0.80209379   1.1412327  0.820917251
## X1242     0  0.771569118 -1.70965649  -0.80209379  -0.5195359  0.820917251
## X1244     1  0.098097256 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1245     1 -0.215143211  0.49840233  -0.02866799   1.1412327 -0.831341597
## X1246     0  0.815953602  1.16359252   1.13147070  -0.9347280 -0.005212173
## X1247     1  1.387244764  1.78555525   1.51818360   1.9716169  0.820917251
## X1249     0  1.459034034  1.05428349   0.55140136   1.5564248  1.647046674
## X1250     0  1.413034907  0.12893412  -0.80209379  -0.9347280  0.820917251
## X1251     0  0.812356063 -0.96037479   0.35804491  -0.9347280 -0.831341597
## X1253     0  1.341677499  0.75995351   0.16468846   2.3868091 -0.005212173
## X1254     0  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1255     0  0.137547205  0.42867850   1.90489650  -0.9347280 -0.831341597
## X1256     0  0.304417449  0.82146772   0.93811425  -0.9347280 -0.831341597
## X1257     0  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1259     0  1.560421390  0.56629095  -0.99545024  -0.9347280 -0.005212173
## X1260     0  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1262     1  1.616540792  1.51536781   1.51818360   1.9716169  0.820917251
## X1264     0  1.518473204  0.04803954  -0.80209379  -0.9347280  0.820917251
## X1265     0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1266     0  1.410804929  0.42867850   1.13147070  -0.1043438 -0.831341597
## X1267     0  1.745837809  1.69828720   2.48496584   1.5564248 -0.005212173
## X1268     0  0.737283220  1.56220886  -0.99545024   4.8779619 -0.005212173
## X1273     1  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1274     0  0.620626671  1.60829128  -1.18880668   4.8779619 -0.831341597
## X1275     0  1.471104074  0.42867850  -0.80209379  -0.9347280  0.820917251
## X1276     0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X1277     0  1.239163633 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1278     0  0.382560531  0.63244961   2.09825295  -0.9347280 -0.831341597
## X1279     0  0.495036672  0.69697444   2.87167874  -0.9347280 -0.831341597
## X1281     0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1282     0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1283     0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X1284     0  0.495036672  0.69697444   2.87167874  -0.9347280 -0.831341597
## X1285     0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1288     0  1.971974745 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1299     1  0.703000619  0.69697444   1.51818360  -0.1043438  0.820917251
## X1301     0  0.981923863  1.69828720  -0.80209379  -0.9347280  0.820917251
## X1302     0  0.998810596 -0.50369472  -1.18880668  -0.9347280 -0.831341597
## X1307     0  1.387897880  0.42867850   0.16468846   1.5564248 -0.005212173
## X1309     0  1.410804929  0.42867850   1.13147070  -0.1043438 -0.831341597
## X1310     0  1.712430972  0.20728011  -0.99545024  -0.9347280 -0.005212173
## X447      0  0.427774521 -0.40240913   0.16468846   0.3108484 -0.005212173
## X448      0  1.975155875  1.87027471   0.93811425  -0.1043438  3.299305521
## X451      0 -1.960986946 -0.96037479  -0.99545024  -0.5195359 -0.005212173
## X452      0 -0.455773295 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X453      0 -0.447297107 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X454      0  1.024063318  0.82146772   1.51818360   0.7260405  0.820917251
## X455      0  0.366815837  0.12893412   0.16468846   0.3108484 -0.005212173
## X456      1  0.392161232  0.63244961   0.35804491  -0.1043438  0.820917251
## X458      0  0.922422855  0.63244961   1.51818360   0.7260405  0.820917251
## X459      0 -0.489295914  0.28325136  -0.99545024   1.5564248 -0.005212173
## X460      0 -1.632068261 -0.72058540  -0.99545024  -0.9347280 -0.005212173
## X461      0 -0.289953121 -0.83728034   0.16468846  -0.5195359 -0.005212173
## X462      0 -0.983309595 -0.83728034  -0.22202444  -0.5195359 -0.831341597
## X463      1  0.808360205  1.16359252   1.32482715   1.1412327 -0.005212173
## X464      0  0.243179485 -2.10721958  -1.18880668  -0.9347280 -0.831341597
## X465      0  0.736065616  0.94039386   1.13147070   0.7260405 -0.831341597
## X466      0  0.630729830 -0.12219740   0.35804491  -0.1043438  0.820917251
## X468      0 -0.254497849  0.28325136  -0.99545024   1.9716169 -0.005212173
## X471      0 -0.390166117 -0.12219740   0.16468846  -0.1043438 -0.005212173
## X472      0 -1.089862985 -0.72058540  -1.18880668  -0.1043438 -0.831341597
## X473      0 -1.960986946 -0.83728034  -1.18880668  -0.9347280 -0.831341597
## X476      0  0.071003132  0.12893412   1.13147070  -0.1043438 -0.005212173
## X477      0  0.601744921  0.42867850   0.55140136  -0.5195359  1.647046674
## X478      0 -1.632068261 -0.83728034  -0.80209379   0.3108484  0.820917251
## X479      0 -1.960986946 -0.96037479  -0.99545024  -0.1043438 -0.005212173
## X480      0  0.002838576  0.04803954   1.90489650  -0.9347280 -0.831341597
## X482      0 -0.507220812 -0.72058540  -1.18880668  -0.5195359 -0.831341597
## X483      0 -0.725281754 -1.09071695  -1.18880668  -0.5195359 -0.831341597
## X484      0  0.048980624  0.28325136   1.13147070  -0.5195359 -0.831341597
## X486      0 -0.267476312  0.35700394  -0.99545024   1.9716169 -0.005212173
## X487      0  0.808360205  1.21665476   0.16468846   2.8020012 -0.005212173
## X488      0  0.158871193  0.35700394   0.16468846   1.1412327 -0.005212173
## X489      0  0.667472628 -0.83728034   0.16468846  -0.5195359 -0.005212173
## X490      0  0.948173754  1.16359252   0.16468846   1.1412327 -0.005212173
## X491      0 -1.089862985 -0.72058540  -1.18880668  -0.1043438 -0.831341597
## X492      0  0.566721151  0.75995351  -0.41538089  -0.5195359  2.473176098
## X493      0 -0.267476312  0.35700394  -0.99545024   1.9716169 -0.005212173
## X494      0  0.611681349 -0.72058540   0.16468846  -0.5195359 -0.005212173
## X495      0  1.226628531  1.65364219   1.13147070   0.7260405 -0.005212173
## X496      0 -0.190792410 -0.72058540   0.35804491  -0.9347280  0.820917251
## X497      0 -0.008626296  0.12893412   1.90489650  -0.9347280 -0.831341597
## X498      0 -0.289288562 -0.40240913  -0.02866799  -0.9347280 -0.831341597
## X499      0 -1.098274791 -0.50369472  -0.02866799  -0.9347280 -0.831341597
## X501      0  0.774201646 -0.03559810   0.35804491  -0.5195359  0.820917251
## X502      0 -1.098274791 -0.50369472  -0.02866799  -0.9347280 -0.831341597
## X503      0  1.239546173  1.82822307  -0.02866799  -0.5195359 -0.831341597
## X505      0 -0.123326972 -0.40240913   0.16468846  -0.5195359 -0.005212173
## X506      0  0.800109202  0.56629095   1.51818360   0.3108484  0.820917251
## X507      0  0.995515874  1.10948462   1.13147070   1.1412327 -0.831341597
## X508      0  1.827201901  0.04803954   0.16468846   0.3108484 -0.005212173
## X509      0  1.881712881  1.99292450   0.93811425  -0.1043438  3.299305521
## X510      1  0.433604324  0.04803954   0.55140136  -0.5195359  1.647046674
## X513      0 -0.364519110 -0.72058540  -1.18880668  -0.5195359 -0.831341597
## X514      0  0.823597252  0.63244961   1.32482715   0.3108484  0.820917251
## X515      0 -0.242509175 -0.21200528   0.93811425  -0.9347280 -0.831341597
## X516      0 -0.404021657 -0.03559810   0.16468846   0.3108484 -0.005212173
## X518      0  0.915283282  1.16359252   0.35804491   0.7260405  0.820917251
## X521      0  1.134223355  0.88159159   1.51818360   1.1412327  0.820917251
## X523      1 -0.043759055  0.12893412   0.35804491   0.7260405  0.820917251
## X524      0  0.399810034 -0.12219740   0.16468846  -0.1043438 -0.005212173
## X525      0  0.686767950  0.94039386  -0.41538089  -0.1043438  2.473176098
## X526      0 -0.459952245  0.42867850  -1.18880668   1.9716169 -0.831341597
## X530      1 -0.389468783  0.20728011  -0.02866799   0.3108484 -0.831341597
## X531      0  0.430503397  0.82146772   0.16468846   0.7260405 -0.005212173
## X532      0  0.486632405  0.63244961  -0.02866799   1.1412327 -0.831341597
## X533      0  1.033797758  0.04803954   0.93811425  -0.5195359  3.299305521
## X534      1  0.736309194  0.69697444   0.55140136   1.1412327  1.647046674
## X535      0 -0.421224013 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X536      0  1.024487502  1.46773946   1.13147070   0.3108484 -0.005212173
## X538      0  1.079045894  0.75995351   1.51818360  -0.5195359  0.820917251
## X539      0  1.024487502  1.46773946   1.13147070   0.3108484 -0.005212173
## X542      0  1.445796891  1.91172984  -0.41538089  -0.1043438  2.473176098
## X543      0 -0.832540404 -0.40240913  -1.18880668   0.3108484 -0.831341597
## X544      0  1.881712881  1.99292450   0.93811425  -0.1043438  3.299305521
## X545      0  0.061817968  1.05428349  -1.18880668   2.8020012 -0.831341597
## X546      0 -0.107436062 -2.10721958  -1.18880668  -0.9347280 -0.831341597
## X548      0 -0.404021657 -0.03559810   0.16468846  -0.1043438 -0.005212173
## X549      0  0.436794393 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X551      0  1.271995992 -2.92387959  -1.18880668  -0.9347280 -0.831341597
## X552      0  1.731140385  1.91172984   1.32482715   0.7260405 -0.005212173
## X553      1  0.558159799  0.49840233   0.35804491  -0.1043438  0.820917251
## X554      0  0.605379378  0.42867850   0.16468846   0.7260405 -0.831341597
## X556      1  0.362642398  0.28325136   1.32482715   0.3108484 -0.005212173
## X557      0  1.062383808  1.21665476   0.16468846   1.9716169 -0.005212173
## X558      0 -0.152364404 -0.72058540   0.74475780  -0.9347280 -0.831341597
## X559      0 -1.901900752 -0.72058540  -1.18880668  -0.1043438 -0.831341597
## X560      0 -0.839972199 -0.21200528  -0.02866799  -0.9347280 -0.831341597
## X561      0  0.128651681 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X562      0 -0.839972199 -0.21200528  -0.02866799  -0.5195359 -0.831341597
## X563      1  0.343414497  0.42867850   1.32482715   0.3108484 -0.005212173
## X565      0 -1.581515202 -0.60958681  -0.99545024   0.3108484 -0.005212173
## X566      0 -0.218737027 -0.96037479  -0.02866799  -0.9347280 -0.831341597
## X567      0  1.133955099  0.69697444   0.55140136   0.3108484  1.647046674
## X568      0  0.774201646 -0.40240913   0.16468846  -0.5195359 -0.005212173
## X569      0  0.842661605  0.99793817   0.16468846   1.1412327 -0.005212173
## X571      0  0.418526237 -0.30530231   0.16468846  -0.1043438 -0.005212173
## X572      0  0.687183627  1.10948462   0.16468846   2.8020012 -0.005212173
## X574      0 -1.303931995 -0.40240913  -0.99545024  -0.9347280 -0.005212173
## X576      0  0.922422855  0.63244961   1.51818360   0.7260405  0.820917251
## X577      0  0.232450944  0.28325136   1.13147070  -0.1043438 -0.005212173
## X579      1  0.232450944  0.28325136   1.13147070  -0.1043438 -0.005212173
## X580      0  1.609081003 -0.72058540   0.16468846  -0.5195359 -0.005212173
## X582      0 -0.293545411  0.49840233  -0.99545024   1.9716169 -0.005212173
## X583      0 -0.839972199 -0.21200528  -0.02866799  -0.9347280 -0.831341597
## X584      0  1.289745203  1.74225056   0.35804491  -0.9347280  0.820917251
## X586      0  1.058701570  0.75995351   0.55140136   1.1412327  1.647046674
## X587      0 -0.008626296  0.12893412   1.90489650  -0.9347280 -0.831341597
## X588      0  0.619596479  0.75995351  -0.60873734   0.7260405  1.647046674
## X589      0  1.706734262  2.47286768  -0.99545024   0.7260405 -0.005212173
## X591      0  1.226628531  1.65364219   1.13147070   0.7260405 -0.005212173
## X592      1 -0.839972199 -0.21200528  -0.02866799  -0.1043438 -0.831341597
## X593      0  1.072631922  0.94039386   2.09825295   0.7260405 -0.831341597
## X594      0 -0.267476312  0.35700394  -0.99545024   1.9716169 -0.005212173
## X595      0  0.453788004  0.12893412  -0.80209379   1.1412327  0.820917251
## X596      0  0.847208104  0.88159159   0.55140136   1.1412327  1.647046674
## X597      0  0.915506765  1.31981693   1.32482715   0.3108484 -0.005212173
## X598      0  0.049545329  0.63244961  -0.80209379   2.8020012  0.820917251
## X599      0 -0.839972199 -0.21200528  -0.02866799  -0.9347280 -0.831341597
## X600      0  0.966789467  0.99793817   0.35804491   0.7260405  0.820917251
## X603      0 -0.090698960  0.56629095  -0.99545024   2.3868091 -0.005212173
## X604      0  0.720253413  0.82146772  -0.41538089   1.1412327  2.473176098
## X605      0  1.066475255  1.56220886  -0.41538089  -0.9347280  2.473176098
## X606      1 -0.020037904  0.28325136   0.16468846   1.1412327 -0.005212173
## X608      0  0.563194962 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X609      0  0.686601657  0.35700394   1.51818360   0.3108484  0.820917251
## X611      0 -1.260676413 -0.21200528  -1.18880668  -0.9347280 -0.831341597
## X612      0  0.676599640  0.12893412   0.16468846  -0.1043438 -0.005212173
## X613      0 -0.105975307 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X614      0 -0.732339628 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X616      0 -1.532160955 -0.40240913  -1.18880668  -0.5195359 -0.831341597
## X617      0  0.854891424  1.21665476   1.13147070   1.1412327 -0.005212173
## X619      1  1.771027243  1.26871571   1.90489650   0.3108484  2.473176098
## X620      0  0.016880687 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X621      1  0.353099452  0.35700394   1.32482715  -0.1043438 -0.005212173
## X622      0 -0.706360421 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X623      0  1.205416250  0.69697444   1.51818360  -0.5195359  0.820917251
## X625      0  1.019887558  0.94039386   1.13147070   1.1412327 -0.005212173
## X628      0  1.622913686  2.03269881  -0.41538089  -0.1043438  2.473176098
## X629      0  1.623602913  2.43853015  -0.99545024   0.7260405 -0.005212173
## X630      0  0.816422389  1.31981693   1.13147070   0.7260405 -0.831341597
## X631      0 -1.020552429 -0.21200528  -0.99545024   0.7260405 -0.831341597
## X632      0  0.570417230 -2.10721958  -1.18880668  -0.9347280 -0.831341597
## X633      0  0.676516088  0.12893412   0.16468846   1.1412327 -0.005212173
## X635      0  1.141453232  1.26871571   0.55140136   0.3108484  1.647046674
## X636      0  1.633333725  1.95260717  -0.41538089  -0.1043438  2.473176098
## X637      0  0.967298146  1.60829128  -0.60873734  -0.9347280  1.647046674
## X638      1  0.719516934  0.75995351   1.51818360   0.7260405  0.820917251
## X639      0  0.686601657  0.35700394   1.51818360   0.3108484  0.820917251
## X641      1  1.226307769  1.41929339   1.51818360   1.1412327  0.820917251
## X648      0  1.412917599  1.05428349   1.71154005   0.3108484  1.647046674
## X650      0  0.752403196  0.28325136   1.13147070   0.3108484  0.820917251
## X651      1  1.121037974  1.36999732   1.51818360   1.1412327  0.820917251
## X653      0  1.623602913  2.43853015  -0.99545024   0.7260405 -0.005212173
## X654      0  1.017548306  1.51536781   0.16468846   3.6323855 -0.005212173
## X655      1 -0.610215946  0.04803954  -0.02866799  -0.1043438 -0.831341597
## X656      0 -0.211043577 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X657      0  0.430503397  0.82146772   0.16468846   1.9716169 -0.005212173
## X1082     0 -1.089862985 -0.72058540  -1.18880668  -0.5195359 -0.831341597
## X1083     1  0.201609653  0.49840233   1.13147070   0.3108484 -0.831341597
## X1084     0 -0.293545411  0.56629095  -1.18880668  -0.5195359 -0.831341597
## X1086     1 -0.284112271 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1088     0  0.366912794  0.12893412   0.16468846  -0.1043438 -0.005212173
## X1089     0  0.094121874  0.56629095   0.74475780   0.3108484 -0.831341597
## X1090     0  0.014240641  0.04803954   0.16468846   0.3108484 -0.005212173
## X1091     0  0.159406860  0.63244961  -0.02866799   1.1412327 -0.831341597
## X1092     0 -0.489295914  0.28325136  -0.99545024   1.5564248 -0.005212173
## X1093     0  0.188446950 -0.60958681  -0.80209379  -0.9347280  0.820917251
## X1094     0 -0.580658068 -0.50369472   0.16468846  -0.5195359 -0.005212173
## X1095     0 -0.419242736 -0.60958681   0.35804491  -0.9347280  0.820917251
## X1097     0 -1.089862985 -0.72058540  -1.18880668  -0.1043438 -0.831341597
## X1098     0  0.784301940  1.05428349  -0.41538089  -0.1043438  2.473176098
## X1101     0  1.559218908  0.42867850   0.74475780  -0.5195359  2.473176098
## X1103     0  1.065435819  0.94039386   0.74475780  -0.9347280  2.473176098
## X1104     0  0.678353466  0.42867850   1.51818360   0.3108484  0.820917251
## X1105     0 -0.190792410 -0.72058540   0.35804491  -0.9347280  0.820917251
## X1106     0 -0.688575293  0.28325136  -1.18880668   1.5564248 -0.831341597
## X1108     0 -1.098274791 -0.50369472  -0.02866799  -0.9347280 -0.831341597
## X1110     1  0.260904394 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1112     0  0.800109202  0.56629095   1.51818360   0.3108484  0.820917251
## X1113     0  0.495127837  0.75995351   1.13147070  -0.1043438 -0.831341597
## X1115     1  0.343414497  0.42867850   1.32482715   0.3108484 -0.005212173
## X1116     0  0.184958063  0.20728011   0.16468846  -0.1043438 -0.005212173
## X1117     0 -0.362866384 -0.30530231   0.16468846  -0.1043438 -0.005212173
## X1119     0  0.729152370 -0.40240913   0.16468846   0.3108484 -0.005212173
## X1120     0  1.457427050  1.99292450  -0.60873734  -0.1043438  1.647046674
## X1121     0  1.086675495  1.16359252   0.55140136   0.3108484  1.647046674
## X1122     0  1.525264217  2.03269881  -0.41538089  -0.1043438  2.473176098
## X1124     0 -0.092028152 -0.12219740   0.55140136  -0.9347280  1.647046674
## X1125     0  0.083816857 -2.10721958  -1.18880668  -0.9347280 -0.831341597
## X1126     0 -0.421224013 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1127     0 -0.875243942 -0.30530231  -0.02866799  -0.9347280 -0.831341597
## X1128     0  0.361087352 -0.40240913   0.16468846  -0.5195359 -0.005212173
## X1129     0 -0.732339628 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X1130     0  0.594543822 -0.50369472   0.16468846  -0.1043438 -0.005212173
## X1131     0 -1.581515202 -0.50369472  -1.18880668  -0.9347280 -0.831341597
## X1133     1  0.813999190  0.04803954   0.55140136  -0.5195359  1.647046674
## X1135     0 -0.489295914  0.28325136  -0.99545024   1.9716169 -0.005212173
## X1136     0 -0.105975307 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X1138     0  2.722777775  3.22789945   0.16468846   0.3108484  4.951564368
## X1139     0  1.445796891  1.91172984  -0.41538089  -0.1043438  2.473176098
## X1141     0 -1.581515202 -0.60958681  -0.99545024  -0.1043438 -0.005212173
## X1142     0 -0.421224013 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1143     1  1.213307444  1.31981693   1.71154005   1.1412327  1.647046674
## X1144     0  0.959436086  1.31981693   0.16468846  -0.9347280 -0.005212173
## X1145     0  0.991282387  0.56629095   0.55140136  -0.1043438  1.647046674
## X1146     0 -0.078774283  0.49840233  -0.99545024   2.3868091 -0.005212173
## X1147     0  0.254569455  0.69697444  -0.99545024   1.9716169 -0.005212173
## X1149     0  0.357292051  0.20728011   0.16468846   0.3108484 -0.005212173
## X1150     0 -0.090698960  0.56629095  -0.99545024   2.3868091 -0.005212173
## X1151     0  0.373978500  0.82146772  -0.99545024   0.7260405 -0.005212173
## X1152     0  0.959436086  1.21665476   0.55140136   0.3108484  1.647046674
## X1153     0  2.401813942 -1.53694587  -0.22202444  -0.9347280 -0.831341597
## X1156     0  0.072232210  0.75995351  -0.99545024   2.8020012 -0.005212173
## X1158     0  0.980480348  0.82146772   1.32482715  -0.5195359 -0.005212173
## X1159     0  0.381694291  0.20728011   1.13147070  -0.5195359  0.820917251
## X1160     0  1.705409579  1.56220886   2.09825295   1.1412327  3.299305521
##         NumCarbon NumNitrogen  NumOxygen  NumSulfer NumChlorine NumHalogen
## X661   0.85821946   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X662   1.80408084   1.8438701 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X663   0.70131917  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X665   0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X668  -0.01199386   3.5299475 -0.9103405 -0.3360145   0.3168966  0.2049221
## X669   0.18177643   0.1577927 -0.3320280  1.7123815   1.0310404  0.8839497
## X670   1.29203392   2.6869088 -0.9103405 -0.3360145   1.0310404  0.8839497
## X671   0.53699786  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X672   1.92274051  -0.6852460  1.4029096 -0.3360145  -0.3972472  0.2049221
## X673   0.85821946   1.0008314 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X674   0.85821946  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X676   1.55615914  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X677   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X678   0.18177643  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X679   0.36423857  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X682   0.85821946  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X683   0.70131917   2.6869088  0.8245970  1.7123815  -0.3972472 -0.4741055
## X684   1.80408084   1.8438701 -0.3320280  1.7123815   0.3168966  0.2049221
## X685   1.55615914  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X686   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X688   1.00853037  -0.6852460  0.8245970 -0.3360145   0.3168966  0.2049221
## X689   1.55615914   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X690   1.29203392   0.1577927  0.2462845 -0.3360145   0.3168966  0.2049221
## X691   0.18177643   2.6869088  0.2462845 -0.3360145   3.8876154  3.6000599
## X692   0.85821946   0.1577927  1.4029096  5.8091734  -0.3972472 -0.4741055
## X693   0.85821946   1.0008314  0.8245970  1.7123815  -0.3972472 -0.4741055
## X695   1.55615914   1.0008314 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X696   0.70131917   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X698   1.15294194   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X699  -0.44251753   0.1577927 -0.9103405 -0.3360145   1.0310404  0.8839497
## X700  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X702  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X703  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X704   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X706   1.00853037  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X708   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X709  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X711   2.15069776  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X712   1.42629884  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X713   0.85821946   0.1577927  0.2462845 -0.3360145  -0.3972472  1.5629772
## X714   2.03820634  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X715   0.36423857   0.1577927  0.2462845 -0.3360145   1.0310404  0.8839497
## X717   0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X718   1.68198027   1.8438701 -0.9103405  1.7123815   0.3168966  0.2049221
## X721  -0.01199386   3.5299475 -0.9103405 -0.3360145   0.3168966  0.2049221
## X722   1.55615914   0.1577927 -0.3320280 -0.3360145  -0.3972472  1.5629772
## X723  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X724   0.53699786   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X726   0.53699786  -0.6852460  0.2462845 -0.3360145   1.7451841  1.5629772
## X728   1.00853037  -0.6852460  0.2462845 -0.3360145  -0.3972472  0.2049221
## X729  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  1.5629772
## X731  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X732   0.53699786  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X733  -0.44251753   3.5299475 -0.9103405 -0.3360145   0.3168966  0.2049221
## X734  -0.68595798  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X735   1.68198027  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X736   0.85821946   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X737   0.36423857   0.1577927 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X739   1.29203392  -0.6852460  2.5595346 -0.3360145   0.3168966  0.2049221
## X740   1.55615914   0.1577927  1.4029096 -0.3360145   0.3168966  0.2049221
## X741   0.53699786  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X742   0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X743  -0.68595798  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X744   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X746   1.15294194  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X747   0.53699786  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X749   2.03820634   1.8438701  0.2462845  1.7123815   0.3168966  0.2049221
## X752   2.47218708  -0.6852460  2.5595346 -0.3360145  -0.3972472  0.2049221
## X753  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X754   1.55615914   1.0008314 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X755   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X757  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X758   0.85821946  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X759   0.18177643   1.0008314 -0.9103405  7.8575693  -0.3972472 -0.4741055
## X760   0.53699786  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X761   2.15069776  -0.6852460  2.5595346 -0.3360145  -0.3972472  0.2049221
## X762   0.70131917  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X763   0.53699786   1.0008314 -0.9103405 -0.3360145   1.0310404  0.8839497
## X764   0.70131917  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X765   1.29203392  -0.6852460  0.8245970 -0.3360145  -0.3972472  0.8839497
## X767   2.03820634  -0.6852460  1.4029096 -0.3360145   0.3168966  0.2049221
## X768   0.53699786   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X770   1.29203392   1.0008314 -0.9103405  1.7123815   0.3168966  0.2049221
## X771   0.53699786   0.1577927  0.8245970 -0.3360145   1.7451841  1.5629772
## X772  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  1.5629772
## X773  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X774  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X775   1.15294194  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X776   2.03820634   1.8438701  1.9812221  1.7123815   0.3168966  0.2049221
## X777   0.53699786  -0.6852460 -0.3320280  5.8091734  -0.3972472 -0.4741055
## X778   2.36752103   0.1577927  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X779   0.85821946   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X780  -0.95516548  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X781   1.55615914  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X782   0.85821946  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X784   1.00853037   0.1577927  1.4029096 -0.3360145  -0.3972472  1.5629772
## X786  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X787   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X788   2.03820634  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X789   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X791   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X792   1.42629884   1.0008314 -0.9103405  1.7123815  -0.3972472  1.5629772
## X794   0.85821946  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X798   1.42629884   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X799   0.18177643   0.1577927  0.2462845  1.7123815   2.4593279  2.2420048
## X800   1.55615914  -0.6852460 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X804   1.55615914   1.8438701 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X805   2.47218708  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X807  -0.01199386  -0.6852460  1.4029096  7.8575693  -0.3972472 -0.4741055
## X808   1.80408084   0.1577927  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X809   1.55615914  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X810   0.18177643  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X813   1.42629884  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X814   1.00853037   1.0008314  0.8245970 -0.3360145   1.0310404  0.8839497
## X818   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X819   0.85821946   1.0008314  0.2462845 -0.3360145   0.3168966  1.5629772
## X820   0.85821946  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X821   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X822   1.15294194  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X823   1.42629884   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X827   0.53699786  -0.6852460 -0.3320280 -0.3360145   3.8876154  3.6000599
## X828   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X829   0.85821946   0.1577927  1.4029096  3.7607774   0.3168966  0.2049221
## X831   0.85821946  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X832   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X833   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X834   0.85821946  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X835   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X836   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X839   1.29203392  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X840   1.42629884  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X841   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X842   1.15294194  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X843   0.85821946  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X846   1.42629884  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X848   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X849   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X851   2.47218708  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X854   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X855   1.68198027   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X856   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X857   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X858   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X859   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X860   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X862   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X863   0.53699786  -0.6852460 -0.9103405 -0.3360145   4.6017592  4.2790875
## X864   1.80408084  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X865   1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X866   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X867   1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X869   1.92274051   1.8438701 -0.9103405 -0.3360145  -0.3972472  1.5629772
## X870   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X871   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X872   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X873   1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X875   0.53699786  -0.6852460 -0.9103405 -0.3360145   5.3159030  4.9581151
## X876   0.53699786  -0.6852460 -0.9103405 -0.3360145   5.3159030  4.9581151
## X877   0.53699786  -0.6852460 -0.9103405 -0.3360145   6.7441905  6.3161702
## X1190  0.53699786  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1191 -0.44251753  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1192  1.68198027  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1193  0.36423857  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1194  2.03820634  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1195 -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X1197  0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1198 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.8839497
## X1199  0.18177643   3.5299475 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1200 -0.44251753  -0.6852460  0.2462845  5.8091734  -0.3972472 -0.4741055
## X1201  1.80408084   0.1577927  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1202  2.26041072  -0.6852460  3.7161597 -0.3360145  -0.3972472  0.2049221
## X1203 -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1204  1.00853037   1.8438701  1.4029096  1.7123815  -0.3972472 -0.4741055
## X1205  0.70131917   1.0008314  0.2462845 -0.3360145  -0.3972472  1.5629772
## X1206 -1.25901822  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X1207  1.29203392   1.0008314 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1208  2.15069776  -0.6852460  1.4029096  1.7123815  -0.3972472 -0.4741055
## X1209 -0.68595798  -0.6852460 -0.3320280 -0.3360145   3.1734717  2.9210324
## X1210  2.15069776  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X1212  1.68198027  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1213  1.29203392   1.0008314 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1215  2.15069776  -0.6852460  2.5595346 -0.3360145  -0.3972472  0.2049221
## X1216  0.53699786  -0.6852460 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1217  1.29203392   1.0008314 -0.3320280 -0.3360145   1.0310404  0.8839497
## X1219  1.42629884  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1220  1.80408084   0.1577927  0.2462845 -0.3360145   0.3168966  0.8839497
## X1221 -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X1222  1.68198027   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1226  1.80408084   1.8438701 -0.9103405  1.7123815  -0.3972472  1.5629772
## X1228  0.18177643  -0.6852460  0.8245970  3.7607774  -0.3972472 -0.4741055
## X1229  2.36752103  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1230  0.85821946   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1231  0.85821946  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1233  1.80408084  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1234  0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1236  1.92274051  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1237 -0.44251753   0.1577927  0.8245970  1.7123815   1.7451841  1.5629772
## X1239  0.18177643   0.1577927 -0.3320280  1.7123815   1.7451841  1.5629772
## X1242 -1.25901822  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1244  0.53699786  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1245  0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1246  1.42629884  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1247  2.03820634  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1249  0.85821946  -0.6852460  1.9812221  1.7123815   0.3168966  0.2049221
## X1250  0.18177643  -0.6852460 -0.3320280 -0.3360145   3.8876154  3.6000599
## X1251 -0.21915966   1.0008314 -0.9103405 -0.3360145   2.4593279  2.2420048
## X1253  0.36423857  -0.6852460  0.2462845  5.8091734   0.3168966  0.2049221
## X1254  0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X1255  1.00853037  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1256  1.15294194  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1257  0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X1259  0.53699786  -0.6852460 -0.3320280 -0.3360145   3.8876154  3.6000599
## X1260  0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X1262  1.80408084  -0.6852460  0.8245970 -0.3360145   1.0310404  0.8839497
## X1264  0.18177643  -0.6852460 -0.9103405 -0.3360145   4.6017592  4.2790875
## X1265  0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X1266  0.85821946  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X1267  1.80408084  -0.6852460  3.1378471 -0.3360145  -0.3972472 -0.4741055
## X1268  1.15294194  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1273  0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X1274  1.15294194  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1275  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1276  1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1277  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X1278  1.29203392  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1279  1.42629884  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1281  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1282  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1283  1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1284  1.42629884  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1285  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1288  0.53699786  -0.6852460 -0.9103405 -0.3360145   6.0300467  5.6371426
## X1299  1.00853037   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1301  1.55615914  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1302 -0.68595798  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1307 -0.01199386   0.1577927  0.8245970  1.7123815   1.7451841  1.5629772
## X1309  0.85821946  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X1310  0.18177643  -0.6852460 -0.9103405 -0.3360145   5.3159030  4.9581151
## X447  -0.21915966  -0.6852460  0.8245970 -0.3360145   1.0310404  0.8839497
## X448   1.80408084   1.0008314  3.7161597 -0.3360145   0.3168966  0.2049221
## X451  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X452  -0.44251753  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.8839497
## X453  -0.01199386   0.1577927 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X454   0.53699786   2.6869088  0.8245970  1.7123815  -0.3972472 -0.4741055
## X455   0.18177643  -0.6852460  0.8245970 -0.3360145   0.3168966  0.2049221
## X456   0.70131917   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X458   0.36423857   2.6869088  0.8245970  1.7123815  -0.3972472 -0.4741055
## X459  -0.01199386  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X460  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X461  -0.44251753  -0.6852460  0.2462845 -0.3360145   0.3168966  0.2049221
## X462  -0.68595798  -0.6852460 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X463   1.29203392   1.8438701 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X464  -2.04708364  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X465   1.00853037   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X466  -0.01199386   0.1577927  0.8245970  1.7123815   0.3168966  0.2049221
## X468  -0.21915966   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X471  -0.01199386   0.1577927 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X472  -0.95516548  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X473  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X476   0.53699786  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X477   0.18177643   1.0008314  0.8245970  1.7123815  -0.3972472 -0.4741055
## X478  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X479  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X480   0.53699786   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X482  -0.95516548  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X483  -1.25901822  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X484   0.53699786   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X486  -0.01199386  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X487   1.00853037   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X488   0.36423857  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X489  -0.44251753  -0.6852460  0.2462845 -0.3360145  -0.3972472  0.2049221
## X490   1.00853037   0.1577927  0.2462845 -0.3360145   0.3168966  0.2049221
## X491  -0.95516548  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X492   0.53699786   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X493  -0.01199386  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X494  -0.68595798   1.0008314  0.2462845 -0.3360145   1.7451841  1.5629772
## X495   1.68198027   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X496  -0.68595798   2.6869088 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X497   0.70131917   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X498  -0.21915966  -0.6852460 -0.3320280 -0.3360145   0.3168966  0.2049221
## X499  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X501  -0.01199386   1.0008314  0.8245970 -0.3360145   1.0310404  0.8839497
## X502  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X503   1.68198027   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X505  -0.21915966   0.1577927 -0.3320280 -0.3360145   0.3168966  0.2049221
## X506   0.36423857   2.6869088  0.2462845  1.7123815  -0.3972472 -0.4741055
## X507   0.85821946   2.6869088  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X508  -0.01199386   0.1577927  0.8245970 -0.3360145  -0.3972472  0.8839497
## X509   1.92274051   1.0008314  3.7161597 -0.3360145  -0.3972472 -0.4741055
## X510   0.18177643   1.8438701 -0.3320280 -0.3360145   0.3168966  0.2049221
## X513  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X514   0.36423857   1.8438701  0.8245970  1.7123815  -0.3972472 -0.4741055
## X515   0.18177643  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X516   0.18177643  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X518   0.85821946   1.8438701  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X521   0.53699786   2.6869088  1.4029096  1.7123815  -0.3972472 -0.4741055
## X523   0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X524  -0.01199386   0.1577927 -0.3320280 -0.3360145   1.0310404  0.8839497
## X525   0.70131917   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X526  -0.01199386  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X530   0.18177643   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X531   0.70131917   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X532  -0.01199386   3.5299475 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X533  -0.44251753   1.8438701  1.4029096  3.7607774   0.3168966  0.2049221
## X534   0.36423857   1.0008314  0.8245970  1.7123815  -0.3972472 -0.4741055
## X535  -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X536   1.55615914   1.0008314 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X538   1.00853037  -0.6852460  3.1378471 -0.3360145  -0.3972472 -0.4741055
## X539   1.55615914   1.0008314 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X542   1.80408084  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X543  -0.68595798  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X544   1.92274051   1.0008314  3.7161597 -0.3360145  -0.3972472 -0.4741055
## X545   0.53699786   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X546  -2.04708364  -0.6852460 -0.9103405 -0.3360145   1.0310404  3.6000599
## X548   0.18177643  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X549  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.8839497
## X551  -2.64432555  -0.6852460 -0.9103405 -0.3360145  -0.3972472  2.2420048
## X552   1.92274051   0.1577927  3.1378471 -0.3360145  -0.3972472 -0.4741055
## X553   0.53699786   0.1577927  0.2462845  1.7123815  -0.3972472 -0.4741055
## X554  -0.01199386   4.3729862 -0.9103405 -0.3360145   0.3168966  0.2049221
## X556   0.70131917  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X557   0.85821946   1.8438701  0.2462845 -0.3360145   0.3168966  0.2049221
## X558  -0.44251753   0.1577927 -0.9103405  3.7607774  -0.3972472 -0.4741055
## X559  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X560  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X561  -0.68595798  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.8839497
## X562  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X563   0.85821946  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X565  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X566  -0.68595798   0.1577927 -0.9103405 -0.3360145   1.0310404  0.8839497
## X567   0.36423857   1.0008314  0.8245970  1.7123815  -0.3972472  1.5629772
## X568  -0.21915966   0.1577927 -0.3320280 -0.3360145  -0.3972472  0.2049221
## X569   0.85821946   0.1577927  0.2462845 -0.3360145   0.3168966  0.2049221
## X571  -0.21915966   0.1577927  0.2462845 -0.3360145   1.0310404  0.8839497
## X572   0.85821946   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X574  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X576   0.36423857   2.6869088  0.8245970  1.7123815  -0.3972472 -0.4741055
## X577   0.53699786   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X579   0.53699786   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X580  -0.44251753  -0.6852460  0.8245970 -0.3360145  -0.3972472  0.8839497
## X582   0.18177643  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X583  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X584   1.80408084   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X586   0.53699786   0.1577927  1.4029096  1.7123815  -0.3972472 -0.4741055
## X587   0.70131917   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X588   0.36423857   1.0008314  0.2462845  1.7123815  -0.3972472 -0.4741055
## X589   2.15069776  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X591   1.68198027   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X592  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X593   1.15294194   1.8438701 -0.3320280 -0.3360145  -0.3972472  0.8839497
## X594  -0.01199386  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X595  -0.21915966   0.1577927 -0.9103405  3.7607774   0.3168966  0.2049221
## X596   0.53699786   1.0008314  0.8245970  1.7123815  -0.3972472 -0.4741055
## X597   1.55615914   0.1577927 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X598   0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X599  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X600   0.70131917  -0.6852460  1.9812221  1.7123815  -0.3972472 -0.4741055
## X603   0.18177643  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X604   0.53699786   1.0008314  0.2462845  1.7123815  -0.3972472 -0.4741055
## X605   1.55615914  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X606   0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X608  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.8839497
## X609   0.18177643   2.6869088  0.2462845  1.7123815  -0.3972472 -0.4741055
## X611  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X612  -0.01199386   1.0008314  0.2462845 -0.3360145   1.0310404  0.8839497
## X613  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X614  -0.44251753  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X616  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X617   1.29203392   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X619   1.00853037   1.8438701  1.4029096  3.7607774  -0.3972472  1.5629772
## X620  -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X621   0.70131917   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X622   0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X623   1.00853037   1.0008314  0.2462845 -0.3360145   1.0310404  0.8839497
## X625   0.85821946   1.8438701  0.2462845 -0.3360145   0.3168966  0.2049221
## X628   1.92274051  -0.6852460  1.9812221 -0.3360145  -0.3972472  0.2049221
## X629   2.15069776  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X630   1.42629884   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X631  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X632  -2.04708364  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X633   0.18177643  -0.6852460  0.8245970 -0.3360145   1.0310404  0.8839497
## X635   0.85821946   1.8438701  0.8245970  1.7123815  -0.3972472 -0.4741055
## X636   1.80408084  -0.6852460  2.5595346 -0.3360145  -0.3972472  0.2049221
## X637   1.55615914  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X638   1.15294194  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X639   0.18177643   2.6869088  0.2462845  1.7123815  -0.3972472 -0.4741055
## X641   1.55615914   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X648   1.00853037   1.0008314  1.4029096  1.7123815   0.3168966  0.2049221
## X650  -0.01199386   1.0008314  0.8245970  3.7607774  -0.3972472 -0.4741055
## X651   1.55615914   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X653   2.15069776  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X654   1.29203392   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X655   0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X656   0.18177643  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X657   0.70131917   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1082 -0.95516548  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1083  0.85821946  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1084  0.18177643  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1086 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X1088 -0.01199386   1.0008314  0.2462845 -0.3360145   0.3168966  0.2049221
## X1089  0.53699786   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1090 -0.01199386   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1091  0.53699786  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1092 -0.01199386  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1093 -0.95516548   1.0008314  0.2462845 -0.3360145   1.0310404  0.8839497
## X1094 -0.21915966  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1095 -0.21915966   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1097 -0.95516548  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1098  0.85821946   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1101 -0.21915966   1.8438701  1.4029096  3.7607774   1.7451841  1.5629772
## X1103  1.15294194  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1104  0.36423857   1.8438701  0.2462845  1.7123815  -0.3972472 -0.4741055
## X1105 -0.68595798   2.6869088 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1106 -0.21915966   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1108 -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1110 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X1112  0.36423857   2.6869088  0.2462845  1.7123815  -0.3972472 -0.4741055
## X1113  1.00853037  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1115  0.85821946  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1116  0.18177643   1.0008314 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1117 -0.21915966   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1119 -0.21915966  -0.6852460  0.8245970 -0.3360145   1.7451841  1.5629772
## X1120  1.80408084  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X1121  0.85821946   3.5299475  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1122  1.92274051  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X1124  0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1125 -2.04708364  -0.6852460 -0.9103405 -0.3360145   1.7451841  3.6000599
## X1126 -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X1127 -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1128 -0.21915966   0.1577927 -0.3320280 -0.3360145  -0.3972472  0.2049221
## X1129 -0.44251753  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1130 -0.21915966  -0.6852460  0.2462845 -0.3360145   1.7451841  1.5629772
## X1131 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1133  0.18177643   1.8438701 -0.3320280 -0.3360145  -0.3972472  0.2049221
## X1135 -0.01199386  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1136 -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X1138  3.05604172   0.1577927  6.6077223 -0.3360145  -0.3972472 -0.4741055
## X1139  1.80408084  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X1141 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1142 -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X1143  1.55615914   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1144  1.29203392   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1145  0.18177643   1.8438701  0.8245970  1.7123815   0.3168966  0.2049221
## X1146 -0.01199386   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1147  0.18177643   0.1577927 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X1149  0.18177643   0.1577927  0.2462845 -0.3360145   0.3168966  0.2049221
## X1150  0.18177643  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1151  0.36423857   0.1577927 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X1152  1.29203392   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1153 -1.25901822   0.1577927 -0.9103405 -0.3360145  -0.3972472  2.2420048
## X1156  0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1158  1.00853037  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1159  0.53699786  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X1160  1.92274051  -0.6852460  3.7161597 -0.3360145  -0.3972472 -0.4741055
##         NumRings HydrophilicFactor SurfaceArea1 SurfaceArea2
## X661   1.2306033      -0.741919037 -0.302617991 -0.379138448
## X662   2.0005400      -0.310306393  0.445784255  1.054350614
## X663  -0.3092700      -0.274782719  0.023833878 -0.076964725
## X665  -0.3092700      -0.834280591 -1.033167401 -1.055357076
## X668  -0.3092700      -0.042990743  0.495375467  0.359508432
## X669  -1.0792067      -0.559860206 -0.457625954  0.141009550
## X670   2.0005400      -0.629131371  0.187343191  0.074384441
## X671  -1.0792067      -0.723269108 -0.287882317 -0.365498662
## X672   2.0005400       0.190577416  1.080835157  0.901427627
## X673   0.4606666       0.331784022  0.132367790  0.023497546
## X674   0.4606666      -0.698402536  0.418013175  0.287899555
## X676   2.0005400      -0.365368089  0.023833878 -0.076964725
## X677   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X678   0.4606666      -0.760568966 -1.033167401 -1.055357076
## X679  -0.3092700      -0.838721050 -1.033167401 -1.055357076
## X682   0.4606666      -0.260573249  0.285392103  0.165141479
## X683  -0.3092700      -0.115814276  1.359112705  1.378820142
## X684   2.0005400      -0.288992189 -0.136558273  0.515316758
## X685   2.0005400      -0.365368089  0.023833878 -0.076964725
## X686   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X688   1.2306033      -0.249028055  0.285392103  0.165141479
## X689   1.2306033      -0.773002252 -0.849538224 -0.885384357
## X690  -0.3092700      -0.689521618 -0.196067728 -0.280512302
## X691  -0.3092700       0.566240273  0.799723825  0.641222476
## X692  -0.3092700      -0.119366643  0.798306933  2.622401413
## X693   0.4606666       0.382405258  1.099821507  1.138812367
## X695   1.2306033      -0.705507271 -0.540089056  0.141796461
## X696   1.2306033       0.343329216  0.069457794 -0.034733848
## X698  -0.3092700      -0.295208832  0.053021849 -0.049947456
## X699  -0.3092700      -0.578510135 -0.359010285 -0.431336861
## X700  -1.0792067      -0.828952040 -1.033167401 -1.055357076
## X702  -1.0792067      -0.812966386 -1.033167401 -1.055357076
## X703  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X704   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X706   0.4606666      -0.708171547  0.084476847 -0.020831759
## X708   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X709  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X711   2.0005400       1.404598989  1.743657139  1.514955700
## X712   0.4606666       0.207451161  0.113381439  0.005923206
## X713   0.4606666       0.382405258  0.364738044  0.238586482
## X714   2.0005400       0.190577416  1.826120241  1.591286041
## X715  -0.3092700      -0.130911837  0.053021849 -0.049947456
## X717   0.4606666      -0.760568966 -1.033167401 -1.055357076
## X718   2.0005400      -0.683304975 -0.709832693 -0.015323383
## X721  -0.3092700       0.574233100  0.744465045  0.590073278
## X722   1.2306033      -0.676200240 -0.409735011 -0.478289201
## X723  -1.0792067      -0.821847305 -1.033167401 -1.055357076
## X724   0.4606666      -0.723269108 -0.332656097 -0.406942628
## X726   0.4606666      -0.157554593 -0.198334755 -0.282610731
## X728   0.4606666      -0.278335086  0.023833878 -0.076964725
## X729  -0.3092700      -0.546538828 -1.033167401 -1.055357076
## X731  -1.0792067      -0.812966386 -1.033167401 -1.055357076
## X732   0.4606666      -0.778330804 -1.033167401 -1.055357076
## X733  -0.3092700       0.687908858  0.744465045  0.590073278
## X734  -0.3092700      -0.493253316 -1.033167401 -1.055357076
## X735   2.0005400      -0.376025191  0.023833878 -0.076964725
## X736  -0.3092700       0.331784022  0.449468173  0.317015252
## X737   0.4606666      -0.711723914 -0.682911749  0.110582335
## X739   1.2306033      -0.602488615  0.980519218  0.808572160
## X740   1.2306033      -0.263237525  0.908824493  0.742209354
## X741  -1.0792067      -0.252580422  0.023833878 -0.076964725
## X742  -1.0792067      -0.711723914 -0.287882317 -0.365498662
## X743  -0.3092700      -0.493253316 -1.033167401 -1.055357076
## X744   1.2306033      -0.842273418 -1.033167401 -1.055357076
## X746  -0.3092700      -0.680640699  0.457402767  0.324359752
## X747  -1.0792067      -0.294320740 -0.459892981 -0.524716935
## X749   2.0005400      -0.655774127  0.035452391  0.674535031
## X752   2.0005400       0.148837099  1.826120241  1.591286041
## X753  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X754   2.0005400      -0.737478578 -0.801647282 -0.100309743
## X755   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X757  -1.0792067      -0.717052465 -1.033167401 -1.055357076
## X758   0.4606666      -0.791652182 -0.771609176 -0.813250873
## X759  -1.0792067      -0.525224623 -0.849538224  2.125336130
## X760   0.4606666      -0.778330804 -1.033167401 -1.055357076
## X761   2.0005400       0.189689324  1.826120241  1.591286041
## X762   1.2306033      -0.844937693 -1.033167401 -1.055357076
## X763   0.4606666       1.916139901  0.441533579  0.309670752
## X764   0.4606666      -0.844937693 -1.033167401 -1.055357076
## X765   0.4606666      -0.257020882  0.285392103  0.165141479
## X767   2.0005400      -0.703731087  0.679571401  0.530005758
## X768   1.2306033      -0.294320740 -0.585712972 -0.641179724
## X770   1.2306033      -0.689521618 -0.801647282 -0.100309743
## X771   0.4606666      -0.111373817  0.758917341  0.603450761
## X772  -0.3092700      -0.546538828 -1.033167401 -1.055357076
## X773  -1.0792067      -0.828952040 -1.033167401 -1.055357076
## X774  -1.0792067      -0.734814302 -1.033167401 -1.055357076
## X775   0.4606666      -0.295208832  0.507560737  0.370787486
## X776   1.2306033       0.810465534  2.186010757  2.144221987
## X777  -1.0792067      -0.596271972 -0.549440542  1.640599114
## X778   2.0005400       2.044025128  2.568288163  2.278259116
## X779   1.2306033       0.285603245 -0.295816911 -0.372843162
## X780  -0.3092700      -0.371584732 -1.033167401 -1.055357076
## X781  -1.0792067      -0.737478578 -0.026324091 -0.123392458
## X782   1.2306033      -0.741919037 -0.065713683 -0.159852656
## X784   0.4606666       1.712766865  1.596017014  1.378295535
## X786  -1.0792067      -0.821847305 -1.033167401 -1.055357076
## X787   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X788   2.0005400      -0.788987906 -0.065713683 -0.159852656
## X789   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X791   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X792   1.2306033      -0.638900382 -0.801647282 -0.100309743
## X794  -1.0792067      -0.294320740  0.023833878 -0.076964725
## X798   2.0005400      -0.768561793 -0.302617991 -0.379138448
## X799   0.4606666      -0.465722469  0.026100905  0.588761760
## X800   2.7704767      -0.365368089 -0.459892981  0.138911121
## X804   0.4606666      -0.737478578 -0.240841509 -0.321956268
## X805   2.0005400       0.135515721  1.826120241  1.591286041
## X807  -1.0792067      -0.395563212  0.013065500  3.438427849
## X808   1.2306033      -0.310306393  0.908824493  0.742209354
## X809   0.4606666      -0.705507271  0.457402767  0.324359752
## X810   1.2306033      -0.525224623 -1.033167401 -1.055357076
## X813  -1.0792067      -0.353822894  0.023833878 -0.076964725
## X814   0.4606666      -0.578510135  0.589457083  0.446593220
## X818   0.4606666      -0.675312148 -1.033167401 -1.055357076
## X819   0.4606666       0.395726636  0.616094648  0.471249757
## X820  -1.0792067      -0.332508690 -0.459892981 -0.524716935
## X821   0.4606666      -0.675312148 -1.033167401 -1.055357076
## X822   2.0005400      -0.851154336 -1.033167401 -1.055357076
## X823   2.0005400       0.183472681 -0.295816911 -0.372843162
## X827   2.7704767      -0.533217450 -0.678094317 -0.726690691
## X828   0.4606666      -0.675312148 -1.033167401 -1.055357076
## X829   0.4606666      -0.515455613  0.597108298  2.216355472
## X831   0.4606666      -0.659326494 -1.033167401 -1.055357076
## X832   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X833   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X834   0.4606666      -0.659326494 -1.033167401 -1.055357076
## X835   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X836   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X839   2.0005400      -0.852042428 -1.033167401 -1.055357076
## X840   2.0005400      -0.853818612 -1.033167401 -1.055357076
## X841   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X842   1.2306033      -0.851154336 -1.033167401 -1.055357076
## X843   0.4606666      -0.659326494 -1.033167401 -1.055357076
## X846   1.2306033      -0.853818612 -1.033167401 -1.055357076
## X848   0.4606666      -0.596271972 -1.033167401 -1.055357076
## X849   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X851   3.5404134      -0.408884590  0.063223470 -0.040504527
## X854   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X855   2.7704767      -0.407108406 -0.585712972 -0.641179724
## X856   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X857   0.4606666      -0.596271972 -1.033167401 -1.055357076
## X858   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X859   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X860   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X862   0.4606666      -0.596271972 -1.033167401 -1.055357076
## X863   0.4606666      -0.533217450 -1.033167401 -1.055357076
## X864   2.7704767      -0.856482887 -1.033167401 -1.055357076
## X865   2.7704767      -0.855594796 -1.033167401 -1.055357076
## X866   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X867   2.7704767      -0.855594796 -1.033167401 -1.055357076
## X869   2.0005400      -0.672647872 -0.162912460 -0.249822784
## X870   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X871   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X872   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X873   2.7704767      -0.855594796 -1.033167401 -1.055357076
## X875   0.4606666      -0.505686603 -1.033167401 -1.055357076
## X876   0.4606666      -0.505686603 -1.033167401 -1.055357076
## X877   0.4606666      -0.459505826 -1.033167401 -1.055357076
## X1190  0.4606666      -0.778330804 -0.771609176 -0.813250873
## X1191 -1.0792067      -0.717052465 -1.033167401 -1.055357076
## X1192  2.0005400      -0.376025191  0.023833878 -0.076964725
## X1193 -0.3092700      -0.838721050 -1.033167401 -1.055357076
## X1194  2.0005400      -0.311194485  1.736572680  1.508398110
## X1195 -0.3092700      -0.546538828 -1.033167401 -1.055357076
## X1197 -0.3092700      -0.834280591 -1.033167401 -1.055357076
## X1198 -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X1199 -0.3092700       0.527164231  0.744465045  1.253701335
## X1200 -1.0792067      -0.446184448 -0.510050950  1.855163443
## X1201  2.7704767      -0.640676565  0.850165173  0.687912513
## X1202  2.0005400       0.201234518  2.571405325  2.281144456
## X1203 -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X1204  1.2306033       0.379740982  1.789281054  1.776996976
## X1205  0.4606666       0.425921759  0.730012749  0.576695796
## X1206 -1.0792067      -0.358263354 -1.033167401 -1.055357076
## X1207  1.2306033      -0.724157200 -0.801647282 -0.100309743
## X1208  2.7704767      -0.709059639  0.679571401  1.193633815
## X1209 -0.3092700       0.088446852 -0.459892981 -0.524716935
## X1210  2.0005400       0.738530094  1.170382718  0.984315558
## X1212  2.0005400       0.168375119  0.113381439  0.005923206
## X1213  1.2306033      -0.724157200 -0.801647282 -0.100309743
## X1215  2.7704767       0.189689324  1.603951608  1.385640035
## X1216  1.2306033      -0.778330804 -1.033167401 -0.314611768
## X1217  1.2306033      -0.257020882  0.270656429  0.151501693
## X1219  0.4606666       0.207451161  0.113381439  0.005923206
## X1220  1.2306033      -0.310306393  0.115648466  0.008021635
## X1221 -1.0792067      -0.717052465 -1.033167401 -1.055357076
## X1222  1.2306033      -0.814742570 -0.941352813 -0.970370717
## X1226  2.0005400      -0.640676565 -0.709832693 -0.015323383
## X1228 -0.3092700      -0.525224623 -0.248492725  1.433641590
## X1229  2.0005400       0.147949007  1.826120241  1.591286041
## X1230  1.2306033      -0.698402536  0.188193326  0.075171351
## X1231  0.4606666      -0.847601969 -1.033167401 -1.055357076
## X1233  2.0005400      -0.385794201  0.023833878 -0.076964725
## X1234  0.4606666      -0.842273418 -1.033167401 -1.055357076
## X1236  2.0005400      -0.753464232  0.195844542  0.082253548
## X1237 -0.3092700      -0.361815721  0.116781980  1.108122848
## X1239 -1.0792067      -0.525224623 -0.457625954  0.141009550
## X1242 -1.0792067      -0.322739679 -1.033167401 -1.055357076
## X1244  0.4606666      -0.778330804 -1.033167401 -1.055357076
## X1245 -0.3092700      -0.842273418 -1.033167401 -1.055357076
## X1246  2.0005400      -0.353822894  0.023833878 -0.076964725
## X1247  1.2306033      -0.757904691 -0.026324091 -0.123392458
## X1249  0.4606666      -0.538546001  0.607593298  1.562432648
## X1250  1.2306033      -0.055424029 -0.459892981 -0.524716935
## X1251 -0.3092700      -0.476379571  0.315146831  0.192683355
## X1253 -0.3092700      -0.514567521 -0.510050950  1.855163443
## X1254  0.4606666      -0.723269108 -1.033167401 -1.055357076
## X1255  1.2306033      -0.849378152 -1.033167401 -1.055357076
## X1256  2.0005400      -0.851154336 -1.033167401 -1.055357076
## X1257  0.4606666      -0.675312148 -1.033167401 -1.055357076
## X1259  2.7704767      -0.533217450 -0.678094317 -0.726690691
## X1260  0.4606666      -0.675312148 -1.033167401 -1.055357076
## X1262  1.2306033      -0.690409709 -0.026324091 -0.123392458
## X1264  1.2306033      -0.494141408 -1.033167401 -1.055357076
## X1265  0.4606666      -0.633571830 -1.033167401 -1.055357076
## X1266  0.4606666      -0.624690912 -1.033167401 -1.055357076
## X1267  1.2306033       0.840660658  1.955057394  1.967953982
## X1268 -1.0792067      -0.327180139  0.023833878 -0.076964725
## X1273  0.4606666      -0.633571830 -1.033167401 -1.055357076
## X1274 -1.0792067      -0.362703813 -0.459892981 -0.524716935
## X1275  2.0005400      -0.562524482 -1.033167401 -1.055357076
## X1276  2.7704767      -0.855594796 -1.033167401 -1.055357076
## X1277  0.4606666      -0.596271972 -1.033167401 -1.055357076
## X1278  2.0005400      -0.852042428 -1.033167401 -1.055357076
## X1279  2.0005400      -0.853818612 -1.033167401 -1.055357076
## X1281  0.4606666      -0.562524482 -1.033167401 -1.055357076
## X1282  0.4606666      -0.562524482 -1.033167401 -1.055357076
## X1283  2.7704767      -0.855594796 -1.033167401 -1.055357076
## X1284  2.0005400      -0.853818612 -1.033167401 -1.055357076
## X1285  0.4606666      -0.562524482 -1.033167401 -1.055357076
## X1288  0.4606666      -0.481708122 -1.033167401 -1.055357076
## X1299  1.2306033       0.321126919  0.616094648  0.471249757
## X1301  2.0005400      -0.365368089  0.023833878 -0.076964725
## X1302 -0.3092700      -0.411548865 -1.033167401 -1.055357076
## X1307 -0.3092700      -0.417765508  0.116781980  1.108122848
## X1309  0.4606666      -0.624690912 -1.033167401 -1.055357076
## X1310  1.2306033      -0.465722469 -1.033167401 -1.055357076
## X447  -0.3092700      -0.028781274  0.285392103  0.165141479
## X448   2.0005400       3.680778427  4.113550354  3.708600536
## X451  -1.0792067      -0.779218896 -1.033167401 -1.055357076
## X452  -0.3092700      -0.640676565 -1.033167401 -1.055357076
## X453   0.4606666      -0.164659328 -0.094618276 -0.186607621
## X454   0.4606666       1.129290512  2.004648607  1.976347696
## X455  -0.3092700      -0.129135654  0.285392103  0.165141479
## X456   0.4606666      -0.240147136  0.053021849 -0.049947456
## X458   0.4606666       1.175471289  2.004648607  1.976347696
## X459  -1.0792067      -0.749023772 -0.549440542 -0.607604866
## X460  -0.3092700      -0.799645008 -1.033167401 -1.055357076
## X461  -0.3092700      -0.039438376  0.023833878 -0.076964725
## X462  -0.3092700      -0.693962077 -1.033167401 -0.314611768
## X463   1.2306033      -0.310306393 -0.250192995 -0.330612286
## X464  -1.0792067      -0.218832932 -1.033167401 -1.055357076
## X465   1.2306033      -0.249028055  0.532214654  0.393607897
## X466   0.4606666      -0.042990743  0.647266268  1.240848459
## X468  -1.0792067       0.604428223  0.449468173  0.317015252
## X471  -0.3092700       0.527164231  0.187909948  0.074909048
## X472  -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X473  -0.3092700      -0.779218896 -1.033167401 -1.055357076
## X476   0.4606666      -0.252580422  0.023833878 -0.076964725
## X477   0.4606666      -0.076738234  0.850731929  0.908247520
## X478  -1.0792067      -0.799645008 -1.033167401 -1.055357076
## X479  -1.0792067      -0.779218896 -1.033167401 -1.055357076
## X480   1.2306033      -0.723269108 -0.302617991 -0.379138448
## X482  -1.0792067      -0.574957768 -1.033167401 -1.055357076
## X483  -1.0792067      -0.527000807 -1.033167401 -1.055357076
## X484   0.4606666       1.948111208  0.441533579  0.309670752
## X486  -1.0792067      -0.683304975 -0.287882317 -0.365498662
## X487  -0.3092700      -0.670871689  0.065490497 -0.038406098
## X488  -0.3092700      -0.190413992  0.285392103  0.165141479
## X489  -0.3092700      -0.039438376  0.023833878 -0.076964725
## X490  -0.3092700      -0.670871689 -0.196067728 -0.280512302
## X491  -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X492   0.4606666      -0.157554593  0.850731929  0.688437121
## X493  -1.0792067      -0.164659328  0.023833878 -0.076964725
## X494  -0.3092700       1.517386655  1.126459073  0.943658503
## X495   2.0005400      -0.321851587  0.258754538  0.140484943
## X496   0.4606666       0.068908831  0.510111142  1.214880405
## X497   1.2306033      -0.785435539 -0.667892696 -0.717247762
## X498  -0.3092700      -0.124695194 -0.459892981 -0.524716935
## X499  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X501   0.4606666      -0.470162928  0.586056542  0.443445577
## X502  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X503   3.5404134       0.208339253  0.297010616  0.175895926
## X505  -0.3092700      -0.087395336 -0.208536376 -0.292053660
## X506   0.4606666       1.178135565  1.743090382  1.734241492
## X507   0.4606666       1.766052376  1.956757664  1.712207992
## X508  -0.3092700       2.105303467  1.334458788  1.136189331
## X509   2.0005400       3.653247579  4.113550354  3.708600536
## X510   0.4606666       0.516507129  0.692890184  0.542334027
## X513  -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X514   0.4606666       1.178135565  1.750174841  1.740799082
## X515   0.4606666       0.470326352  0.113381439  0.005923206
## X516  -0.3092700      -0.760568966 -0.771609176 -0.813250873
## X518  -0.3092700       0.382405258  0.969467462  0.798342320
## X521   0.4606666       1.128402420  2.266206832  2.218453900
## X523  -0.3092700      -0.711723914 -0.287882317 -0.365498662
## X524  -0.3092700      -0.094500071 -0.208536376 -0.292053660
## X525   0.4606666       0.399279003  1.099821507  0.919001967
## X526  -1.0792067      -0.209952013 -0.459892981 -0.524716935
## X530  -0.3092700      -0.760568966 -0.941352813 -0.970370717
## X531  -0.3092700       0.364643421  0.364738044  0.238586482
## X532  -0.3092700       0.574233100  0.744465045  1.253701335
## X533   0.4606666       1.385060968  2.330250342  2.497544909
## X534  -0.3092700       0.485423914  1.099821507  1.138812367
## X535  -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X536   2.0005400      -0.336061057 -0.002803688 -0.101621261
## X538   1.2306033       2.486294875  2.689290722  2.390262745
## X539   2.0005400      -0.336061057 -0.002803688 -0.101621261
## X542   2.0005400       0.207451161  1.564562016  1.349179838
## X543  -1.0792067      -0.693962077 -1.033167401 -1.055357076
## X544   2.0005400       3.653247579  4.113550354  3.708600536
## X545  -1.0792067      -0.778330804 -0.941352813 -0.970370717
## X546  -1.0792067      -0.192190176 -1.033167401 -1.055357076
## X548  -0.3092700      -0.760568966 -0.771609176 -0.813250873
## X549  -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X551  -1.0792067      -0.141568940 -1.033167401 -1.055357076
## X552   2.7704767      -0.626467096  1.111723398  0.930018717
## X553   0.4606666      -0.185085441  0.053021849  0.613680600
## X554  -0.3092700       0.581337835  1.418622161  1.214093494
## X556   0.4606666      -0.240147136  0.285392103  0.165141479
## X557  -0.3092700       1.041369418  0.882186927  0.717552818
## X558   0.4606666      -0.039438376 -0.667892696  1.041235435
## X559  -1.0792067      -0.779218896 -1.033167401 -1.055357076
## X560  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X561  -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X562  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X563   0.4606666      -0.294320740  0.023833878 -0.076964725
## X565  -1.0792067      -0.799645008 -1.033167401 -1.055357076
## X566  -0.3092700       0.766949033 -0.295816911 -0.372843162
## X567  -0.3092700       0.512954761  1.099821507  1.138812367
## X568  -0.3092700      -0.087395336 -0.208536376 -0.292053660
## X569  -0.3092700      -0.659326494 -0.196067728 -0.280512302
## X571  -0.3092700       0.621301968  0.449468173  0.317015252
## X572  -0.3092700       1.032488500  0.790372339  0.632566458
## X574  -0.3092700      -0.812966386 -1.033167401 -1.055357076
## X576   0.4606666       1.175471289  2.004648607  1.976347696
## X577   0.4606666      -0.217056748  0.053021849 -0.049947456
## X579   0.4606666      -0.217056748  0.163822787  0.052613244
## X580  -0.3092700       0.686132674  0.597108298  0.453675417
## X582  -1.0792067      -0.760568966 -0.549440542 -0.607604866
## X583  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X584   4.3103501      -0.718828649 -0.104253140 -0.195525943
## X586   0.4606666      -0.533217450  0.597108298  1.552727415
## X587   1.2306033      -0.785435539 -0.667892696 -0.717247762
## X588  -0.3092700       0.472990628  0.616094648  1.312981944
## X589   2.0005400       1.404598989  1.743657139  1.514955700
## X591   2.0005400      -0.321851587  0.258754538  0.140484943
## X592  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X593   1.2306033      -0.217056748  0.410361960  0.280817358
## X594  -1.0792067      -0.683304975 -0.287882317 -0.365498662
## X595  -1.0792067      -0.555419747 -0.941352813  0.534989527
## X596  -0.3092700       0.447235964  1.099821507  1.138812367
## X597   1.2306033      -0.773002252 -0.679794587 -0.728264513
## X598  -1.0792067      -0.227713850  0.023833878 -0.076964725
## X599  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X600   0.4606666      -0.578510135  0.718960993  0.786276356
## X603  -1.0792067      -0.198406819  0.023833878 -0.076964725
## X604  -0.3092700       0.433914586  0.616094648  1.312981944
## X605   2.0005400      -0.737478578  0.418013175  0.287899555
## X606  -0.3092700      -0.711723914 -0.287882317 -0.365498662
## X608  -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X609   0.4606666       1.231421076  1.743090382  1.734241492
## X611  -0.3092700      -0.812966386 -1.033167401 -1.055357076
## X612  -0.3092700      -0.042990743  0.144836437  0.035038904
## X613  -0.3092700      -0.717052465 -1.033167401 -1.055357076
## X614  -0.3092700      -0.717052465 -1.033167401 -1.055357076
## X616  -1.0792067      -0.799645008 -1.033167401 -1.055357076
## X617   0.4606666      -0.724157200 -0.196067728 -0.280512302
## X619   1.2306033       1.688788384  2.320898856  2.488888891
## X620  -0.3092700      -0.546538828 -1.033167401 -1.055357076
## X621   0.4606666       0.364643421  0.364738044  0.238586482
## X622   0.4606666      -0.834280591 -1.033167401 -1.055357076
## X623   1.2306033       0.353986318  0.714993696  0.562793706
## X625   0.4606666      -0.593607697  0.582372624  0.440035631
## X628   2.0005400       0.801584616  1.654109577  1.432067769
## X629   2.0005400       0.738530094  1.170382718  0.984315558
## X630   1.2306033      -0.353822894 -0.600448647 -0.654819510
## X631  -1.0792067      -0.821847305 -1.033167401 -1.055357076
## X632  -1.0792067      -0.192190176 -1.033167401 -1.055357076
## X633  -0.3092700      -0.100716714  0.285392103  0.165141479
## X635   0.4606666       0.395726636  1.191636095  1.223798726
## X636   2.0005400       1.494296267  2.227383997  1.962707910
## X637   2.0005400      -0.773002252 -0.065713683 -0.159852656
## X638   0.4606666      -0.295208832  0.507560737  0.370787486
## X639   0.4606666       1.231421076  1.743090382  1.734241492
## X641   1.2306033      -0.285439821  0.691189913  0.540760205
## X648   0.4606666       1.712766865  2.069542251  2.036415216
## X650   0.4606666       0.581337835  1.298469737  2.063432485
## X651   1.2306033      -0.705507271  0.117915493  0.010120064
## X653   2.0005400       0.738530094  1.170382718  0.984315558
## X654  -0.3092700      -0.689521618  0.065490497 -0.038406098
## X655  -0.3092700      -0.834280591 -1.033167401 -1.055357076
## X656   0.4606666      -0.760568966 -1.033167401 -1.055357076
## X657  -0.3092700       0.364643421  0.449468173  0.317015252
## X1082 -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X1083  0.4606666      -0.332508690 -0.459892981 -0.524716935
## X1084 -0.3092700      -0.242811412 -0.459892981 -0.524716935
## X1086 -0.3092700      -0.693962077 -1.033167401 -1.055357076
## X1088 -0.3092700      -0.066969224  0.144836437  0.035038904
## X1089  0.4606666       1.123073869  0.151637518  0.041334190
## X1090 -0.3092700       2.164805621  1.334458788  1.136189331
## X1091 -0.3092700       0.380629074  0.113381439  0.005923206
## X1092 -1.0792067      -0.749023772 -0.549440542 -0.607604866
## X1093 -0.3092700      -0.371584732  0.117915493  0.010120064
## X1094 -0.3092700      -0.124695194  0.023833878 -0.076964725
## X1095  0.4606666      -0.087395336  0.381740745  0.254324696
## X1097 -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X1098  1.2306033       0.367307696  1.099821507  0.919001967
## X1101  0.4606666       2.036032302  2.320898856  2.488888891
## X1103  2.0005400       1.679019374  2.005215364  1.757061904
## X1104  0.4606666       1.180799840  1.377815677  1.396132178
## X1105  0.4606666       0.068908831  0.510111142  1.214880405
## X1106 -1.0792067       0.577785467 -0.295816911 -0.372843162
## X1108 -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X1110 -0.3092700      -0.693962077 -1.033167401 -1.055357076
## X1112  0.4606666       1.178135565  1.743090382  1.734241492
## X1113  0.4606666       0.280274694  0.113381439  0.005923206
## X1115  0.4606666      -0.294320740  0.023833878 -0.076964725
## X1116 -0.3092700      -0.646005116 -0.591097161 -0.646163492
## X1117 -0.3092700       0.604428223  0.364738044  0.238586482
## X1119 -0.3092700      -0.005690885  0.285392103  0.165141479
## X1120  2.0005400       0.815794086  1.654109577  1.432067769
## X1121  1.2306033       0.407271830  1.810534431  1.576859345
## X1122  2.0005400       0.792703697  1.654109577  1.432067769
## X1124  0.4606666      -0.711723914 -0.065713683 -0.159852656
## X1125 -1.0792067      -0.192190176 -1.033167401 -1.055357076
## X1126 -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X1127  0.4606666      -0.828952040 -1.033167401 -1.055357076
## X1128 -0.3092700      -0.087395336 -0.208536376 -0.292053660
## X1129 -0.3092700      -0.717052465 -1.033167401 -1.055357076
## X1130 -0.3092700      -0.028781274  0.023833878 -0.076964725
## X1131 -0.3092700      -0.799645008 -1.033167401 -1.055357076
## X1133  0.4606666       0.516507129  0.692890184  0.542334027
## X1135 -1.0792067      -0.749023772 -0.549440542 -0.607604866
## X1136 -0.3092700      -0.717052465 -1.033167401 -1.055357076
## X1138  2.0005400       3.944541710  5.512589313  5.003593308
## X1139  2.0005400       0.815794086  1.654109577  1.432067769
## X1141 -1.0792067      -0.799645008 -1.033167401 -1.055357076
## X1142 -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X1143  1.2306033      -0.676200240  0.601642352  0.457872274
## X1144  2.7704767       0.270505683  0.466754253  0.333015770
## X1145  0.4606666       1.984522974  1.837171997  1.821326281
## X1146 -1.0792067       0.542261793  0.449468173  0.317015252
## X1147 -1.0792067      -0.646005116 -0.457625954  0.141009550
## X1149 -0.3092700      -0.129135654  0.053021849 -0.049947456
## X1150 -1.0792067      -0.698402536 -0.287882317 -0.365498662
## X1151 -0.3092700      -0.661990770 -0.457625954  0.141009550
## X1152  1.2306033      -0.689521618  0.065490497 -0.038406098
## X1153 -0.3092700       0.205674978 -0.585712972 -0.641179724
## X1156 -1.0792067      -0.227713850  0.023833878 -0.076964725
## X1158  1.2306033       1.724312059  2.005215364  1.757061904
## X1159  1.2306033      -0.633571830  0.456836011  0.323835145
## X1160  2.0005400       0.234093917  2.570838568  2.280619849
##  [ reached 'max' / getOption("max.print") -- omitted 497 rows ]
## 
## $usekernel
## [1] FALSE
## 
## $varnames
##   [1] "FP001"             "FP002"             "FP003"            
##   [4] "FP004"             "FP005"             "FP006"            
##   [7] "FP007"             "FP008"             "FP009"            
##  [10] "FP010"             "FP011"             "FP012"            
##  [13] "FP013"             "FP014"             "FP015"            
##  [16] "FP016"             "FP017"             "FP018"            
##  [19] "FP019"             "FP020"             "FP021"            
##  [22] "FP022"             "FP023"             "FP024"            
##  [25] "FP025"             "FP026"             "FP027"            
##  [28] "FP028"             "FP029"             "FP030"            
##  [31] "FP031"             "FP032"             "FP033"            
##  [34] "FP034"             "FP035"             "FP036"            
##  [37] "FP037"             "FP038"             "FP039"            
##  [40] "FP040"             "FP041"             "FP042"            
##  [43] "FP043"             "FP044"             "FP045"            
##  [46] "FP046"             "FP047"             "FP048"            
##  [49] "FP049"             "FP050"             "FP051"            
##  [52] "FP052"             "FP053"             "FP054"            
##  [55] "FP055"             "FP056"             "FP057"            
##  [58] "FP058"             "FP059"             "FP060"            
##  [61] "FP061"             "FP062"             "FP063"            
##  [64] "FP064"             "FP065"             "FP066"            
##  [67] "FP067"             "FP068"             "FP069"            
##  [70] "FP070"             "FP071"             "FP072"            
##  [73] "FP073"             "FP074"             "FP075"            
##  [76] "FP076"             "FP077"             "FP078"            
##  [79] "FP079"             "FP080"             "FP081"            
##  [82] "FP082"             "FP083"             "FP084"            
##  [85] "FP085"             "FP086"             "FP087"            
##  [88] "FP088"             "FP089"             "FP090"            
##  [91] "FP091"             "FP092"             "FP093"            
##  [94] "FP094"             "FP095"             "FP096"            
##  [97] "FP097"             "FP098"             "FP099"            
## [100] "FP100"             "FP101"             "FP102"            
## [103] "FP103"             "FP104"             "FP105"            
## [106] "FP106"             "FP107"             "FP108"            
## [109] "FP109"             "FP110"             "FP111"            
## [112] "FP112"             "FP113"             "FP114"            
## [115] "FP115"             "FP116"             "FP117"            
## [118] "FP118"             "FP119"             "FP120"            
## [121] "FP121"             "FP122"             "FP123"            
## [124] "FP124"             "FP125"             "FP126"            
## [127] "FP127"             "FP128"             "FP129"            
## [130] "FP130"             "FP131"             "FP132"            
## [133] "FP133"             "FP134"             "FP135"            
## [136] "FP136"             "FP137"             "FP138"            
## [139] "FP139"             "FP140"             "FP141"            
## [142] "FP142"             "FP143"             "FP144"            
## [145] "FP145"             "FP146"             "FP147"            
## [148] "FP148"             "FP149"             "FP150"            
## [151] "FP151"             "FP152"             "FP153"            
## [154] "FP155"             "FP156"             "FP157"            
## [157] "FP158"             "FP159"             "FP160"            
## [160] "FP161"             "FP162"             "FP163"            
## [163] "FP164"             "FP165"             "FP166"            
## [166] "FP167"             "FP168"             "FP169"            
## [169] "FP170"             "FP171"             "FP172"            
## [172] "FP173"             "FP174"             "FP175"            
## [175] "FP176"             "FP177"             "FP178"            
## [178] "FP179"             "FP180"             "FP181"            
## [181] "FP182"             "FP183"             "FP184"            
## [184] "FP185"             "FP186"             "FP187"            
## [187] "FP188"             "FP189"             "FP190"            
## [190] "FP191"             "FP192"             "FP193"            
## [193] "FP194"             "FP195"             "FP196"            
## [196] "FP197"             "FP198"             "FP201"            
## [199] "FP202"             "FP203"             "FP204"            
## [202] "FP205"             "FP206"             "FP207"            
## [205] "FP208"             "MolWeight"         "NumBonds"         
## [208] "NumMultBonds"      "NumRotBonds"       "NumDblBonds"      
## [211] "NumCarbon"         "NumNitrogen"       "NumOxygen"        
## [214] "NumSulfer"         "NumChlorine"       "NumHalogen"       
## [217] "NumRings"          "HydrophilicFactor" "SurfaceArea1"     
## [220] "SurfaceArea2"     
## 
## $xNames
##   [1] "FP001"             "FP002"             "FP003"            
##   [4] "FP004"             "FP005"             "FP006"            
##   [7] "FP007"             "FP008"             "FP009"            
##  [10] "FP010"             "FP011"             "FP012"            
##  [13] "FP013"             "FP014"             "FP015"            
##  [16] "FP016"             "FP017"             "FP018"            
##  [19] "FP019"             "FP020"             "FP021"            
##  [22] "FP022"             "FP023"             "FP024"            
##  [25] "FP025"             "FP026"             "FP027"            
##  [28] "FP028"             "FP029"             "FP030"            
##  [31] "FP031"             "FP032"             "FP033"            
##  [34] "FP034"             "FP035"             "FP036"            
##  [37] "FP037"             "FP038"             "FP039"            
##  [40] "FP040"             "FP041"             "FP042"            
##  [43] "FP043"             "FP044"             "FP045"            
##  [46] "FP046"             "FP047"             "FP048"            
##  [49] "FP049"             "FP050"             "FP051"            
##  [52] "FP052"             "FP053"             "FP054"            
##  [55] "FP055"             "FP056"             "FP057"            
##  [58] "FP058"             "FP059"             "FP060"            
##  [61] "FP061"             "FP062"             "FP063"            
##  [64] "FP064"             "FP065"             "FP066"            
##  [67] "FP067"             "FP068"             "FP069"            
##  [70] "FP070"             "FP071"             "FP072"            
##  [73] "FP073"             "FP074"             "FP075"            
##  [76] "FP076"             "FP077"             "FP078"            
##  [79] "FP079"             "FP080"             "FP081"            
##  [82] "FP082"             "FP083"             "FP084"            
##  [85] "FP085"             "FP086"             "FP087"            
##  [88] "FP088"             "FP089"             "FP090"            
##  [91] "FP091"             "FP092"             "FP093"            
##  [94] "FP094"             "FP095"             "FP096"            
##  [97] "FP097"             "FP098"             "FP099"            
## [100] "FP100"             "FP101"             "FP102"            
## [103] "FP103"             "FP104"             "FP105"            
## [106] "FP106"             "FP107"             "FP108"            
## [109] "FP109"             "FP110"             "FP111"            
## [112] "FP112"             "FP113"             "FP114"            
## [115] "FP115"             "FP116"             "FP117"            
## [118] "FP118"             "FP119"             "FP120"            
## [121] "FP121"             "FP122"             "FP123"            
## [124] "FP124"             "FP125"             "FP126"            
## [127] "FP127"             "FP128"             "FP129"            
## [130] "FP130"             "FP131"             "FP132"            
## [133] "FP133"             "FP134"             "FP135"            
## [136] "FP136"             "FP137"             "FP138"            
## [139] "FP139"             "FP140"             "FP141"            
## [142] "FP142"             "FP143"             "FP144"            
## [145] "FP145"             "FP146"             "FP147"            
## [148] "FP148"             "FP149"             "FP150"            
## [151] "FP151"             "FP152"             "FP153"            
## [154] "FP155"             "FP156"             "FP157"            
## [157] "FP158"             "FP159"             "FP160"            
## [160] "FP161"             "FP162"             "FP163"            
## [163] "FP164"             "FP165"             "FP166"            
## [166] "FP167"             "FP168"             "FP169"            
## [169] "FP170"             "FP171"             "FP172"            
## [172] "FP173"             "FP174"             "FP175"            
## [175] "FP176"             "FP177"             "FP178"            
## [178] "FP179"             "FP180"             "FP181"            
## [181] "FP182"             "FP183"             "FP184"            
## [184] "FP185"             "FP186"             "FP187"            
## [187] "FP188"             "FP189"             "FP190"            
## [190] "FP191"             "FP192"             "FP193"            
## [193] "FP194"             "FP195"             "FP196"            
## [196] "FP197"             "FP198"             "FP201"            
## [199] "FP202"             "FP203"             "FP204"            
## [202] "FP205"             "FP206"             "FP207"            
## [205] "FP208"             "MolWeight"         "NumBonds"         
## [208] "NumMultBonds"      "NumRotBonds"       "NumDblBonds"      
## [211] "NumCarbon"         "NumNitrogen"       "NumOxygen"        
## [214] "NumSulfer"         "NumChlorine"       "NumHalogen"       
## [217] "NumRings"          "HydrophilicFactor" "SurfaceArea1"     
## [220] "SurfaceArea2"     
## 
## $problemType
## [1] "Classification"
## 
## $tuneValue
##   fL usekernel adjust
## 1  2     FALSE  FALSE
## 
## $obsLevels
## [1] "Low"  "High"
## attr(,"ordered")
## [1] FALSE
## 
## $param
## list()
## 
## attr(,"class")
## [1] "NaiveBayes"
NB_Tune$results
##   usekernel fL adjust       ROC      Sens      Spec      ROCSD     SensSD
## 1     FALSE  2  FALSE 0.8818276 0.7772979 0.8072932 0.03408364 0.07087909
## 2      TRUE  2  FALSE       NaN       NaN       NaN         NA         NA
##       SpecSD
## 1 0.05222652
## 2         NA
(NB_Train_ROCCurveAUC <- NB_Tune$results[NB_Tune$results$usekernel==NB_Tune$bestTune$usekernel &
                                         NB_Tune$results$adjust==NB_Tune$bestTune$adjust,
                              c("ROC")])
## [1] 0.8818276
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
NB_Test <- data.frame(NB_Observed = PMA_PreModelling_Test_NB$Log_Solubility_Class,
                      NB_Predicted = predict(NB_Tune,
                      PMA_PreModelling_Test_NB[,!names(PMA_PreModelling_Test_NB) %in% c("Log_Solubility_Class")],
                      type = "prob"))

NB_Test
##      NB_Observed NB_Predicted.Low NB_Predicted.High
## 20          High     4.364662e-14      1.000000e+00
## 21          High     6.410958e-17      1.000000e+00
## 23          High     9.534226e-07      9.999990e-01
## 25          High     1.062868e-11      1.000000e+00
## 28          High     1.381006e-09      1.000000e+00
## 31          High     2.725477e-15      1.000000e+00
## 32          High     1.009329e-13      1.000000e+00
## 33          High     1.297622e-11      1.000000e+00
## 34          High     1.203507e-13      1.000000e+00
## 37          High     2.708885e-05      9.999729e-01
## 38          High     1.943691e-06      9.999981e-01
## 42          High     2.701061e-01      7.298939e-01
## 49          High     1.085724e-12      1.000000e+00
## 54          High     2.898243e-12      1.000000e+00
## 55          High     1.529527e-07      9.999998e-01
## 58          High     8.528585e-04      9.991471e-01
## 60          High     1.095641e-07      9.999999e-01
## 61          High     2.858235e-13      1.000000e+00
## 65          High     7.180941e-09      1.000000e+00
## 69          High     2.153357e-03      9.978466e-01
## 73          High     3.393127e-14      1.000000e+00
## 86          High     9.586947e-11      1.000000e+00
## 90          High     2.238680e-11      1.000000e+00
## 91          High     3.952971e-10      1.000000e+00
## 93          High     1.501086e-12      1.000000e+00
## 96          High     7.496453e-09      1.000000e+00
## 98          High     2.756200e-09      1.000000e+00
## 100         High     1.725896e-09      1.000000e+00
## 104         High     9.999626e-01      3.736998e-05
## 112         High     1.850118e-07      9.999998e-01
## 115         High     9.998048e-01      1.951718e-04
## 119         High     1.378442e-12      1.000000e+00
## 128         High     1.535482e-12      1.000000e+00
## 130         High     3.513718e-09      1.000000e+00
## 139         High     2.255600e-10      1.000000e+00
## 143         High     1.081262e-12      1.000000e+00
## 145         High     1.811821e-10      1.000000e+00
## 146         High     2.569698e-12      1.000000e+00
## 149         High     1.219667e-08      1.000000e+00
## 150         High     3.245685e-11      1.000000e+00
## 152         High     5.352517e-13      1.000000e+00
## 157         High     9.942953e-01      5.704656e-03
## 161         High     1.791776e-06      9.999982e-01
## 162         High     1.513519e-18      1.000000e+00
## 166         High     3.097081e-08      1.000000e+00
## 167         High     2.157478e-11      1.000000e+00
## 173         High     2.952122e-11      1.000000e+00
## 176         High     8.962827e-13      1.000000e+00
## 182         High     9.808933e-12      1.000000e+00
## 187         High     3.182456e-09      1.000000e+00
## 190         High     9.002230e-13      1.000000e+00
## 194         High     1.288191e-04      9.998712e-01
## 195         High     9.278369e-05      9.999072e-01
## 201         High     1.408298e-11      1.000000e+00
## 207         High     7.382190e-10      1.000000e+00
## 208         High     8.630909e-06      9.999914e-01
## 215         High     1.642038e-09      1.000000e+00
## 222         High     3.797564e-06      9.999962e-01
## 224         High     6.287627e-07      9.999994e-01
## 231         High     3.707866e-01      6.292134e-01
## 236         High     1.076599e-07      9.999999e-01
## 237         High     1.507970e-10      1.000000e+00
## 240         High     2.850582e-03      9.971494e-01
## 243         High     3.503573e-10      1.000000e+00
## 248         High     1.472072e-04      9.998528e-01
## 251         High     9.999890e-01      1.099658e-05
## 256         High     3.554193e-03      9.964458e-01
## 258         High     9.985646e-01      1.435368e-03
## 262         High     5.275795e-04      9.994724e-01
## 266         High     8.308258e-01      1.691742e-01
## 272         High     1.030189e-02      9.896981e-01
## 280         High     1.463723e-03      9.985363e-01
## 283         High     1.398582e-07      9.999999e-01
## 286         High     9.999986e-01      1.353171e-06
## 287         High     1.549529e-05      9.999845e-01
## 289         High     1.097015e-01      8.902985e-01
## 290         High     4.551853e-05      9.999545e-01
## 298         High     3.961289e-09      1.000000e+00
## 305         High     2.366783e-07      9.999998e-01
## 306         High     3.248590e-05      9.999675e-01
## 312         High     1.741562e-06      9.999983e-01
## 320         High     2.448799e-05      9.999755e-01
## 325         High     2.115973e-07      9.999998e-01
## 332         High     9.961767e-11      1.000000e+00
## 333         High     8.326838e-03      9.916732e-01
## 335         High     1.065318e-10      1.000000e+00
## 339         High     9.908988e-01      9.101184e-03
## 346         High     5.895639e-01      4.104361e-01
## 347         High     2.839264e-03      9.971607e-01
## 350         High     1.158072e-07      9.999999e-01
## 353         High     4.901773e-04      9.995098e-01
## 358         High     5.884228e-04      9.994116e-01
## 365         High     9.999931e-01      6.894831e-06
## 367         High     2.135277e-04      9.997865e-01
## 370         High     9.414952e-07      9.999991e-01
## 379         High     8.673552e-08      9.999999e-01
## 386         High     1.668272e-05      9.999833e-01
## 394         High     4.911945e-02      9.508805e-01
## 396         High     3.811223e-08      1.000000e+00
## 400         High     3.421792e-10      1.000000e+00
## 404         High     9.963372e-01      3.662832e-03
## 405         High     3.084035e-05      9.999692e-01
## 413         High     1.741976e-02      9.825802e-01
## 415         High     9.648352e-07      9.999990e-01
## 417         High     1.202736e-09      1.000000e+00
## 418         High     1.996106e-06      9.999980e-01
## 423         High     9.993650e-01      6.349562e-04
## 434         High     5.324453e-01      4.675547e-01
## 437         High     9.999992e-01      7.983086e-07
## 440         High     9.996967e-01      3.033301e-04
## 449         High     9.715650e-04      9.990284e-01
## 450         High     9.998962e-01      1.038334e-04
## 457         High     3.368502e-04      9.996631e-01
## 467         High     9.992981e-01      7.018652e-04
## 469         High     1.000000e+00      2.525893e-14
## 474         High     9.999930e-01      6.995108e-06
## 475         High     9.999980e-01      2.014157e-06
## 485         High     1.164597e-08      1.000000e+00
## 504          Low     9.822745e-01      1.772553e-02
## 511          Low     1.000000e+00      1.815732e-14
## 512          Low     9.998762e-01      1.237755e-04
## 517          Low     4.116534e-08      1.000000e+00
## 519          Low     9.997131e-01      2.869350e-04
## 520          Low     1.519122e-08      1.000000e+00
## 522          Low     9.905422e-01      9.457770e-03
## 527          Low     5.537178e-02      9.446282e-01
## 528          Low     3.473163e-08      1.000000e+00
## 529          Low     1.508821e-03      9.984912e-01
## 537          Low     1.696684e-07      9.999998e-01
## 540          Low     1.000000e+00      6.348742e-09
## 541          Low     2.095219e-04      9.997905e-01
## 547          Low     9.972504e-01      2.749566e-03
## 550          Low     9.999977e-01      2.289149e-06
## 555          Low     1.091912e-01      8.908088e-01
## 564          Low     4.763308e-09      1.000000e+00
## 570          Low     1.431011e-02      9.856899e-01
## 573          Low     9.679719e-01      3.202806e-02
## 575          Low     2.517162e-04      9.997483e-01
## 578          Low     5.846899e-07      9.999994e-01
## 581          Low     9.937508e-01      6.249203e-03
## 585          Low     8.739457e-01      1.260543e-01
## 590          Low     9.999837e-01      1.630388e-05
## 601          Low     1.000000e+00      7.824787e-13
## 602          Low     9.966568e-01      3.343166e-03
## 607          Low     8.879842e-01      1.120158e-01
## 610          Low     8.482429e-01      1.517571e-01
## 618          Low     9.999992e-01      7.774012e-07
## 624          Low     9.548460e-01      4.515403e-02
## 626          Low     8.951432e-07      9.999991e-01
## 627          Low     9.999958e-01      4.178262e-06
## 634          Low     9.680823e-01      3.191774e-02
## 640          Low     1.000000e+00      7.032587e-14
## 642          Low     1.382852e-09      1.000000e+00
## 643          Low     3.033635e-04      9.996966e-01
## 644          Low     9.988343e-01      1.165673e-03
## 645          Low     1.000000e+00      3.962132e-08
## 646          Low     9.992822e-01      7.178371e-04
## 647          Low     1.000000e+00      2.977842e-20
## 652          Low     1.381426e-06      9.999986e-01
## 658          Low     1.000000e+00      1.969600e-11
## 659          Low     9.998991e-01      1.009193e-04
## 660          Low     1.000000e+00      4.116921e-11
## 664          Low     1.806239e-01      8.193761e-01
## 666          Low     1.000000e+00      2.145719e-12
## 667          Low     1.000000e+00      1.268306e-14
## 675          Low     4.539644e-03      9.954604e-01
## 680          Low     1.000000e+00      1.301625e-18
## 681          Low     9.622303e-01      3.776968e-02
## 687          Low     8.802245e-01      1.197755e-01
## 694          Low     9.999997e-01      3.043066e-07
## 697          Low     1.000000e+00      1.741707e-14
## 701          Low     3.682376e-05      9.999632e-01
## 705          Low     1.000000e+00      7.111946e-13
## 707          Low     2.250327e-01      7.749673e-01
## 710          Low     1.000000e+00      2.909279e-08
## 716          Low     9.999999e-01      1.183748e-07
## 719          Low     9.999650e-01      3.502423e-05
## 720          Low     1.000000e+00      2.878200e-12
## 725          Low     1.000000e+00      2.736921e-12
## 727          Low     8.048301e-06      9.999920e-01
## 730          Low     1.000000e+00      5.518936e-25
## 738          Low     9.996194e-01      3.805966e-04
## 745          Low     5.152225e-01      4.847775e-01
## 748          Low     1.349340e-02      9.865066e-01
## 751          Low     1.000000e+00      3.215821e-11
## 756          Low     1.000000e+00      8.871037e-11
## 766          Low     9.979852e-01      2.014818e-03
## 769          Low     1.000000e+00      3.821915e-16
## 783          Low     1.000000e+00      3.950841e-15
## 785          Low     1.000000e+00      1.822996e-08
## 790          Low     1.000000e+00      1.764736e-13
## 793          Low     9.980992e-01      1.900826e-03
## 795          Low     1.000000e+00      1.730572e-14
## 796          Low     1.000000e+00      7.804220e-13
## 797          Low     9.820198e-01      1.798018e-02
## 801          Low     1.000000e+00      4.135155e-18
## 811          Low     1.000000e+00      6.317191e-24
## 812          Low     1.000000e+00      5.366420e-11
## 815          Low     1.000000e+00      2.314690e-09
## 816          Low     1.000000e+00      8.814549e-16
## 817          Low     1.000000e+00      9.133178e-12
## 824          Low     1.000000e+00      1.996744e-21
## 825          Low     1.000000e+00      8.201293e-22
## 826          Low     1.000000e+00      1.170412e-19
## 830          Low     9.999966e-01      3.448913e-06
## 837          Low     9.999995e-01      5.441761e-07
## 838          Low     1.000000e+00      6.678992e-14
## 844          Low     9.999993e-01      6.850550e-07
## 845          Low     1.000000e+00      1.967339e-10
## 847          Low     1.000000e+00      2.967574e-22
## 850          Low     1.000000e+00      7.031151e-26
## 852          Low     1.000000e+00      5.197849e-34
## 853          Low     1.000000e+00      1.285701e-32
## 861          Low     1.000000e+00      2.652783e-41
## 868          Low     1.000000e+00      1.919862e-16
## 874          Low     1.000000e+00      1.327751e-53
## 879         High     2.956321e-10      1.000000e+00
## 895         High     1.470326e-14      1.000000e+00
## 899         High     3.385981e-21      1.000000e+00
## 903         High     7.518799e-14      1.000000e+00
## 917         High     1.712196e-09      1.000000e+00
## 927         High     6.248833e-14      1.000000e+00
## 929         High     3.451424e-12      1.000000e+00
## 931         High     4.725543e-12      1.000000e+00
## 933         High     9.097195e-01      9.028051e-02
## 944         High     1.846048e-04      9.998154e-01
## 947         High     1.690710e-11      1.000000e+00
## 949         High     2.315612e-07      9.999998e-01
## 953         High     7.734168e-14      1.000000e+00
## 958         High     3.199961e-01      6.800039e-01
## 961         High     1.932456e-10      1.000000e+00
## 963         High     1.668592e-07      9.999998e-01
## 964         High     9.024263e-11      1.000000e+00
## 973         High     9.911857e-07      9.999990e-01
## 976         High     1.528087e-08      1.000000e+00
## 977         High     3.583251e-04      9.996417e-01
## 980         High     1.320632e-01      8.679368e-01
## 983         High     8.106142e-02      9.189386e-01
## 984         High     9.278369e-05      9.999072e-01
## 986         High     2.337792e-08      1.000000e+00
## 989         High     1.004199e-11      1.000000e+00
## 991         High     8.467073e-11      1.000000e+00
## 996         High     1.027637e-10      1.000000e+00
## 997         High     8.473551e-01      1.526449e-01
## 999         High     9.987976e-01      1.202435e-03
## 1000        High     4.480506e-08      1.000000e+00
## 1003        High     1.751854e-10      1.000000e+00
## 1008        High     1.829140e-07      9.999998e-01
## 1009        High     4.481990e-09      1.000000e+00
## 1014        High     1.374653e-08      1.000000e+00
## 1015        High     8.448272e-05      9.999155e-01
## 1040        High     4.688915e-05      9.999531e-01
## 1042        High     2.821302e-04      9.997179e-01
## 1043        High     9.999978e-01      2.168049e-06
## 1050        High     1.806202e-06      9.999982e-01
## 1052        High     1.651919e-01      8.348081e-01
## 1056        High     5.730803e-07      9.999994e-01
## 1070        High     7.173292e-02      9.282671e-01
## 1073        High     9.999956e-01      4.405921e-06
## 1074        High     3.598259e-06      9.999964e-01
## 1079        High     3.207395e-08      1.000000e+00
## 1080        High     8.409607e-04      9.991590e-01
## 1085        High     9.996070e-01      3.930446e-04
## 1087        High     1.460034e-01      8.539966e-01
## 1096        High     1.000000e+00      6.411628e-09
## 1099        High     6.012363e-01      3.987637e-01
## 1100        High     1.811717e-04      9.998188e-01
## 1102        High     1.829295e-11      1.000000e+00
## 1107         Low     6.548054e-05      9.999345e-01
## 1109         Low     9.996320e-01      3.679754e-04
## 1114         Low     2.276602e-04      9.997723e-01
## 1118         Low     8.925095e-01      1.074905e-01
## 1123         Low     1.000000e+00      6.204119e-09
## 1132         Low     4.821842e-01      5.178158e-01
## 1134         Low     9.112545e-03      9.908875e-01
## 1137         Low     9.999991e-01      8.593389e-07
## 1154         Low     9.999425e-01      5.749553e-05
## 1155         Low     3.591183e-04      9.996409e-01
## 1157         Low     9.999999e-01      1.207967e-07
## 1162         Low     6.090085e-03      9.939099e-01
## 1164         Low     2.940110e-10      1.000000e+00
## 1171         Low     1.000000e+00      7.521191e-11
## 1172         Low     1.000000e+00      4.427012e-14
## 1175         Low     9.807048e-01      1.929515e-02
## 1177         Low     1.424471e-04      9.998576e-01
## 1179         Low     1.000000e+00      7.221229e-21
## 1183         Low     1.894181e-05      9.999811e-01
## 1185         Low     1.000000e+00      3.476284e-10
## 1189         Low     9.999975e-01      2.496675e-06
## 1211         Low     9.996911e-01      3.088793e-04
## 1218         Low     1.000000e+00      3.348881e-15
## 1224         Low     1.000000e+00      5.537053e-10
## 1225         Low     2.729124e-03      9.972709e-01
## 1227         Low     1.000000e+00      2.185986e-13
## 1232         Low     1.000000e+00      1.750445e-13
## 1235         Low     9.999437e-01      5.632486e-05
## 1238         Low     1.000000e+00      5.638167e-10
## 1240         Low     1.000000e+00      5.460272e-10
## 1241         Low     9.982659e-01      1.734119e-03
## 1248         Low     9.999829e-01      1.706585e-05
## 1258         Low     1.000000e+00      1.058522e-13
## 1261         Low     1.000000e+00      1.176989e-44
## 1263         Low     1.000000e+00      3.209935e-19
## 1269         Low     1.000000e+00      4.191854e-12
## 1270         Low     1.000000e+00      1.776959e-14
## 1271         Low     1.000000e+00      1.524365e-27
## 1272         Low     1.000000e+00      5.280803e-33
## 1280         Low     1.000000e+00      1.491056e-51
## 1286         Low     1.000000e+00      2.499037e-14
## 1287         Low     1.000000e+00      7.501795e-16
## 1289         Low     1.000000e+00      1.073174e-74
## 1290         Low     1.000000e+00      1.144887e-34
## 1291        High     6.868184e-07      9.999993e-01
## 1294        High     9.974144e-01      2.585565e-03
## 1305         Low     1.000000e+00      5.562553e-10
## 1308        High     9.999936e-01      6.369129e-06
##################################
# Reporting the independent evaluation results
# for the test set
##################################
NB_Test_ROC <- roc(response = NB_Test$NB_Observed,
             predictor = NB_Test$NB_Predicted.High,
             levels = rev(levels(NB_Test$NB_Observed)))

(NB_Test_ROCCurveAUC <- auc(NB_Test_ROC)[1])
## [1] 0.8856057

1.5.6 Nearest Shrunken Centroids (NSC)


[A] The nearest shrunken centroids model from the pamr package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] threshold = shrinkage threshold made to vary across a range of values equal to 0 to 25

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves threshold=0
     [C.2] ROC Curve AUC = 0.86622

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] NumCarbon variable (numeric)
     [D.3] NumBonds variable (numeric)
     [D.4] FP076 variable (factor)
     [D.5] NumRings variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.88771
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_NSC <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_NSC$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_NSC)
## [1] 951 221
PMA_PreModelling_Test_NSC <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_NSC$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_NSC)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_NSC$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
NSC_Grid = data.frame(threshold = seq(0, 8, length = 9))

##################################
# Running the nearest shrunken centroids model
# by setting the caret method to 'pam'
##################################
set.seed(12345678)
NSC_Tune <- train(x = PMA_PreModelling_Train_NSC[,!names(PMA_PreModelling_Train_NSC) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_NSC$Log_Solubility_Class,
                 method = "pam",
                 tuneGrid = NSC_Grid,
                 metric = "ROC",
                 preProc = c("center", "scale"),
                 trControl = KFold_Control)
## 11111111111
##################################
# Reporting the cross-validation results
# for the train set
##################################
NSC_Tune
## Nearest Shrunken Centroids 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   threshold  ROC        Sens        Spec     
##   0          0.8662268  0.73289037  0.8111756
##   1          0.8506061  0.75874862  0.7864296
##   2          0.8423625  0.75642303  0.7920900
##   3          0.8452235  0.74939092  0.7977141
##   4          0.8496146  0.69335548  0.8473149
##   5          0.8482607  0.63283499  0.8854499
##   6          0.8523256  0.51306755  0.9160377
##   7          0.8567815  0.25027685  0.9770682
##   8          0.8600584  0.01168328  0.9961901
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was threshold = 0.
NSC_Tune$finalModel
## Call:
## pamr::pamr.train(data = list(x = t(x), y = y), threshold = param$threshold)
##   threshold nonzero errors
## 1 0         220     202
NSC_Tune$results
##   threshold       ROC       Sens      Spec      ROCSD     SensSD      SpecSD
## 1         0 0.8662268 0.73289037 0.8111756 0.04304383 0.07762574 0.058680015
## 2         1 0.8506061 0.75874862 0.7864296 0.04510309 0.06988456 0.061942549
## 3         2 0.8423625 0.75642303 0.7920900 0.04603917 0.06821025 0.057910338
## 4         3 0.8452235 0.74939092 0.7977141 0.04694042 0.07866890 0.051514933
## 5         4 0.8496146 0.69335548 0.8473149 0.04925590 0.07823711 0.059665077
## 6         5 0.8482607 0.63283499 0.8854499 0.04933820 0.08297623 0.060328817
## 7         6 0.8523256 0.51306755 0.9160377 0.04688017 0.07061927 0.055446607
## 8         7 0.8567815 0.25027685 0.9770682 0.04392608 0.09298992 0.029762016
## 9         8 0.8600584 0.01168328 0.9961901 0.04172407 0.01648872 0.008032365
(NSC_Train_ROCCurveAUC <- NSC_Tune$results[NSC_Tune$results$threshold==NSC_Tune$bestTune$threshold,
                              c("ROC")])
## [1] 0.8662268
##################################
# Identifying and plotting the
# best model predictors
##################################
NSC_VarImp <- varImp(NSC_Tune, scale = TRUE)
plot(NSC_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Nearest Shrunken Centroids",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
NSC_Test <- data.frame(NSC_Observed = PMA_PreModelling_Test_NSC$Log_Solubility_Class,
                      NSC_Predicted = predict(NSC_Tune,
                      PMA_PreModelling_Test_NSC[,!names(PMA_PreModelling_Test_NSC) %in% c("Log_Solubility_Class")],
                      type = "prob"))

NSC_Test
##     NSC_Observed NSC_Predicted.Low NSC_Predicted.High
## 1           High      0.0006451421       9.993549e-01
## 2           High      0.0002155134       9.997845e-01
## 3           High      0.0604052901       9.395947e-01
## 4           High      0.0036516100       9.963484e-01
## 5           High      0.0127876960       9.872123e-01
## 6           High      0.0003903184       9.996097e-01
## 7           High      0.0009972407       9.990028e-01
## 8           High      0.0033402920       9.966597e-01
## 9           High      0.0010627698       9.989372e-01
## 10          High      0.1138515825       8.861484e-01
## 11          High      0.0610720674       9.389279e-01
## 12          High      0.4255360697       5.744639e-01
## 13          High      0.0017229985       9.982770e-01
## 14          High      0.0020473609       9.979526e-01
## 15          High      0.0663941770       9.336058e-01
## 16          High      0.1786758840       8.213241e-01
## 17          High      0.0317688876       9.682311e-01
## 18          High      0.0013350406       9.986650e-01
## 19          High      0.0165625828       9.834374e-01
## 20          High      0.2110285968       7.889714e-01
## 21          High      0.0049303783       9.950696e-01
## 22          High      0.0041076900       9.958923e-01
## 23          High      0.0033128336       9.966872e-01
## 24          High      0.0349658408       9.650342e-01
## 25          High      0.0016530272       9.983470e-01
## 26          High      0.0740667283       9.259333e-01
## 27          High      0.0117268171       9.882732e-01
## 28          High      0.0114968940       9.885031e-01
## 29          High      0.8444140973       1.555859e-01
## 30          High      0.0362966029       9.637034e-01
## 31          High      0.9177869219       8.221308e-02
## 32          High      0.0018008068       9.981992e-01
## 33          High      0.0018414958       9.981585e-01
## 34          High      0.0262377857       9.737622e-01
## 35          High      0.0126567263       9.873433e-01
## 36          High      0.0018063539       9.981936e-01
## 37          High      0.0072185822       9.927814e-01
## 38          High      0.0020931449       9.979069e-01
## 39          High      0.0187987024       9.812013e-01
## 40          High      0.0042009170       9.957991e-01
## 41          High      0.0015451771       9.984548e-01
## 42          High      0.7900253745       2.099746e-01
## 43          High      0.0623805741       9.376194e-01
## 44          High      0.0001318583       9.998681e-01
## 45          High      0.0094873913       9.905126e-01
## 46          High      0.0039090942       9.960909e-01
## 47          High      0.0037091520       9.962908e-01
## 48          High      0.0016046890       9.983953e-01
## 49          High      0.0022270332       9.977730e-01
## 50          High      0.0208788218       9.791212e-01
## 51          High      0.0029586276       9.970414e-01
## 52          High      0.0051965990       9.948034e-01
## 53          High      0.1412080677       8.587919e-01
## 54          High      0.0027853958       9.972146e-01
## 55          High      0.0072298168       9.927702e-01
## 56          High      0.0943990696       9.056009e-01
## 57          High      0.0046030522       9.953969e-01
## 58          High      0.0705826967       9.294173e-01
## 59          High      0.0378928514       9.621071e-01
## 60          High      0.5375022873       4.624977e-01
## 61          High      0.0141514443       9.858486e-01
## 62          High      0.0044352392       9.955648e-01
## 63          High      0.0452858623       9.547141e-01
## 64          High      0.0060561748       9.939438e-01
## 65          High      0.1568926225       8.431074e-01
## 66          High      0.9603224703       3.967753e-02
## 67          High      0.2848295126       7.151705e-01
## 68          High      0.8740413066       1.259587e-01
## 69          High      0.2092377088       7.907623e-01
## 70          High      0.4545052487       5.454948e-01
## 71          High      0.1044235855       8.955764e-01
## 72          High      0.1855730399       8.144270e-01
## 73          High      0.0330928020       9.669072e-01
## 74          High      0.9306661556       6.933384e-02
## 75          High      0.0994052177       9.005948e-01
## 76          High      0.0146100639       9.853899e-01
## 77          High      0.0766221354       9.233779e-01
## 78          High      0.0104427733       9.895572e-01
## 79          High      0.0346527577       9.653472e-01
## 80          High      0.1009499622       8.990500e-01
## 81          High      0.0654556273       9.345444e-01
## 82          High      0.1117124831       8.882875e-01
## 83          High      0.0119600012       9.880400e-01
## 84          High      0.0038588189       9.961412e-01
## 85          High      0.3558402137       6.441598e-01
## 86          High      0.0045565456       9.954435e-01
## 87          High      0.8136371244       1.863629e-01
## 88          High      0.6218632759       3.781367e-01
## 89          High      0.0122704930       9.877295e-01
## 90          High      0.0243772968       9.756227e-01
## 91          High      0.1983860000       8.016140e-01
## 92          High      0.2027821824       7.972178e-01
## 93          High      0.9056529367       9.434706e-02
## 94          High      0.1587829028       8.412171e-01
## 95          High      0.0624728156       9.375272e-01
## 96          High      0.0384895305       9.615105e-01
## 97          High      0.1057861890       8.942138e-01
## 98          High      0.3845721632       6.154278e-01
## 99          High      0.0270587001       9.729413e-01
## 100         High      0.0052493149       9.947507e-01
## 101         High      0.0106982381       9.893018e-01
## 102         High      0.1165548893       8.834451e-01
## 103         High      0.3981173362       6.018827e-01
## 104         High      0.0457464643       9.542535e-01
## 105         High      0.0099848730       9.900151e-01
## 106         High      0.0504588490       9.495412e-01
## 107         High      0.9010348692       9.896513e-02
## 108         High      0.5953615657       4.046384e-01
## 109         High      0.4940206315       5.059794e-01
## 110         High      0.7847934712       2.152065e-01
## 111         High      0.1614638537       8.385361e-01
## 112         High      0.8241775179       1.758225e-01
## 113         High      0.1280848277       8.719152e-01
## 114         High      0.7593350386       2.406650e-01
## 115         High      0.9873332495       1.266675e-02
## 116         High      0.9318522720       6.814773e-02
## 117         High      0.8966058414       1.033942e-01
## 118         High      0.0044359562       9.955640e-01
## 119          Low      0.7059862458       2.940138e-01
## 120          Low      0.9992039934       7.960066e-04
## 121          Low      0.9254749153       7.452508e-02
## 122          Low      0.0614419655       9.385580e-01
## 123          Low      0.8216358132       1.783642e-01
## 124          Low      0.0145674300       9.854326e-01
## 125          Low      0.7790689837       2.209310e-01
## 126          Low      0.3265989491       6.734011e-01
## 127          Low      0.0216945436       9.783055e-01
## 128          Low      0.1944302765       8.055697e-01
## 129          Low      0.0282641441       9.717359e-01
## 130          Low      0.9870327120       1.296729e-02
## 131          Low      0.1769263234       8.230737e-01
## 132          Low      0.6147460621       3.852539e-01
## 133          Low      0.9670585597       3.294144e-02
## 134          Low      0.4175143677       5.824856e-01
## 135          Low      0.0060725476       9.939275e-01
## 136          Low      0.2789407323       7.210593e-01
## 137          Low      0.7864057952       2.135942e-01
## 138          Low      0.1817168682       8.182831e-01
## 139          Low      0.0458896309       9.541104e-01
## 140          Low      0.8360770959       1.639229e-01
## 141          Low      0.6099989237       3.900011e-01
## 142          Low      0.9408002570       5.919974e-02
## 143          Low      0.9971660007       2.833999e-03
## 144          Low      0.6743596806       3.256403e-01
## 145          Low      0.6514118409       3.485882e-01
## 146          Low      0.6576481694       3.423518e-01
## 147          Low      0.8914030599       1.085969e-01
## 148          Low      0.6621449861       3.378550e-01
## 149          Low      0.0177509658       9.822490e-01
## 150          Low      0.9491547834       5.084522e-02
## 151          Low      0.5203157974       4.796842e-01
## 152          Low      0.9961080716       3.891928e-03
## 153          Low      0.0095049175       9.904951e-01
## 154          Low      0.1853892874       8.146107e-01
## 155          Low      0.8740987088       1.259013e-01
## 156          Low      0.9674183514       3.258165e-02
## 157          Low      0.8946839739       1.053160e-01
## 158          Low      0.9999337235       6.627646e-05
## 159          Low      0.0447853229       9.552147e-01
## 160          Low      0.9939275185       6.072482e-03
## 161          Low      0.9129391235       8.706088e-02
## 162          Low      0.9957596197       4.240380e-03
## 163          Low      0.2242162462       7.757838e-01
## 164          Low      0.7539654647       2.460345e-01
## 165          Low      0.9966972430       3.302757e-03
## 166          Low      0.3112479576       6.887520e-01
## 167          Low      0.9991233346       8.766654e-04
## 168          Low      0.6520699832       3.479300e-01
## 169          Low      0.6785401780       3.214598e-01
## 170          Low      0.9785772776       2.142272e-02
## 171          Low      0.1502065053       8.497935e-01
## 172          Low      0.1152558521       8.847441e-01
## 173          Low      0.9943281827       5.671817e-03
## 174          Low      0.0549368462       9.450632e-01
## 175          Low      0.9896569892       1.034301e-02
## 176          Low      0.9642378155       3.576218e-02
## 177          Low      0.7790371001       2.209629e-01
## 178          Low      0.9972559255       2.744074e-03
## 179          Low      0.9971255101       2.874490e-03
## 180          Low      0.0767808327       9.232192e-01
## 181          Low      0.4301839881       5.698160e-01
## 182          Low      0.8580215080       1.419785e-01
## 183          Low      0.6163950576       3.836049e-01
## 184          Low      0.0692678605       9.307321e-01
## 185          Low      0.9942257577       5.774242e-03
## 186          Low      0.9919312293       8.068771e-03
## 187          Low      0.8021939594       1.978060e-01
## 188          Low      0.9940449615       5.955038e-03
## 189          Low      0.9992009255       7.990745e-04
## 190          Low      0.9858106244       1.418938e-02
## 191          Low      0.9988732188       1.126781e-03
## 192          Low      0.8293315437       1.706685e-01
## 193          Low      0.9982746009       1.725399e-03
## 194          Low      0.9977498074       2.250193e-03
## 195          Low      0.5610525943       4.389474e-01
## 196          Low      0.9847347160       1.526528e-02
## 197          Low      0.9795852037       2.041480e-02
## 198          Low      0.9945028341       5.497166e-03
## 199          Low      0.9874691327       1.253087e-02
## 200          Low      0.9927605623       7.239438e-03
## 201          Low      0.9938890399       6.110960e-03
## 202          Low      0.9998255334       1.744666e-04
## 203          Low      0.9998620929       1.379071e-04
## 204          Low      0.9995375420       4.624580e-04
## 205          Low      0.9428008480       5.719915e-02
## 206          Low      0.9604329765       3.956702e-02
## 207          Low      0.9933658354       6.634165e-03
## 208          Low      0.9596194312       4.038057e-02
## 209          Low      0.9833061545       1.669385e-02
## 210          Low      0.9982821586       1.717841e-03
## 211          Low      0.9997679953       2.320047e-04
## 212          Low      0.9999084539       9.154606e-05
## 213          Low      0.9997814480       2.185520e-04
## 214          Low      0.9998359264       1.640736e-04
## 215          Low      0.9983247200       1.675280e-03
## 216          Low      0.9999608221       3.917790e-05
## 217         High      0.0074646417       9.925354e-01
## 218         High      0.0005760025       9.994240e-01
## 219         High      0.0002649070       9.997351e-01
## 220         High      0.0008848922       9.991151e-01
## 221         High      0.0187393374       9.812607e-01
## 222         High      0.0007936273       9.992064e-01
## 223         High      0.0021676805       9.978323e-01
## 224         High      0.0023409681       9.976590e-01
## 225         High      0.7194570709       2.805429e-01
## 226         High      0.1901781286       8.098219e-01
## 227         High      0.0030597464       9.969403e-01
## 228         High      0.0356846918       9.643153e-01
## 229         High      0.0010122283       9.989878e-01
## 230         High      0.5725853361       4.274147e-01
## 231         High      0.0062145433       9.937855e-01
## 232         High      0.0090779468       9.909221e-01
## 233         High      0.0044657553       9.955342e-01
## 234         High      0.0553769178       9.446231e-01
## 235         High      0.0045671499       9.954329e-01
## 236         High      0.1905650501       8.094349e-01
## 237         High      0.1689928956       8.310071e-01
## 238         High      0.4297281313       5.702719e-01
## 239         High      0.1412080677       8.587919e-01
## 240         High      0.0227777896       9.772222e-01
## 241         High      0.0030204347       9.969796e-01
## 242         High      0.0024685397       9.975315e-01
## 243         High      0.0043818648       9.956181e-01
## 244         High      0.4988962890       5.011037e-01
## 245         High      0.8989197706       1.010802e-01
## 246         High      0.0245100099       9.754900e-01
## 247         High      0.0047309052       9.952691e-01
## 248         High      0.0393670009       9.606330e-01
## 249         High      0.0120412984       9.879587e-01
## 250         High      0.0137409392       9.862591e-01
## 251         High      0.0918186102       9.081814e-01
## 252         High      0.1189486505       8.810513e-01
## 253         High      0.0846307230       9.153693e-01
## 254         High      0.9048304888       9.516951e-02
## 255         High      0.0240351907       9.759648e-01
## 256         High      0.4969369759       5.030630e-01
## 257         High      0.0298939066       9.701061e-01
## 258         High      0.4463491338       5.536509e-01
## 259         High      0.7813977296       2.186023e-01
## 260         High      0.0335418128       9.664582e-01
## 261         High      0.0145031733       9.854968e-01
## 262         High      0.2216389279       7.783611e-01
## 263         High      0.0209186265       9.790814e-01
## 264         High      0.4445345695       5.554654e-01
## 265         High      0.9826378538       1.736215e-02
## 266         High      0.6162120467       3.837880e-01
## 267         High      0.1556435022       8.443565e-01
## 268         High      0.0041259382       9.958741e-01
## 269          Low      0.1455014205       8.544986e-01
## 270          Low      0.8193065276       1.806935e-01
## 271          Low      0.1894942278       8.105058e-01
## 272          Low      0.6812582118       3.187418e-01
## 273          Low      0.9760506062       2.394939e-02
## 274          Low      0.5606332084       4.393668e-01
## 275          Low      0.2634212741       7.365787e-01
## 276          Low      0.9661276096       3.387239e-02
## 277          Low      0.9173573191       8.264268e-02
## 278          Low      0.1691964809       8.308035e-01
## 279          Low      0.9620030679       3.799693e-02
## 280          Low      0.3233319475       6.766681e-01
## 281          Low      0.0064495468       9.935505e-01
## 282          Low      0.9929135607       7.086439e-03
## 283          Low      0.8862071821       1.137928e-01
## 284          Low      0.7476439656       2.523560e-01
## 285          Low      0.0496836908       9.503163e-01
## 286          Low      0.9969648465       3.035153e-03
## 287          Low      0.0985066882       9.014933e-01
## 288          Low      0.9891470074       1.085299e-02
## 289          Low      0.8991985373       1.008015e-01
## 290          Low      0.9142758333       8.572417e-02
## 291          Low      0.9980491267       1.950873e-03
## 292          Low      0.9279022519       7.209775e-02
## 293          Low      0.2618544740       7.381455e-01
## 294          Low      0.9967399616       3.260038e-03
## 295          Low      0.9975933704       2.406630e-03
## 296          Low      0.8878077878       1.121922e-01
## 297          Low      0.9916684411       8.331559e-03
## 298          Low      0.9940168300       5.983170e-03
## 299          Low      0.8658837237       1.341163e-01
## 300          Low      0.9169678611       8.303214e-02
## 301          Low      0.9927222315       7.277768e-03
## 302          Low      0.9913736647       8.626335e-03
## 303          Low      0.9994443946       5.556054e-04
## 304          Low      0.9664330235       3.356698e-02
## 305          Low      0.9688445020       3.115550e-02
## 306          Low      0.9999072373       9.276269e-05
## 307          Low      0.9998272440       1.727560e-04
## 308          Low      0.9998760262       1.239738e-04
## 309          Low      0.9928194694       7.180531e-03
## 310          Low      0.9923710166       7.628983e-03
## 311          Low      0.9997797378       2.202622e-04
## 312          Low      0.9999309292       6.907076e-05
## 313         High      0.0487302695       9.512697e-01
## 314         High      0.8691458723       1.308541e-01
## 315          Low      0.9791566576       2.084334e-02
## 316         High      0.5663955060       4.336045e-01
##################################
# Reporting the independent evaluation results
# for the test set
##################################
NSC_Test_ROC <- roc(response = NSC_Test$NSC_Observed,
             predictor = NSC_Test$NSC_Predicted.High,
             levels = rev(levels(NSC_Test$NSC_Observed)))

(NSC_Test_ROCCurveAUC <- auc(NSC_Test_ROC)[1])
## [1] 0.8877077

1.5.7 Averaged Neural Network (AVNN)


[A] The averaged neural network model from the nnet package was implemented through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] size = number of hidden units made to vary across a range of values equal to 1 to 13
     [B.2] decay = weight decay made to vary across a range of values equal to 0.00 to 0.10
     [B.3] bag = bagging held constant at a value of FALSE

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves size=13, decay=0 and bag=FALSE
     [C.2] ROC Curve AUC = 0.91577

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.91891
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_AVNN <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_AVNN$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_AVNN)
## [1] 951 221
PMA_PreModelling_Test_AVNN <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_AVNN$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_AVNN)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_AVNN$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
AVNN_Grid = expand.grid(decay = c(0.00, 0.01, 0.10), 
                        size = c(1, 5, 9, 13), 
                        bag = FALSE)
maxSize <- max(AVNN_Grid$size)

##################################
# Running the averaged neural network model
# by setting the caret method to 'avNNet'
##################################
set.seed(12345678)
AVNN_Tune <- train(x = PMA_PreModelling_Train_AVNN[,!names(PMA_PreModelling_Train_AVNN) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_AVNN$Log_Solubility_Class,
                 method = "avNNet",
                 tuneGrid = AVNN_Grid,
                 metric = "ROC",                 
                 preProc = c("center", "scale"),
                 trControl = KFold_Control,
                 maxit = 5,
                 repeats = 10,
                 allowParallel = FALSE,
                 MaxNWts = 10*(maxSize * (length(PMA_PreModelling_Train_AVNN) + 1) + maxSize + 1),
                 trace = FALSE)

##################################
# Reporting the cross-validation results
# for the train set
##################################
AVNN_Tune
## Model Averaged Neural Network 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  ROC        Sens       Spec     
##   0.00    1    0.8825921  0.7633444  0.8016691
##   0.00    5    0.9031602  0.8055371  0.8283019
##   0.00    9    0.9038488  0.8431340  0.8189405
##   0.00   13    0.9157703  0.8431340  0.8130987
##   0.01    1    0.8954928  0.7797342  0.8264514
##   0.01    5    0.9082890  0.8125692  0.8398766
##   0.01    9    0.9109317  0.8101883  0.8304790
##   0.01   13    0.9143824  0.8314507  0.8208999
##   0.10    1    0.8898842  0.7727575  0.8169811
##   0.10    5    0.9112202  0.8055925  0.8302975
##   0.10    9    0.9151277  0.8335548  0.8169448
##   0.10   13    0.9100212  0.8361573  0.8132075
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were size = 13, decay = 0 and bag = FALSE.
AVNN_Tune$finalModel
## Model Averaged Neural Network with 10 Repeats  
## 
## a 220-13-2 network with 2901 weights
## options were -
AVNN_Tune$results
##    decay size   bag       ROC      Sens      Spec      ROCSD     SensSD
## 1   0.00    1 FALSE 0.8825921 0.7633444 0.8016691 0.04823911 0.08305738
## 5   0.01    1 FALSE 0.8954928 0.7797342 0.8264514 0.03014815 0.05618559
## 9   0.10    1 FALSE 0.8898842 0.7727575 0.8169811 0.03692104 0.06246770
## 2   0.00    5 FALSE 0.9031602 0.8055371 0.8283019 0.03633354 0.06987663
## 6   0.01    5 FALSE 0.9082890 0.8125692 0.8398766 0.03021656 0.05753685
## 10  0.10    5 FALSE 0.9112202 0.8055925 0.8302975 0.02411834 0.06593744
## 3   0.00    9 FALSE 0.9038488 0.8431340 0.8189405 0.03203737 0.02884734
## 7   0.01    9 FALSE 0.9109317 0.8101883 0.8304790 0.02572001 0.06094991
## 11  0.10    9 FALSE 0.9151277 0.8335548 0.8169448 0.02549665 0.04102289
## 4   0.00   13 FALSE 0.9157703 0.8431340 0.8130987 0.02920262 0.04522834
## 8   0.01   13 FALSE 0.9143824 0.8314507 0.8208999 0.02699052 0.05335330
## 12  0.10   13 FALSE 0.9100212 0.8361573 0.8132075 0.02657216 0.06021816
##        SpecSD
## 1  0.05745084
## 5  0.04742283
## 9  0.06285986
## 2  0.04474555
## 6  0.06106486
## 10 0.05037463
## 3  0.06463390
## 7  0.05517753
## 11 0.06163075
## 4  0.05019146
## 8  0.05725751
## 12 0.05339363
(AVNN_Train_ROCCurveAUC <- AVNN_Tune$results[AVNN_Tune$results$decay==AVNN_Tune$bestTune$decay &
                              AVNN_Tune$results$size==AVNN_Tune$bestTune$size,
                              c("ROC")])
## [1] 0.9157703
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
AVNN_Test <- data.frame(AVNN_Observed = PMA_PreModelling_Test_AVNN$Log_Solubility_Class,
                      AVNN_Predicted = predict(AVNN_Tune,
                      PMA_PreModelling_Test_AVNN[,!names(PMA_PreModelling_Test_AVNN) %in% c("Log_Solubility_Class")],
                      type = "prob"))

AVNN_Test
##     AVNN_Observed AVNN_Predicted.Low AVNN_Predicted.High
## 1            High        0.009075436         0.990924564
## 2            High        0.002944622         0.997055378
## 3            High        0.120949889         0.879050111
## 4            High        0.004360401         0.995639599
## 5            High        0.002530240         0.997469760
## 6            High        0.007328969         0.992671031
## 7            High        0.006755470         0.993244530
## 8            High        0.013689319         0.986310681
## 9            High        0.006965524         0.993034476
## 10           High        0.174618767         0.825381233
## 11           High        0.097733727         0.902266273
## 12           High        0.059870171         0.940129829
## 13           High        0.003443345         0.996556655
## 14           High        0.004401860         0.995598140
## 15           High        0.004528048         0.995471952
## 16           High        0.106837453         0.893162547
## 17           High        0.009407477         0.990592523
## 18           High        0.006085903         0.993914097
## 19           High        0.011945235         0.988054765
## 20           High        0.148692361         0.851307639
## 21           High        0.004952876         0.995047124
## 22           High        0.007359064         0.992640936
## 23           High        0.005392134         0.994607866
## 24           High        0.006147565         0.993852435
## 25           High        0.004287563         0.995712437
## 26           High        0.103695157         0.896304843
## 27           High        0.014464923         0.985535077
## 28           High        0.003150246         0.996849754
## 29           High        0.336209602         0.663790398
## 30           High        0.103845044         0.896154956
## 31           High        0.766407311         0.233592689
## 32           High        0.007338751         0.992661249
## 33           High        0.009850246         0.990149754
## 34           High        0.006757652         0.993242348
## 35           High        0.006119217         0.993880783
## 36           High        0.003803251         0.996196749
## 37           High        0.001946729         0.998053271
## 38           High        0.008730696         0.991269304
## 39           High        0.003916729         0.996083271
## 40           High        0.138297066         0.861702934
## 41           High        0.007588491         0.992411509
## 42           High        0.537740645         0.462259355
## 43           High        0.005859229         0.994140771
## 44           High        0.003143247         0.996856753
## 45           High        0.022090133         0.977909867
## 46           High        0.007417016         0.992582984
## 47           High        0.143086112         0.856913888
## 48           High        0.007486543         0.992513457
## 49           High        0.004759311         0.995240689
## 50           High        0.005310054         0.994689946
## 51           High        0.003430125         0.996569875
## 52           High        0.097227199         0.902772801
## 53           High        0.175058016         0.824941984
## 54           High        0.002699461         0.997300539
## 55           High        0.005105070         0.994894930
## 56           High        0.096284498         0.903715502
## 57           High        0.007098666         0.992901334
## 58           High        0.017945253         0.982054747
## 59           High        0.004957684         0.995042316
## 60           High        0.264928660         0.735071340
## 61           High        0.004058279         0.995941721
## 62           High        0.007466087         0.992533913
## 63           High        0.266659463         0.733340537
## 64           High        0.079682139         0.920317861
## 65           High        0.186007170         0.813992830
## 66           High        0.813179759         0.186820241
## 67           High        0.141694451         0.858305549
## 68           High        0.698236559         0.301763441
## 69           High        0.113000750         0.886999250
## 70           High        0.417179252         0.582820748
## 71           High        0.337626196         0.662373804
## 72           High        0.568569667         0.431430333
## 73           High        0.170029205         0.829970795
## 74           High        0.686700275         0.313299725
## 75           High        0.013092929         0.986907071
## 76           High        0.106731512         0.893268488
## 77           High        0.093654862         0.906345138
## 78           High        0.344117963         0.655882037
## 79           High        0.002205824         0.997794176
## 80           High        0.029881152         0.970118848
## 81           High        0.098471764         0.901528236
## 82           High        0.394384227         0.605615773
## 83           High        0.141720266         0.858279734
## 84           High        0.223804977         0.776195023
## 85           High        0.249279133         0.750720867
## 86           High        0.010527973         0.989472027
## 87           High        0.810175908         0.189824092
## 88           High        0.552555425         0.447444575
## 89           High        0.107618410         0.892381590
## 90           High        0.598790410         0.401209590
## 91           High        0.200249679         0.799750321
## 92           High        0.282986054         0.717013946
## 93           High        0.822438938         0.177561062
## 94           High        0.010938512         0.989061488
## 95           High        0.002820357         0.997179643
## 96           High        0.007690156         0.992309844
## 97           High        0.208094813         0.791905187
## 98           High        0.719580524         0.280419476
## 99           High        0.012585343         0.987414657
## 100          High        0.008075974         0.991924026
## 101          High        0.103288044         0.896711956
## 102          High        0.020032298         0.979967702
## 103          High        0.632304782         0.367695218
## 104          High        0.004501042         0.995498958
## 105          High        0.313829024         0.686170976
## 106          High        0.296321202         0.703678798
## 107          High        0.822085490         0.177914510
## 108          High        0.549958394         0.450041606
## 109          High        0.336331608         0.663668392
## 110          High        0.523107591         0.476892409
## 111          High        0.381149366         0.618850634
## 112          High        0.479999448         0.520000552
## 113          High        0.189134163         0.810865837
## 114          High        0.483475421         0.516524579
## 115          High        0.950883244         0.049116756
## 116          High        0.954042752         0.045957248
## 117          High        0.866967004         0.133032996
## 118          High        0.035026921         0.964973079
## 119           Low        0.569080628         0.430919372
## 120           Low        0.991079622         0.008920378
## 121           Low        0.801670314         0.198329686
## 122           Low        0.005837367         0.994162633
## 123           Low        0.297516821         0.702483179
## 124           Low        0.359954354         0.640045646
## 125           Low        0.865007196         0.134992804
## 126           Low        0.552498446         0.447501554
## 127           Low        0.630630401         0.369369599
## 128           Low        0.710578213         0.289421787
## 129           Low        0.664424133         0.335575867
## 130           Low        0.895714354         0.104285646
## 131           Low        0.705155838         0.294844162
## 132           Low        0.615764404         0.384235596
## 133           Low        0.398149695         0.601850305
## 134           Low        0.326874324         0.673125676
## 135           Low        0.096484781         0.903515219
## 136           Low        0.650125491         0.349874509
## 137           Low        0.415013242         0.584986758
## 138           Low        0.256066779         0.743933221
## 139           Low        0.373451165         0.626548835
## 140           Low        0.588616318         0.411383682
## 141           Low        0.367825448         0.632174552
## 142           Low        0.816695293         0.183304707
## 143           Low        0.900477008         0.099522992
## 144           Low        0.615471125         0.384528875
## 145           Low        0.310983064         0.689016936
## 146           Low        0.471079329         0.528920671
## 147           Low        0.683190008         0.316809992
## 148           Low        0.398246317         0.601753683
## 149           Low        0.561994019         0.438005981
## 150           Low        0.867969902         0.132030098
## 151           Low        0.139592417         0.860407583
## 152           Low        0.897505020         0.102494980
## 153           Low        0.222542930         0.777457070
## 154           Low        0.652124075         0.347875925
## 155           Low        0.763285255         0.236714745
## 156           Low        0.852191101         0.147808899
## 157           Low        0.979114971         0.020885029
## 158           Low        0.980680743         0.019319257
## 159           Low        0.682693263         0.317306737
## 160           Low        0.934434448         0.065565552
## 161           Low        0.988813155         0.011186845
## 162           Low        0.985170236         0.014829764
## 163           Low        0.561722689         0.438277311
## 164           Low        0.529687344         0.470312656
## 165           Low        0.880466244         0.119533756
## 166           Low        0.557602714         0.442397286
## 167           Low        0.990018944         0.009981056
## 168           Low        0.255264410         0.744735590
## 169           Low        0.755008957         0.244991043
## 170           Low        0.887894984         0.112105016
## 171           Low        0.674465565         0.325534435
## 172           Low        0.744033065         0.255966935
## 173           Low        0.897913791         0.102086209
## 174           Low        0.717913850         0.282086150
## 175           Low        0.996303935         0.003696065
## 176           Low        0.887444283         0.112555717
## 177           Low        0.939322895         0.060677105
## 178           Low        0.989788417         0.010211583
## 179           Low        0.897013874         0.102986126
## 180           Low        0.384885532         0.615114468
## 181           Low        0.731574430         0.268425570
## 182           Low        0.778395662         0.221604338
## 183           Low        0.894815890         0.105184110
## 184           Low        0.701334314         0.298665686
## 185           Low        0.899067018         0.100932982
## 186           Low        0.989790504         0.010209496
## 187           Low        0.824883585         0.175116415
## 188           Low        0.986866571         0.013133429
## 189           Low        0.994913828         0.005086172
## 190           Low        0.993800770         0.006199230
## 191           Low        0.987219387         0.012780613
## 192           Low        0.507825554         0.492174446
## 193           Low        0.899939225         0.100060775
## 194           Low        0.899326361         0.100673639
## 195           Low        0.874349477         0.125650523
## 196           Low        0.973386424         0.026613576
## 197           Low        0.911455492         0.088544508
## 198           Low        0.895363619         0.104636381
## 199           Low        0.990973339         0.009026661
## 200           Low        0.985734911         0.014265089
## 201           Low        0.995881769         0.004118231
## 202           Low        0.995914764         0.004085236
## 203           Low        0.995940958         0.004059042
## 204           Low        0.993390192         0.006609808
## 205           Low        0.983421801         0.016578199
## 206           Low        0.994878465         0.005121535
## 207           Low        0.985656058         0.014343942
## 208           Low        0.994716193         0.005283807
## 209           Low        0.994681182         0.005318818
## 210           Low        0.995647095         0.004352905
## 211           Low        0.995819938         0.004180062
## 212           Low        0.995290402         0.004709598
## 213           Low        0.995391222         0.004608778
## 214           Low        0.995480922         0.004519078
## 215           Low        0.995537067         0.004462933
## 216           Low        0.995869516         0.004130484
## 217          High        0.006026996         0.993973004
## 218          High        0.004411564         0.995588436
## 219          High        0.002139601         0.997860399
## 220          High        0.058151022         0.941848978
## 221          High        0.006360488         0.993639512
## 222          High        0.005465205         0.994534795
## 223          High        0.007255526         0.992744474
## 224          High        0.250087404         0.749912596
## 225          High        0.309226197         0.690773803
## 226          High        0.204247726         0.795752274
## 227          High        0.159565110         0.840434890
## 228          High        0.004113367         0.995886633
## 229          High        0.003679028         0.996320972
## 230          High        0.790100572         0.209899428
## 231          High        0.407797303         0.592202697
## 232          High        0.038174772         0.961825228
## 233          High        0.002674115         0.997325885
## 234          High        0.005153756         0.994846244
## 235          High        0.095573250         0.904426750
## 236          High        0.198286647         0.801713353
## 237          High        0.329173015         0.670826985
## 238          High        0.121933600         0.878066400
## 239          High        0.175058016         0.824941984
## 240          High        0.002645853         0.997354147
## 241          High        0.007852475         0.992147525
## 242          High        0.044277316         0.955722684
## 243          High        0.006166807         0.993833193
## 244          High        0.341122006         0.658877994
## 245          High        0.673324477         0.326675523
## 246          High        0.004352136         0.995647864
## 247          High        0.004933736         0.995066264
## 248          High        0.006821772         0.993178228
## 249          High        0.005675419         0.994324581
## 250          High        0.485817279         0.514182721
## 251          High        0.012741559         0.987258441
## 252          High        0.006290356         0.993709644
## 253          High        0.008985404         0.991014596
## 254          High        0.911929061         0.088070939
## 255          High        0.026033341         0.973966659
## 256          High        0.280310993         0.719689007
## 257          High        0.004463459         0.995536541
## 258          High        0.232723781         0.767276219
## 259          High        0.874515083         0.125484917
## 260          High        0.050109251         0.949890749
## 261          High        0.529592219         0.470407781
## 262          High        0.487200246         0.512799754
## 263          High        0.103041452         0.896958548
## 264          High        0.336990809         0.663009191
## 265          High        0.890062718         0.109937282
## 266          High        0.279658013         0.720341987
## 267          High        0.223686714         0.776313286
## 268          High        0.006605181         0.993394819
## 269           Low        0.246234335         0.753765665
## 270           Low        0.347222737         0.652777263
## 271           Low        0.228226898         0.771773102
## 272           Low        0.449215912         0.550784088
## 273           Low        0.989648820         0.010351180
## 274           Low        0.465773474         0.534226526
## 275           Low        0.068267004         0.931732996
## 276           Low        0.881949821         0.118050179
## 277           Low        0.882361787         0.117638213
## 278           Low        0.074214663         0.925785337
## 279           Low        0.804232169         0.195767831
## 280           Low        0.518691729         0.481308271
## 281           Low        0.063739985         0.936260015
## 282           Low        0.823653944         0.176346056
## 283           Low        0.815584437         0.184415563
## 284           Low        0.795450584         0.204549416
## 285           Low        0.718046669         0.281953331
## 286           Low        0.892604378         0.107395622
## 287           Low        0.682328014         0.317671986
## 288           Low        0.831105136         0.168894864
## 289           Low        0.885485881         0.114514119
## 290           Low        0.990790735         0.009209265
## 291           Low        0.894011737         0.105988263
## 292           Low        0.892802085         0.107197915
## 293           Low        0.674065334         0.325934666
## 294           Low        0.982227171         0.017772829
## 295           Low        0.902003530         0.097996470
## 296           Low        0.708922980         0.291077020
## 297           Low        0.985059570         0.014940430
## 298           Low        0.903843459         0.096156541
## 299           Low        0.971104017         0.028895983
## 300           Low        0.974406933         0.025593067
## 301           Low        0.985666050         0.014333950
## 302           Low        0.994123530         0.005876470
## 303           Low        0.991671889         0.008328111
## 304           Low        0.986853368         0.013146632
## 305           Low        0.887901979         0.112098021
## 306           Low        0.995871839         0.004128161
## 307           Low        0.995850649         0.004149351
## 308           Low        0.995524417         0.004475583
## 309           Low        0.993028443         0.006971557
## 310           Low        0.995483995         0.004516005
## 311           Low        0.992808106         0.007191894
## 312           Low        0.995883893         0.004116107
## 313          High        0.008963637         0.991036363
## 314          High        0.589683065         0.410316935
## 315           Low        0.815388827         0.184611173
## 316          High        0.879467490         0.120532510
##################################
# Reporting the independent evaluation results
# for the test set
##################################
AVNN_Test_ROC <- roc(response = AVNN_Test$AVNN_Observed,
             predictor = AVNN_Test$AVNN_Predicted.High,
             levels = rev(levels(AVNN_Test$AVNN_Observed)))

(AVNN_Test_ROCCurveAUC <- auc(AVNN_Test_ROC)[1])
## [1] 0.9189135

1.5.8 Support Vector Machine - Radial Basis Function Kernel (SVM_R)


[A] The support vector machine (radial basis function kernel) model from the kernlab package was implemented through the caret package.

[B] The model contains 2 hyperparameters:
     [B.1] sigma = sigma held constant at a value of 0.00285
     [B.2] C = cost made to vary across a range of 14 default values

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves sigma=0.00285 and C=2048
     [C.2] ROC Curve AUC = 0.95514

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.95016
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_SVM_R <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_SVM_R$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_SVM_R)
## [1] 951 221
PMA_PreModelling_Test_SVM_R <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_SVM_R$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_SVM_R)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_SVM_R$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# used a range of default values

##################################
# Running the support vector machine (radial basis function kernel) model
# by setting the caret method to 'svmRadial'
##################################
set.seed(12345678)
SVM_R_Tune <- train(x = PMA_PreModelling_Train_SVM_R[,!names(PMA_PreModelling_Train_SVM_R) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_SVM_R$Log_Solubility_Class,
                 method = "svmRadial",
                 tuneLength = 14,
                 metric = "ROC",                 
                 preProc = c("center", "scale"),
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
SVM_R_Tune
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   C        ROC        Sens       Spec     
##      0.25  0.9225768  0.8265227  0.8264151
##      0.50  0.9342063  0.8358250  0.8570029
##      1.00  0.9407996  0.8592470  0.8628084
##      2.00  0.9399949  0.8522148  0.8609216
##      4.00  0.9415450  0.8498893  0.8627358
##      8.00  0.9432946  0.8501107  0.8760522
##     16.00  0.9463556  0.8477298  0.8798621
##     32.00  0.9497924  0.8640642  0.8893324
##     64.00  0.9530000  0.8664452  0.8835631
##    128.00  0.9549537  0.8663344  0.8778665
##    256.00  0.9550376  0.8733666  0.8836720
##    512.00  0.9548026  0.8756921  0.8798258
##   1024.00  0.9550544  0.8638981  0.8874819
##   2048.00  0.9551422  0.8734219  0.8779028
## 
## Tuning parameter 'sigma' was held constant at a value of 0.002858301
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.002858301 and C = 2048.
SVM_R_Tune$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: C-svc  (classification) 
##  parameter : cost C = 2048 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.00285830098890164 
## 
## Number of Support Vectors : 291 
## 
## Objective Function Value : -3693.276 
## Training error : 0 
## Probability model included.
SVM_R_Tune$results
##          sigma       C       ROC      Sens      Spec      ROCSD     SensSD
## 1  0.002858301    0.25 0.9225768 0.8265227 0.8264151 0.02509293 0.06472858
## 2  0.002858301    0.50 0.9342063 0.8358250 0.8570029 0.02213186 0.07345896
## 3  0.002858301    1.00 0.9407996 0.8592470 0.8628084 0.02005568 0.06645585
## 4  0.002858301    2.00 0.9399949 0.8522148 0.8609216 0.01956500 0.07184322
## 5  0.002858301    4.00 0.9415450 0.8498893 0.8627358 0.01971806 0.07861746
## 6  0.002858301    8.00 0.9432946 0.8501107 0.8760522 0.01940473 0.08869159
## 7  0.002858301   16.00 0.9463556 0.8477298 0.8798621 0.01801010 0.06878890
## 8  0.002858301   32.00 0.9497924 0.8640642 0.8893324 0.01615007 0.06305448
## 9  0.002858301   64.00 0.9530000 0.8664452 0.8835631 0.01542028 0.06220900
## 10 0.002858301  128.00 0.9549537 0.8663344 0.8778665 0.01562122 0.06722412
## 11 0.002858301  256.00 0.9550376 0.8733666 0.8836720 0.01940156 0.05888913
## 12 0.002858301  512.00 0.9548026 0.8756921 0.8798258 0.02017246 0.05878213
## 13 0.002858301 1024.00 0.9550544 0.8638981 0.8874819 0.02025362 0.05562805
## 14 0.002858301 2048.00 0.9551422 0.8734219 0.8779028 0.02019085 0.05097821
##        SpecSD
## 1  0.05221581
## 2  0.04712527
## 3  0.05009315
## 4  0.06492702
## 5  0.06183544
## 6  0.06440586
## 7  0.06613147
## 8  0.05976556
## 9  0.07032273
## 10 0.06892971
## 11 0.05927357
## 12 0.06044189
## 13 0.06266413
## 14 0.05850801
(SVM_R_Train_ROCCurveAUC <- SVM_R_Tune$results[SVM_R_Tune$results$C==SVM_R_Tune$bestTune$C,
                              c("ROC")])
## [1] 0.9551422
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
SVM_R_Test <- data.frame(SVM_R_Observed = PMA_PreModelling_Test_SVM_R$Log_Solubility_Class,
                      SVM_R_Predicted = predict(SVM_R_Tune,
                      PMA_PreModelling_Test_SVM_R[,!names(PMA_PreModelling_Test_SVM_R) %in% c("Log_Solubility_Class")],
                      type = "prob"))

SVM_R_Test
##     SVM_R_Observed SVM_R_Predicted.Low SVM_R_Predicted.High
## 1             High        1.790338e-06         9.999982e-01
## 2             High        1.401401e-06         9.999986e-01
## 3             High        3.070497e-02         9.692950e-01
## 4             High        5.885393e-04         9.994115e-01
## 5             High        1.412513e-03         9.985875e-01
## 6             High        7.891937e-06         9.999921e-01
## 7             High        5.940047e-06         9.999941e-01
## 8             High        1.389587e-05         9.999861e-01
## 9             High        8.417733e-07         9.999992e-01
## 10            High        1.493140e-01         8.506860e-01
## 11            High        1.474211e-01         8.525789e-01
## 12            High        3.703014e-02         9.629699e-01
## 13            High        2.573903e-05         9.999743e-01
## 14            High        7.036197e-04         9.992964e-01
## 15            High        1.214928e-02         9.878507e-01
## 16            High        1.662077e-02         9.833792e-01
## 17            High        9.884031e-04         9.990116e-01
## 18            High        1.720732e-05         9.999828e-01
## 19            High        2.102219e-02         9.789778e-01
## 20            High        7.487314e-02         9.251269e-01
## 21            High        1.165631e-03         9.988344e-01
## 22            High        3.126503e-04         9.996873e-01
## 23            High        7.320716e-03         9.926793e-01
## 24            High        2.565070e-03         9.974349e-01
## 25            High        1.035838e-02         9.896416e-01
## 26            High        3.155826e-03         9.968442e-01
## 27            High        3.672396e-04         9.996328e-01
## 28            High        1.509500e-03         9.984905e-01
## 29            High        5.837291e-01         4.162709e-01
## 30            High        3.113714e-03         9.968863e-01
## 31            High        6.568343e-01         3.431657e-01
## 32            High        5.136522e-05         9.999486e-01
## 33            High        5.469666e-05         9.999453e-01
## 34            High        2.372483e-03         9.976275e-01
## 35            High        3.047678e-03         9.969523e-01
## 36            High        3.782893e-03         9.962171e-01
## 37            High        3.858738e-04         9.996141e-01
## 38            High        6.375107e-04         9.993625e-01
## 39            High        5.176126e-03         9.948239e-01
## 40            High        2.224643e-03         9.977754e-01
## 41            High        3.428776e-05         9.999657e-01
## 42            High        1.469633e-01         8.530367e-01
## 43            High        2.045998e-02         9.795400e-01
## 44            High        3.285844e-05         9.999671e-01
## 45            High        7.503964e-03         9.924960e-01
## 46            High        1.445430e-02         9.855457e-01
## 47            High        1.312678e-03         9.986873e-01
## 48            High        3.354200e-03         9.966458e-01
## 49            High        2.012428e-03         9.979876e-01
## 50            High        7.207037e-03         9.927930e-01
## 51            High        5.629299e-03         9.943707e-01
## 52            High        1.186335e-03         9.988137e-01
## 53            High        1.354083e-01         8.645917e-01
## 54            High        6.490681e-02         9.350932e-01
## 55            High        4.110389e-01         5.889611e-01
## 56            High        2.482932e-02         9.751707e-01
## 57            High        2.696183e-02         9.730382e-01
## 58            High        2.262801e-02         9.773720e-01
## 59            High        1.180406e-01         8.819594e-01
## 60            High        5.495807e-01         4.504193e-01
## 61            High        6.181213e-03         9.938188e-01
## 62            High        2.226954e-03         9.977730e-01
## 63            High        6.181144e-03         9.938189e-01
## 64            High        4.282592e-02         9.571741e-01
## 65            High        1.423609e-01         8.576391e-01
## 66            High        2.901213e-01         7.098787e-01
## 67            High        7.845569e-01         2.154431e-01
## 68            High        5.002754e-01         4.997246e-01
## 69            High        1.712645e-02         9.828735e-01
## 70            High        2.734998e-01         7.265002e-01
## 71            High        2.667845e-02         9.733216e-01
## 72            High        4.552093e-01         5.447907e-01
## 73            High        7.370644e-03         9.926294e-01
## 74            High        8.248607e-01         1.751393e-01
## 75            High        1.765986e-01         8.234014e-01
## 76            High        5.809335e-01         4.190665e-01
## 77            High        3.420526e-01         6.579474e-01
## 78            High        5.830957e-03         9.941690e-01
## 79            High        2.454420e-01         7.545580e-01
## 80            High        1.046818e-01         8.953182e-01
## 81            High        4.644391e-02         9.535561e-01
## 82            High        3.394237e-03         9.966058e-01
## 83            High        9.520226e-01         4.797735e-02
## 84            High        1.310691e-02         9.868931e-01
## 85            High        1.972371e-01         8.027629e-01
## 86            High        1.007943e-02         9.899206e-01
## 87            High        2.598815e-01         7.401185e-01
## 88            High        1.396991e-01         8.603009e-01
## 89            High        2.153017e-01         7.846983e-01
## 90            High        1.127097e-02         9.887290e-01
## 91            High        1.288567e-01         8.711433e-01
## 92            High        2.259480e-01         7.740520e-01
## 93            High        4.598056e-01         5.401944e-01
## 94            High        1.542168e-02         9.845783e-01
## 95            High        1.119608e-01         8.880392e-01
## 96            High        1.133068e-01         8.866932e-01
## 97            High        1.755088e-01         8.244912e-01
## 98            High        5.079078e-01         4.920922e-01
## 99            High        6.382407e-02         9.361759e-01
## 100           High        2.044559e-01         7.955441e-01
## 101           High        1.534375e-01         8.465625e-01
## 102           High        1.909820e-01         8.090180e-01
## 103           High        2.408233e-01         7.591767e-01
## 104           High        1.919181e-01         8.080819e-01
## 105           High        9.432536e-01         5.674637e-02
## 106           High        1.519275e-01         8.480725e-01
## 107           High        6.249051e-02         9.375095e-01
## 108           High        3.791111e-01         6.208889e-01
## 109           High        5.759467e-01         4.240533e-01
## 110           High        5.195252e-01         4.804748e-01
## 111           High        4.072976e-01         5.927024e-01
## 112           High        7.846000e-01         2.154000e-01
## 113           High        5.505469e-01         4.494531e-01
## 114           High        2.022685e-01         7.977315e-01
## 115           High        4.404657e-01         5.595343e-01
## 116           High        8.323968e-01         1.676032e-01
## 117           High        9.436804e-01         5.631956e-02
## 118           High        9.973358e-01         2.664155e-03
## 119            Low        9.801695e-02         9.019830e-01
## 120            Low        3.512521e-01         6.487479e-01
## 121            Low        5.310659e-01         4.689341e-01
## 122            Low        3.819842e-03         9.961802e-01
## 123            Low        9.311898e-01         6.881022e-02
## 124            Low        7.557384e-01         2.442616e-01
## 125            Low        6.633683e-01         3.366317e-01
## 126            Low        1.575591e-01         8.424409e-01
## 127            Low        9.854473e-01         1.455266e-02
## 128            Low        6.756350e-01         3.243650e-01
## 129            Low        9.531411e-01         4.685893e-02
## 130            Low        6.118112e-01         3.881888e-01
## 131            Low        9.203029e-01         7.969712e-02
## 132            Low        8.390386e-01         1.609614e-01
## 133            Low        8.698578e-01         1.301422e-01
## 134            Low        7.382761e-01         2.617239e-01
## 135            Low        8.854991e-01         1.145009e-01
## 136            Low        8.404714e-01         1.595286e-01
## 137            Low        7.676196e-01         2.323804e-01
## 138            Low        5.749218e-01         4.250782e-01
## 139            Low        1.522933e-01         8.477067e-01
## 140            Low        1.652831e-01         8.347169e-01
## 141            Low        5.707049e-01         4.292951e-01
## 142            Low        3.400469e-01         6.599531e-01
## 143            Low        8.855962e-01         1.144038e-01
## 144            Low        6.236945e-01         3.763055e-01
## 145            Low        2.676640e-01         7.323360e-01
## 146            Low        9.112520e-01         8.874796e-02
## 147            Low        7.554873e-01         2.445127e-01
## 148            Low        9.167921e-01         8.320788e-02
## 149            Low        9.943827e-01         5.617252e-03
## 150            Low        9.888923e-01         1.110774e-02
## 151            Low        3.954368e-01         6.045632e-01
## 152            Low        8.746760e-01         1.253240e-01
## 153            Low        5.649685e-01         4.350315e-01
## 154            Low        9.662381e-01         3.376195e-02
## 155            Low        7.507664e-01         2.492336e-01
## 156            Low        9.053074e-01         9.469264e-02
## 157            Low        9.348579e-01         6.514214e-02
## 158            Low        7.233638e-01         2.766362e-01
## 159            Low        9.850379e-01         1.496211e-02
## 160            Low        9.702947e-01         2.970530e-02
## 161            Low        9.598928e-01         4.010719e-02
## 162            Low        8.286756e-01         1.713244e-01
## 163            Low        9.277405e-01         7.225949e-02
## 164            Low        9.710798e-01         2.892019e-02
## 165            Low        9.816962e-01         1.830375e-02
## 166            Low        9.136960e-01         8.630396e-02
## 167            Low        9.604719e-01         3.952811e-02
## 168            Low        7.856736e-01         2.143264e-01
## 169            Low        9.808724e-01         1.912755e-02
## 170            Low        9.962140e-01         3.786004e-03
## 171            Low        9.668576e-01         3.314242e-02
## 172            Low        8.662033e-01         1.337967e-01
## 173            Low        8.591393e-01         1.408607e-01
## 174            Low        1.000000e+00         1.701748e-08
## 175            Low        9.931667e-01         6.833306e-03
## 176            Low        8.667594e-01         1.332406e-01
## 177            Low        9.970895e-01         2.910479e-03
## 178            Low        9.634015e-01         3.659853e-02
## 179            Low        9.035671e-01         9.643287e-02
## 180            Low        6.663630e-01         3.336370e-01
## 181            Low        9.898620e-01         1.013795e-02
## 182            Low        8.492058e-01         1.507942e-01
## 183            Low        9.992972e-01         7.027734e-04
## 184            Low        9.999938e-01         6.206858e-06
## 185            Low        9.048412e-01         9.515877e-02
## 186            Low        9.353290e-01         6.467101e-02
## 187            Low        9.898104e-01         1.018960e-02
## 188            Low        9.499785e-01         5.002154e-02
## 189            Low        9.934254e-01         6.574599e-03
## 190            Low        9.946379e-01         5.362141e-03
## 191            Low        8.283376e-01         1.716624e-01
## 192            Low        9.172226e-01         8.277742e-02
## 193            Low        9.545196e-01         4.548039e-02
## 194            Low        9.365299e-01         6.347006e-02
## 195            Low        9.990063e-01         9.936673e-04
## 196            Low        9.735682e-01         2.643178e-02
## 197            Low        9.944962e-01         5.503830e-03
## 198            Low        9.169390e-01         8.306095e-02
## 199            Low        9.882730e-01         1.172697e-02
## 200            Low        9.761712e-01         2.382880e-02
## 201            Low        9.945772e-01         5.422790e-03
## 202            Low        9.968064e-01         3.193578e-03
## 203            Low        9.975266e-01         2.473415e-03
## 204            Low        9.959668e-01         4.033231e-03
## 205            Low        9.955764e-01         4.423604e-03
## 206            Low        9.983975e-01         1.602542e-03
## 207            Low        9.932358e-01         6.764229e-03
## 208            Low        9.964777e-01         3.522281e-03
## 209            Low        9.997733e-01         2.266951e-04
## 210            Low        9.994946e-01         5.054112e-04
## 211            Low        9.994736e-01         5.263985e-04
## 212            Low        9.994078e-01         5.922449e-04
## 213            Low        9.996607e-01         3.393485e-04
## 214            Low        9.997834e-01         2.165655e-04
## 215            Low        9.990583e-01         9.417223e-04
## 216            Low        9.994917e-01         5.083340e-04
## 217           High        9.024443e-05         9.999098e-01
## 218           High        2.077387e-05         9.999792e-01
## 219           High        1.670286e-05         9.999833e-01
## 220           High        7.767513e-06         9.999922e-01
## 221           High        6.360128e-03         9.936399e-01
## 222           High        1.266297e-03         9.987337e-01
## 223           High        9.996676e-04         9.990003e-01
## 224           High        1.365683e-04         9.998634e-01
## 225           High        6.298133e-01         3.701867e-01
## 226           High        6.133212e-02         9.386679e-01
## 227           High        2.886758e-03         9.971132e-01
## 228           High        2.288440e-02         9.771156e-01
## 229           High        3.374120e-04         9.996626e-01
## 230           High        1.241016e-01         8.758984e-01
## 231           High        1.738117e-02         9.826188e-01
## 232           High        5.011933e-04         9.994988e-01
## 233           High        2.381673e-02         9.761833e-01
## 234           High        3.121007e-02         9.687899e-01
## 235           High        4.899600e-03         9.951004e-01
## 236           High        2.205502e-01         7.794498e-01
## 237           High        6.287177e-01         3.712823e-01
## 238           High        6.888203e-02         9.311180e-01
## 239           High        1.354083e-01         8.645917e-01
## 240           High        4.201538e-02         9.579846e-01
## 241           High        3.538389e-04         9.996462e-01
## 242           High        8.932231e-03         9.910678e-01
## 243           High        1.351940e-02         9.864806e-01
## 244           High        6.953742e-01         3.046258e-01
## 245           High        2.622675e-01         7.377325e-01
## 246           High        8.535310e-03         9.914647e-01
## 247           High        1.852684e-02         9.814732e-01
## 248           High        5.937713e-03         9.940623e-01
## 249           High        3.389732e-02         9.661027e-01
## 250           High        5.870720e-01         4.129280e-01
## 251           High        2.857489e-01         7.142511e-01
## 252           High        3.958410e-01         6.041590e-01
## 253           High        2.283274e-01         7.716726e-01
## 254           High        5.922845e-01         4.077155e-01
## 255           High        1.977961e-01         8.022039e-01
## 256           High        4.194252e-02         9.580575e-01
## 257           High        6.517846e-02         9.348215e-01
## 258           High        2.196883e-01         7.803117e-01
## 259           High        5.748524e-01         4.251476e-01
## 260           High        1.796637e-01         8.203363e-01
## 261           High        5.581556e-02         9.441844e-01
## 262           High        1.692169e-02         9.830783e-01
## 263           High        1.227492e-01         8.772508e-01
## 264           High        4.237459e-01         5.762541e-01
## 265           High        6.514849e-01         3.485151e-01
## 266           High        1.102230e-01         8.897770e-01
## 267           High        4.335721e-01         5.664279e-01
## 268           High        5.075314e-02         9.492469e-01
## 269            Low        2.713865e-01         7.286135e-01
## 270            Low        4.070414e-01         5.929586e-01
## 271            Low        2.570201e-01         7.429799e-01
## 272            Low        8.450425e-01         1.549575e-01
## 273            Low        6.669529e-01         3.330471e-01
## 274            Low        8.724159e-01         1.275841e-01
## 275            Low        6.464582e-01         3.535418e-01
## 276            Low        9.895986e-01         1.040137e-02
## 277            Low        9.922429e-01         7.757131e-03
## 278            Low        4.340324e-01         5.659676e-01
## 279            Low        8.110909e-01         1.889091e-01
## 280            Low        9.160900e-01         8.391003e-02
## 281            Low        6.720414e-01         3.279586e-01
## 282            Low        9.266720e-01         7.332797e-02
## 283            Low        9.591404e-01         4.085962e-02
## 284            Low        9.913447e-01         8.655273e-03
## 285            Low        9.960629e-01         3.937105e-03
## 286            Low        8.083243e-01         1.916757e-01
## 287            Low        6.154333e-01         3.845667e-01
## 288            Low        8.056947e-01         1.943053e-01
## 289            Low        9.569709e-01         4.302908e-02
## 290            Low        9.344964e-01         6.550357e-02
## 291            Low        8.634681e-01         1.365319e-01
## 292            Low        9.300919e-01         6.990814e-02
## 293            Low        7.960571e-01         2.039429e-01
## 294            Low        9.655898e-01         3.441016e-02
## 295            Low        9.345680e-01         6.543200e-02
## 296            Low        7.895110e-01         2.104890e-01
## 297            Low        8.107852e-01         1.892148e-01
## 298            Low        8.799394e-01         1.200606e-01
## 299            Low        9.797631e-01         2.023692e-02
## 300            Low        9.963098e-01         3.690246e-03
## 301            Low        9.883049e-01         1.169515e-02
## 302            Low        9.698623e-01         3.013770e-02
## 303            Low        9.975535e-01         2.446516e-03
## 304            Low        9.920587e-01         7.941265e-03
## 305            Low        9.999988e-01         1.199161e-06
## 306            Low        9.980662e-01         1.933844e-03
## 307            Low        9.997139e-01         2.861156e-04
## 308            Low        9.998400e-01         1.600302e-04
## 309            Low        9.999303e-01         6.968800e-05
## 310            Low        9.999389e-01         6.105678e-05
## 311            Low        9.997990e-01         2.010226e-04
## 312            Low        9.989269e-01         1.073065e-03
## 313           High        3.286538e-02         9.671346e-01
## 314           High        6.398317e-01         3.601683e-01
## 315            Low        9.765166e-01         2.348341e-02
## 316           High        9.994079e-01         5.920987e-04
##################################
# Reporting the independent evaluation results
# for the test set
##################################
SVM_R_Test_ROC <- roc(response = SVM_R_Test$SVM_R_Observed,
             predictor = SVM_R_Test$SVM_R_Predicted.High,
             levels = rev(levels(SVM_R_Test$SVM_R_Observed)))

(SVM_R_Test_ROCCurveAUC <- auc(SVM_R_Test_ROC)[1])
## [1] 0.9501597

1.5.9 Support Vector Machine - Polynomial Kernel (SVM_P)


[A] The support vector machine (polynomial kernel) model from the kernlab package was implemented through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] degree = polynomial degree made to vary across a range of values equal to 1 to 2
     [B.2] scale = scale made to vary across a range of values equal to 0.001 to 0.010
     [B.3] C = cost made to vary across a range of values equal to 0.25 to 32.00

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves degree=2, scale=0.005 and C=32
     [C.2] ROC Curve AUC = 0.95048

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.95011
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_SVM_P <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_SVM_P$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_SVM_P)
## [1] 951 221
PMA_PreModelling_Test_SVM_P <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_SVM_P$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_SVM_P)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_SVM_P$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
SVM_P_Grid = expand.grid(degree = 1:2, 
                       scale = c(0.01, 0.005, 0.001), 
                       C = 2^(-2:5))

##################################
# Running the support vector machine (polynomial kernel) model
# by setting the caret method to 'svmPoly'
##################################
set.seed(12345678)
SVM_P_Tune <- train(x = PMA_PreModelling_Train_SVM_P[,!names(PMA_PreModelling_Train_SVM_P) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_SVM_P$Log_Solubility_Class,
                 method = "svmPoly",
                 tuneGrid = SVM_P_Grid,
                 metric = "ROC",                 
                 preProc = c("center", "scale"),
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
SVM_P_Tune
## Support Vector Machines with Polynomial Kernel 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   degree  scale  C      ROC        Sens       Spec     
##   1       0.001   0.25  0.8982574  0.7492248  0.8245283
##   1       0.001   0.50  0.9154136  0.8100775  0.8397315
##   1       0.001   1.00  0.9300498  0.8266888  0.8530842
##   1       0.001   2.00  0.9382509  0.8406423  0.8607765
##   1       0.001   4.00  0.9410973  0.8382060  0.8665820
##   1       0.001   8.00  0.9418678  0.8450720  0.8684688
##   1       0.001  16.00  0.9423674  0.8523256  0.8665457
##   1       0.001  32.00  0.9384860  0.8405316  0.8723149
##   1       0.005   0.25  0.9334756  0.8312846  0.8607765
##   1       0.005   0.50  0.9385687  0.8334994  0.8570755
##   1       0.005   1.00  0.9429324  0.8405316  0.8685414
##   1       0.005   2.00  0.9420834  0.8522148  0.8665457
##   1       0.005   4.00  0.9416546  0.8497785  0.8646589
##   1       0.005   8.00  0.9377184  0.8381506  0.8723512
##   1       0.005  16.00  0.9378910  0.8428571  0.8703556
##   1       0.005  32.00  0.9340194  0.8358804  0.8684688
##   1       0.010   0.25  0.9385237  0.8334994  0.8627721
##   1       0.010   0.50  0.9429324  0.8428571  0.8685414
##   1       0.010   1.00  0.9420834  0.8475637  0.8626996
##   1       0.010   2.00  0.9416546  0.8498339  0.8646952
##   1       0.010   4.00  0.9377184  0.8357697  0.8685414
##   1       0.010   8.00  0.9378910  0.8405869  0.8741655
##   1       0.010  16.00  0.9340194  0.8451827  0.8703919
##   1       0.010  32.00  0.9331110  0.8336656  0.8779390
##   2       0.001   0.25  0.9177808  0.8170543  0.8397678
##   2       0.001   0.50  0.9312968  0.8313400  0.8531567
##   2       0.001   1.00  0.9382799  0.8358250  0.8626996
##   2       0.001   2.00  0.9415732  0.8287929  0.8665820
##   2       0.001   4.00  0.9437586  0.8498893  0.8627721
##   2       0.001   8.00  0.9434995  0.8359358  0.8741655
##   2       0.001  16.00  0.9429819  0.8381506  0.8817852
##   2       0.001  32.00  0.9441590  0.8499446  0.8874819
##   2       0.005   0.25  0.9370187  0.8357697  0.8686139
##   2       0.005   0.50  0.9398239  0.8498339  0.8666909
##   2       0.005   1.00  0.9416083  0.8381506  0.8761611
##   2       0.005   2.00  0.9424678  0.8406423  0.8836357
##   2       0.005   4.00  0.9454805  0.8570321  0.8798984
##   2       0.005   8.00  0.9458642  0.8616833  0.8874456
##   2       0.005  16.00  0.9478692  0.8593023  0.8835994
##   2       0.005  32.00  0.9504889  0.8592470  0.8836357
##   2       0.010   0.25  0.9366234  0.8311185  0.8666183
##   2       0.010   0.50  0.9383894  0.8428018  0.8742017
##   2       0.010   1.00  0.9411239  0.8476190  0.8779753
##   2       0.010   2.00  0.9442114  0.8453488  0.8798258
##   2       0.010   4.00  0.9459963  0.8593577  0.8817126
##   2       0.010   8.00  0.9490640  0.8593577  0.8816401
##   2       0.010  16.00  0.9503049  0.8640642  0.8874456
##   2       0.010  32.00  0.9502390  0.8686047  0.8969884
## 
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were degree = 2, scale = 0.005 and C = 32.
SVM_P_Tune$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: C-svc  (classification) 
##  parameter : cost C = 32 
## 
## Polynomial kernel function. 
##  Hyperparameters : degree =  2  scale =  0.005  offset =  1 
## 
## Number of Support Vectors : 285 
## 
## Objective Function Value : -720.9112 
## Training error : 0.001052 
## Probability model included.
SVM_P_Tune$results
##    degree scale     C       ROC      Sens      Spec      ROCSD     SensSD
## 1       1 0.001  0.25 0.8982574 0.7492248 0.8245283 0.03477994 0.08301318
## 2       1 0.001  0.50 0.9154136 0.8100775 0.8397315 0.02673369 0.06433315
## 3       1 0.001  1.00 0.9300498 0.8266888 0.8530842 0.01945843 0.04928813
## 4       1 0.001  2.00 0.9382509 0.8406423 0.8607765 0.02013177 0.07030579
## 5       1 0.001  4.00 0.9410973 0.8382060 0.8665820 0.02291858 0.04666212
## 6       1 0.001  8.00 0.9418678 0.8450720 0.8684688 0.02336680 0.06725583
## 7       1 0.001 16.00 0.9423674 0.8523256 0.8665457 0.02681344 0.06913274
## 8       1 0.001 32.00 0.9384860 0.8405316 0.8723149 0.02848837 0.07512383
## 9       1 0.005  0.25 0.9334756 0.8312846 0.8607765 0.01917285 0.05493122
## 10      1 0.005  0.50 0.9385687 0.8334994 0.8570755 0.02102400 0.05285153
## 11      1 0.005  1.00 0.9429324 0.8405316 0.8685414 0.02285407 0.06061599
## 12      1 0.005  2.00 0.9420834 0.8522148 0.8665457 0.02476222 0.06766016
## 13      1 0.005  4.00 0.9416546 0.8497785 0.8646589 0.02811772 0.06457630
## 14      1 0.005  8.00 0.9377184 0.8381506 0.8723512 0.02845289 0.06964725
## 15      1 0.005 16.00 0.9378910 0.8428571 0.8703556 0.02897121 0.08340389
## 16      1 0.005 32.00 0.9340194 0.8358804 0.8684688 0.03032960 0.07168265
## 17      1 0.010  0.25 0.9385237 0.8334994 0.8627721 0.02105140 0.05285153
## 18      1 0.010  0.50 0.9429324 0.8428571 0.8685414 0.02285407 0.05576994
## 19      1 0.010  1.00 0.9420834 0.8475637 0.8626996 0.02476222 0.06301168
## 20      1 0.010  2.00 0.9416546 0.8498339 0.8646952 0.02811772 0.05953335
## 21      1 0.010  4.00 0.9377184 0.8357697 0.8685414 0.02845289 0.07385252
## 22      1 0.010  8.00 0.9378910 0.8405869 0.8741655 0.02897121 0.07699485
## 23      1 0.010 16.00 0.9340194 0.8451827 0.8703919 0.03032960 0.07766084
## 24      1 0.010 32.00 0.9331110 0.8336656 0.8779390 0.02558704 0.07420272
## 25      2 0.001  0.25 0.9177808 0.8170543 0.8397678 0.02568345 0.06484486
## 26      2 0.001  0.50 0.9312968 0.8313400 0.8531567 0.01925534 0.04373895
## 27      2 0.001  1.00 0.9382799 0.8358250 0.8626996 0.01959475 0.05989700
## 28      2 0.001  2.00 0.9415732 0.8287929 0.8665820 0.02114134 0.05697014
## 29      2 0.001  4.00 0.9437586 0.8498893 0.8627721 0.02195056 0.06577088
## 30      2 0.001  8.00 0.9434995 0.8359358 0.8741655 0.02354723 0.07322104
## 31      2 0.001 16.00 0.9429819 0.8381506 0.8817852 0.02459237 0.07472236
## 32      2 0.001 32.00 0.9441590 0.8499446 0.8874819 0.02467181 0.07254186
## 33      2 0.005  0.25 0.9370187 0.8357697 0.8686139 0.02074181 0.06804611
## 34      2 0.005  0.50 0.9398239 0.8498339 0.8666909 0.02041487 0.06504293
## 35      2 0.005  1.00 0.9416083 0.8381506 0.8761611 0.02057089 0.07794713
## 36      2 0.005  2.00 0.9424678 0.8406423 0.8836357 0.02092003 0.07609199
## 37      2 0.005  4.00 0.9454805 0.8570321 0.8798984 0.01889337 0.07496758
## 38      2 0.005  8.00 0.9458642 0.8616833 0.8874456 0.01805740 0.06284101
## 39      2 0.005 16.00 0.9478692 0.8593023 0.8835994 0.01863617 0.06446458
## 40      2 0.005 32.00 0.9504889 0.8592470 0.8836357 0.01783922 0.06915726
## 41      2 0.010  0.25 0.9366234 0.8311185 0.8666183 0.01843902 0.06917656
## 42      2 0.010  0.50 0.9383894 0.8428018 0.8742017 0.01888776 0.08914918
## 43      2 0.010  1.00 0.9411239 0.8476190 0.8779753 0.01918473 0.09028992
## 44      2 0.010  2.00 0.9442114 0.8453488 0.8798258 0.01847995 0.07938012
## 45      2 0.010  4.00 0.9459963 0.8593577 0.8817126 0.01723191 0.06519004
## 46      2 0.010  8.00 0.9490640 0.8593577 0.8816401 0.01633029 0.06331960
## 47      2 0.010 16.00 0.9503049 0.8640642 0.8874456 0.01766674 0.06400041
## 48      2 0.010 32.00 0.9502390 0.8686047 0.8969884 0.02003144 0.05015350
##        SpecSD
## 1  0.05243415
## 2  0.04911453
## 3  0.04009336
## 4  0.04718750
## 5  0.03636061
## 6  0.05098173
## 7  0.05156079
## 8  0.06350242
## 9  0.04456743
## 10 0.04940893
## 11 0.04551867
## 12 0.05381308
## 13 0.05260650
## 14 0.07070969
## 15 0.06155613
## 16 0.06118457
## 17 0.04404403
## 18 0.04551867
## 19 0.04978374
## 20 0.05550653
## 21 0.07266464
## 22 0.06045496
## 23 0.06204463
## 24 0.05504359
## 25 0.04730489
## 26 0.04631419
## 27 0.04616555
## 28 0.04708384
## 29 0.05575721
## 30 0.05339856
## 31 0.05535593
## 32 0.05939838
## 33 0.06308339
## 34 0.06227535
## 35 0.06073578
## 36 0.05812064
## 37 0.06301275
## 38 0.06342667
## 39 0.06911211
## 40 0.06145433
## 41 0.05847149
## 42 0.06778133
## 43 0.06180610
## 44 0.07050687
## 45 0.07207114
## 46 0.07219441
## 47 0.05936077
## 48 0.05190848
(SVM_P_Train_ROCCurveAUC <- SVM_P_Tune$results[SVM_P_Tune$results$degree==SVM_P_Tune$bestTune$degree &
                                                 SVM_P_Tune$results$scale==SVM_P_Tune$bestTune$scale &
                                                 SVM_P_Tune$results$C==SVM_P_Tune$bestTune$C,
                              c("ROC")])
## [1] 0.9504889
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
SVM_P_Test <- data.frame(SVM_P_Observed = PMA_PreModelling_Test_SVM_P$Log_Solubility_Class,
                      SVM_P_Predicted = predict(SVM_P_Tune,
                      PMA_PreModelling_Test_SVM_P[,!names(PMA_PreModelling_Test_SVM_P) %in% c("Log_Solubility_Class")],
                      type = "prob"))

SVM_P_Test
##     SVM_P_Observed SVM_P_Predicted.Low SVM_P_Predicted.High
## 1             High        4.437105e-05         9.999556e-01
## 2             High        9.863074e-05         9.999014e-01
## 3             High        5.297227e-02         9.470277e-01
## 4             High        1.364081e-03         9.986359e-01
## 5             High        4.056261e-03         9.959437e-01
## 6             High        1.935681e-04         9.998064e-01
## 7             High        1.894876e-04         9.998105e-01
## 8             High        8.461504e-05         9.999154e-01
## 9             High        7.590917e-05         9.999241e-01
## 10            High        1.515337e-01         8.484663e-01
## 11            High        1.253198e-01         8.746802e-01
## 12            High        1.580050e-02         9.841995e-01
## 13            High        3.381798e-04         9.996618e-01
## 14            High        2.823980e-03         9.971760e-01
## 15            High        1.681284e-02         9.831872e-01
## 16            High        1.512818e-02         9.848718e-01
## 17            High        4.038851e-03         9.959611e-01
## 18            High        8.274691e-04         9.991725e-01
## 19            High        1.113583e-02         9.888642e-01
## 20            High        4.911766e-02         9.508823e-01
## 21            High        9.898067e-04         9.990102e-01
## 22            High        2.339977e-03         9.976600e-01
## 23            High        1.306064e-02         9.869394e-01
## 24            High        7.235225e-03         9.927648e-01
## 25            High        3.412072e-02         9.658793e-01
## 26            High        2.954190e-03         9.970458e-01
## 27            High        1.521391e-03         9.984786e-01
## 28            High        8.935793e-04         9.991064e-01
## 29            High        8.212562e-01         1.787438e-01
## 30            High        1.457176e-02         9.854282e-01
## 31            High        4.213112e-01         5.786888e-01
## 32            High        1.438817e-03         9.985612e-01
## 33            High        1.382656e-03         9.986173e-01
## 34            High        3.875270e-04         9.996125e-01
## 35            High        2.084086e-03         9.979159e-01
## 36            High        1.807449e-02         9.819255e-01
## 37            High        9.113954e-04         9.990886e-01
## 38            High        7.335468e-03         9.926645e-01
## 39            High        8.801846e-03         9.911982e-01
## 40            High        2.758028e-02         9.724197e-01
## 41            High        1.059527e-03         9.989405e-01
## 42            High        1.135930e-01         8.864070e-01
## 43            High        4.056316e-02         9.594368e-01
## 44            High        1.072802e-04         9.998927e-01
## 45            High        9.056021e-03         9.909440e-01
## 46            High        3.450541e-02         9.654946e-01
## 47            High        7.514901e-03         9.924851e-01
## 48            High        1.463060e-02         9.853694e-01
## 49            High        5.965261e-03         9.940347e-01
## 50            High        6.998302e-03         9.930017e-01
## 51            High        4.214485e-03         9.957855e-01
## 52            High        4.890794e-03         9.951092e-01
## 53            High        1.177139e-01         8.822861e-01
## 54            High        5.587705e-02         9.441229e-01
## 55            High        3.211403e-01         6.788597e-01
## 56            High        7.301659e-02         9.269834e-01
## 57            High        4.725764e-02         9.527424e-01
## 58            High        6.376771e-02         9.362323e-01
## 59            High        8.894208e-02         9.110579e-01
## 60            High        5.459579e-01         4.540421e-01
## 61            High        8.435069e-03         9.915649e-01
## 62            High        1.808928e-02         9.819107e-01
## 63            High        1.530560e-02         9.846944e-01
## 64            High        1.121788e-01         8.878212e-01
## 65            High        1.630383e-01         8.369617e-01
## 66            High        1.682650e-01         8.317350e-01
## 67            High        8.472637e-01         1.527363e-01
## 68            High        4.978264e-01         5.021736e-01
## 69            High        4.121811e-02         9.587819e-01
## 70            High        3.813110e-01         6.186890e-01
## 71            High        2.058742e-02         9.794126e-01
## 72            High        3.424141e-01         6.575859e-01
## 73            High        1.535931e-02         9.846407e-01
## 74            High        8.362718e-01         1.637282e-01
## 75            High        2.310661e-01         7.689339e-01
## 76            High        4.337502e-01         5.662498e-01
## 77            High        3.517762e-01         6.482238e-01
## 78            High        4.227364e-02         9.577264e-01
## 79            High        2.895282e-01         7.104718e-01
## 80            High        1.418081e-01         8.581919e-01
## 81            High        8.232842e-02         9.176716e-01
## 82            High        4.374798e-02         9.562520e-01
## 83            High        6.295803e-01         3.704197e-01
## 84            High        1.545407e-02         9.845459e-01
## 85            High        2.048561e-01         7.951439e-01
## 86            High        6.162280e-02         9.383772e-01
## 87            High        1.680072e-01         8.319928e-01
## 88            High        1.319825e-01         8.680175e-01
## 89            High        2.940581e-01         7.059419e-01
## 90            High        1.429267e-02         9.857073e-01
## 91            High        1.808009e-01         8.191991e-01
## 92            High        1.891659e-01         8.108341e-01
## 93            High        3.791373e-01         6.208627e-01
## 94            High        2.616863e-02         9.738314e-01
## 95            High        1.012828e-01         8.987172e-01
## 96            High        1.666090e-01         8.333910e-01
## 97            High        4.756672e-01         5.243328e-01
## 98            High        3.370586e-01         6.629414e-01
## 99            High        1.926107e-02         9.807389e-01
## 100           High        1.287430e-01         8.712570e-01
## 101           High        1.808205e-01         8.191795e-01
## 102           High        2.973948e-01         7.026052e-01
## 103           High        1.273138e-01         8.726862e-01
## 104           High        2.893142e-01         7.106858e-01
## 105           High        8.968593e-01         1.031407e-01
## 106           High        6.767236e-02         9.323276e-01
## 107           High        3.893571e-01         6.106429e-01
## 108           High        2.771089e-01         7.228911e-01
## 109           High        6.014674e-01         3.985326e-01
## 110           High        3.001782e-01         6.998218e-01
## 111           High        2.330348e-01         7.669652e-01
## 112           High        8.496574e-01         1.503426e-01
## 113           High        4.360659e-01         5.639341e-01
## 114           High        7.705737e-02         9.229426e-01
## 115           High        4.011531e-01         5.988469e-01
## 116           High        8.868558e-01         1.131442e-01
## 117           High        9.847158e-01         1.528423e-02
## 118           High        9.220983e-01         7.790173e-02
## 119            Low        3.397053e-02         9.660295e-01
## 120            Low        5.257021e-01         4.742979e-01
## 121            Low        4.558101e-01         5.441899e-01
## 122            Low        7.818783e-03         9.921812e-01
## 123            Low        9.482311e-01         5.176886e-02
## 124            Low        4.311209e-01         5.688791e-01
## 125            Low        6.013589e-01         3.986411e-01
## 126            Low        5.302886e-02         9.469711e-01
## 127            Low        9.614139e-01         3.858608e-02
## 128            Low        5.533691e-01         4.466309e-01
## 129            Low        8.612155e-01         1.387845e-01
## 130            Low        5.203065e-01         4.796935e-01
## 131            Low        8.486217e-01         1.513783e-01
## 132            Low        5.803644e-01         4.196356e-01
## 133            Low        9.287323e-01         7.126769e-02
## 134            Low        6.441916e-01         3.558084e-01
## 135            Low        4.884047e-01         5.115953e-01
## 136            Low        8.239077e-01         1.760923e-01
## 137            Low        4.338176e-01         5.661824e-01
## 138            Low        6.599024e-01         3.400976e-01
## 139            Low        4.219484e-01         5.780516e-01
## 140            Low        1.860729e-01         8.139271e-01
## 141            Low        3.530747e-01         6.469253e-01
## 142            Low        1.166715e-01         8.833285e-01
## 143            Low        9.228837e-01         7.711631e-02
## 144            Low        6.100013e-01         3.899987e-01
## 145            Low        2.518927e-01         7.481073e-01
## 146            Low        8.477800e-01         1.522200e-01
## 147            Low        8.775036e-01         1.224964e-01
## 148            Low        6.460553e-01         3.539447e-01
## 149            Low        9.386742e-01         6.132583e-02
## 150            Low        9.465394e-01         5.346057e-02
## 151            Low        4.351581e-01         5.648419e-01
## 152            Low        9.529013e-01         4.709866e-02
## 153            Low        7.167478e-01         2.832522e-01
## 154            Low        8.558321e-01         1.441679e-01
## 155            Low        4.308504e-01         5.691496e-01
## 156            Low        8.454887e-01         1.545113e-01
## 157            Low        8.965019e-01         1.034981e-01
## 158            Low        5.433461e-01         4.566539e-01
## 159            Low        9.058133e-01         9.418672e-02
## 160            Low        9.602120e-01         3.978802e-02
## 161            Low        9.027195e-01         9.728052e-02
## 162            Low        9.108580e-01         8.914196e-02
## 163            Low        9.477831e-01         5.221692e-02
## 164            Low        9.871036e-01         1.289644e-02
## 165            Low        9.987761e-01         1.223916e-03
## 166            Low        9.232130e-01         7.678700e-02
## 167            Low        9.969155e-01         3.084534e-03
## 168            Low        6.455968e-01         3.544032e-01
## 169            Low        9.381964e-01         6.180362e-02
## 170            Low        9.908208e-01         9.179190e-03
## 171            Low        9.752634e-01         2.473664e-02
## 172            Low        9.215194e-01         7.848060e-02
## 173            Low        8.512954e-01         1.487046e-01
## 174            Low        9.998767e-01         1.232664e-04
## 175            Low        9.823109e-01         1.768907e-02
## 176            Low        8.428239e-01         1.571761e-01
## 177            Low        9.591561e-01         4.084385e-02
## 178            Low        9.696089e-01         3.039105e-02
## 179            Low        9.290788e-01         7.092120e-02
## 180            Low        8.050375e-01         1.949625e-01
## 181            Low        9.337396e-01         6.626036e-02
## 182            Low        7.898904e-01         2.101096e-01
## 183            Low        9.985306e-01         1.469425e-03
## 184            Low        9.992304e-01         7.695772e-04
## 185            Low        9.028139e-01         9.718614e-02
## 186            Low        9.710167e-01         2.898334e-02
## 187            Low        9.923206e-01         7.679375e-03
## 188            Low        9.357071e-01         6.429295e-02
## 189            Low        9.860034e-01         1.399662e-02
## 190            Low        9.856923e-01         1.430772e-02
## 191            Low        9.528866e-01         4.711340e-02
## 192            Low        9.184979e-01         8.150207e-02
## 193            Low        9.629996e-01         3.700045e-02
## 194            Low        9.669751e-01         3.302489e-02
## 195            Low        9.967992e-01         3.200789e-03
## 196            Low        9.636754e-01         3.632463e-02
## 197            Low        9.681232e-01         3.187685e-02
## 198            Low        9.219406e-01         7.805945e-02
## 199            Low        9.927099e-01         7.290081e-03
## 200            Low        9.883603e-01         1.163965e-02
## 201            Low        9.872716e-01         1.272841e-02
## 202            Low        9.897256e-01         1.027438e-02
## 203            Low        9.898915e-01         1.010853e-02
## 204            Low        9.860584e-01         1.394162e-02
## 205            Low        9.874249e-01         1.257505e-02
## 206            Low        9.952109e-01         4.789145e-03
## 207            Low        9.957363e-01         4.263718e-03
## 208            Low        9.909268e-01         9.073177e-03
## 209            Low        9.993597e-01         6.403427e-04
## 210            Low        9.948199e-01         5.180123e-03
## 211            Low        9.981661e-01         1.833947e-03
## 212            Low        9.977850e-01         2.214988e-03
## 213            Low        9.990890e-01         9.109874e-04
## 214            Low        9.995084e-01         4.916347e-04
## 215            Low        9.985671e-01         1.432851e-03
## 216            Low        9.991574e-01         8.425698e-04
## 217           High        2.861841e-04         9.997138e-01
## 218           High        2.525521e-04         9.997474e-01
## 219           High        1.932631e-04         9.998067e-01
## 220           High        3.589613e-04         9.996410e-01
## 221           High        1.309125e-02         9.869087e-01
## 222           High        1.953967e-02         9.804603e-01
## 223           High        5.416678e-03         9.945833e-01
## 224           High        3.593345e-03         9.964067e-01
## 225           High        3.952984e-01         6.047016e-01
## 226           High        7.173722e-02         9.282628e-01
## 227           High        6.556078e-03         9.934439e-01
## 228           High        4.631593e-02         9.536841e-01
## 229           High        3.191958e-04         9.996808e-01
## 230           High        9.328630e-02         9.067137e-01
## 231           High        5.569023e-02         9.443098e-01
## 232           High        2.576389e-03         9.974236e-01
## 233           High        3.111545e-02         9.688846e-01
## 234           High        2.238030e-02         9.776197e-01
## 235           High        2.836261e-02         9.716374e-01
## 236           High        2.375457e-01         7.624543e-01
## 237           High        4.087041e-01         5.912959e-01
## 238           High        4.593380e-02         9.540662e-01
## 239           High        1.177139e-01         8.822861e-01
## 240           High        1.056348e-01         8.943652e-01
## 241           High        3.137645e-03         9.968624e-01
## 242           High        2.791157e-02         9.720884e-01
## 243           High        1.831218e-02         9.816878e-01
## 244           High        7.599363e-01         2.400637e-01
## 245           High        2.214500e-01         7.785500e-01
## 246           High        5.039272e-03         9.949607e-01
## 247           High        2.641108e-02         9.735889e-01
## 248           High        1.270971e-02         9.872903e-01
## 249           High        4.820820e-02         9.517918e-01
## 250           High        5.446703e-01         4.553297e-01
## 251           High        1.746056e-01         8.253944e-01
## 252           High        5.305232e-01         4.694768e-01
## 253           High        1.224164e-01         8.775836e-01
## 254           High        7.132781e-01         2.867219e-01
## 255           High        1.485345e-01         8.514655e-01
## 256           High        1.834751e-02         9.816525e-01
## 257           High        7.286247e-03         9.927138e-01
## 258           High        1.619494e-01         8.380506e-01
## 259           High        6.408455e-01         3.591545e-01
## 260           High        1.943460e-01         8.056540e-01
## 261           High        5.822545e-02         9.417745e-01
## 262           High        3.767487e-02         9.623251e-01
## 263           High        1.900704e-01         8.099296e-01
## 264           High        3.476714e-01         6.523286e-01
## 265           High        6.845639e-01         3.154361e-01
## 266           High        4.977542e-02         9.502246e-01
## 267           High        5.772676e-01         4.227324e-01
## 268           High        2.854987e-02         9.714501e-01
## 269            Low        4.189723e-01         5.810277e-01
## 270            Low        3.866665e-01         6.133335e-01
## 271            Low        4.692530e-01         5.307470e-01
## 272            Low        7.015630e-01         2.984370e-01
## 273            Low        7.652021e-01         2.347979e-01
## 274            Low        8.254232e-01         1.745768e-01
## 275            Low        8.075412e-01         1.924588e-01
## 276            Low        9.443706e-01         5.562945e-02
## 277            Low        8.685546e-01         1.314454e-01
## 278            Low        3.642754e-01         6.357246e-01
## 279            Low        8.104561e-01         1.895439e-01
## 280            Low        8.730788e-01         1.269212e-01
## 281            Low        6.436814e-01         3.563186e-01
## 282            Low        9.556037e-01         4.439631e-02
## 283            Low        8.905941e-01         1.094059e-01
## 284            Low        9.857640e-01         1.423602e-02
## 285            Low        9.583932e-01         4.160682e-02
## 286            Low        6.444371e-01         3.555629e-01
## 287            Low        8.892668e-01         1.107332e-01
## 288            Low        8.103407e-01         1.896593e-01
## 289            Low        9.393219e-01         6.067812e-02
## 290            Low        8.607423e-01         1.392577e-01
## 291            Low        9.169157e-01         8.308427e-02
## 292            Low        7.877789e-01         2.122211e-01
## 293            Low        8.606541e-01         1.393459e-01
## 294            Low        9.590663e-01         4.093374e-02
## 295            Low        9.537861e-01         4.621387e-02
## 296            Low        8.156491e-01         1.843509e-01
## 297            Low        9.502762e-01         4.972382e-02
## 298            Low        8.670162e-01         1.329838e-01
## 299            Low        9.427929e-01         5.720708e-02
## 300            Low        9.884079e-01         1.159213e-02
## 301            Low        9.934260e-01         6.573965e-03
## 302            Low        9.417467e-01         5.825329e-02
## 303            Low        9.939330e-01         6.066998e-03
## 304            Low        9.825602e-01         1.743978e-02
## 305            Low        9.999661e-01         3.392876e-05
## 306            Low        9.943347e-01         5.665260e-03
## 307            Low        9.990516e-01         9.484101e-04
## 308            Low        9.997245e-01         2.754741e-04
## 309            Low        9.998293e-01         1.707135e-04
## 310            Low        9.999183e-01         8.165397e-05
## 311            Low        9.996739e-01         3.261319e-04
## 312            Low        9.971262e-01         2.873808e-03
## 313           High        7.277619e-02         9.272238e-01
## 314           High        3.912316e-01         6.087684e-01
## 315            Low        9.874103e-01         1.258970e-02
## 316           High        9.759034e-01         2.409659e-02
##################################
# Reporting the independent evaluation results
# for the test set
##################################
SVM_P_Test_ROC <- roc(response = SVM_P_Test$SVM_P_Observed,
             predictor = SVM_P_Test$SVM_P_Predicted.High,
             levels = rev(levels(SVM_P_Test$SVM_P_Observed)))

(SVM_P_Test_ROCCurveAUC <- auc(SVM_P_Test_ROC)[1])
## [1] 0.9501192

1.5.10 K-Nearest Neighbors (KNN)


[A] The k-nearest neighbors model was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] k = number of neighbors made to vary across a range of values equal to 1 to 15

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves k=8
     [C.2] ROC Curve AUC = 0.89489

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.88170
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_KNN <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_KNN$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_KNN)
## [1] 951 221
PMA_PreModelling_Test_KNN <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_KNN$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_KNN)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_KNN$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
KNN_Grid = data.frame(k = 1:15)

##################################
# Running the k-nearest neighbors model
# by setting the caret method to 'knn'
##################################
set.seed(12345678)
KNN_Tune <- train(x = PMA_PreModelling_Train_KNN[,!names(PMA_PreModelling_Train_KNN) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_KNN$Log_Solubility_Class,
                 method = "knn",
                 tuneGrid = KNN_Grid,
                 metric = "ROC",                 
                 preProc = c("center", "scale"),
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
KNN_Tune
## k-Nearest Neighbors 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   k   ROC        Sens       Spec     
##    1  0.8165667  0.7705426  0.8625907
##    2  0.8498964  0.7329457  0.8380261
##    3  0.8695139  0.7074197  0.8722061
##    4  0.8805812  0.7237542  0.8646952
##    5  0.8881761  0.6981174  0.8779390
##    6  0.8890159  0.6723699  0.8911829
##    7  0.8929299  0.6536545  0.8951379
##    8  0.8948909  0.6700997  0.8951379
##    9  0.8932980  0.6488372  0.8913643
##   10  0.8924719  0.6442414  0.9064949
##   11  0.8917834  0.6559801  0.8988752
##   12  0.8903257  0.6605759  0.8950653
##   13  0.8886237  0.6442968  0.9027576
##   14  0.8892745  0.6534330  0.9064586
##   15  0.8877785  0.6418605  0.8988752
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 8.
KNN_Tune$finalModel
## 8-nearest neighbor model
## Training set outcome distribution:
## 
##  Low High 
##  427  524
KNN_Tune$results
##     k       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1   1 0.8165667 0.7705426 0.8625907 0.04805712 0.08491149 0.04031952
## 2   2 0.8498964 0.7329457 0.8380261 0.04287313 0.06804003 0.04016326
## 3   3 0.8695139 0.7074197 0.8722061 0.03543212 0.08107148 0.02826351
## 4   4 0.8805812 0.7237542 0.8646952 0.03061342 0.09403887 0.03072821
## 5   5 0.8881761 0.6981174 0.8779390 0.03118507 0.10247267 0.02362562
## 6   6 0.8890159 0.6723699 0.8911829 0.03099682 0.07660789 0.03402859
## 7   7 0.8929299 0.6536545 0.8951379 0.03099339 0.08447388 0.03589127
## 8   8 0.8948909 0.6700997 0.8951379 0.03312645 0.07348286 0.03366057
## 9   9 0.8932980 0.6488372 0.8913643 0.03893850 0.08004371 0.03545545
## 10 10 0.8924719 0.6442414 0.9064949 0.04301828 0.07785232 0.02905682
## 11 11 0.8917834 0.6559801 0.8988752 0.04130939 0.08744255 0.03579130
## 12 12 0.8903257 0.6605759 0.8950653 0.04351160 0.08004337 0.02562836
## 13 13 0.8886237 0.6442968 0.9027576 0.04293479 0.10062032 0.03128096
## 14 14 0.8892745 0.6534330 0.9064586 0.04380270 0.08873092 0.03044044
## 15 15 0.8877785 0.6418605 0.8988752 0.04471101 0.09231959 0.02527676
(KNN_Train_ROCCurveAUC <- KNN_Tune$results[KNN_Tune$results$k==KNN_Tune$bestTune$k,
                              c("ROC")])
## [1] 0.8948909
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
KNN_Test <- data.frame(KNN_Observed = PMA_PreModelling_Test_KNN$Log_Solubility_Class,
                      KNN_Predicted = predict(KNN_Tune,
                      PMA_PreModelling_Test_KNN[,!names(PMA_PreModelling_Test_KNN) %in% c("Log_Solubility_Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
KNN_Test_ROC <- roc(response = KNN_Test$KNN_Observed,
             predictor = KNN_Test$KNN_Predicted.High,
             levels = rev(levels(KNN_Test$KNN_Observed)))

(KNN_Test_ROCCurveAUC <- auc(KNN_Test_ROC)[1])
## [1] 0.881705

1.5.11 Classification and Regression Trees (CART)


[A] The classification and regression trees model from the rpart package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] cp = complexity parameter threshold made to vary across a range of values equal to 0.001 to 0.020

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves cp=0.001
     [C.2] ROC Curve AUC = 0.90236

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] NumCarbon variable (numeric)
     [D.3] NumBonds variable (numeric)
     [D.4] HydrophilicFactor variable (numeric)
     [D.5] NumMultBonds variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.94522
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_CART <- PMA_PreModelling_Train
PMA_PreModelling_Test_CART <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_CART$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
CART_Grid = data.frame(cp = c(0.001, 0.005, 0.010, 0.015, 0.020))

##################################
# Running the classification and regression trees model
# by setting the caret method to 'rpart'
##################################
set.seed(12345678)
CART_Tune <- train(x = PMA_PreModelling_Train_CART[,!names(PMA_PreModelling_Train_CART) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_CART$Log_Solubility_Class,
                 method = "rpart",
                 tuneGrid = CART_Grid,
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
CART_Tune
## CART 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   cp     ROC        Sens       Spec     
##   0.001  0.9023673  0.8125692  0.8551524
##   0.005  0.8923973  0.8195460  0.8512700
##   0.010  0.8717310  0.8476190  0.8416183
##   0.015  0.8547744  0.8451827  0.8282293
##   0.020  0.8374508  0.8641750  0.8034107
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.001.
CART_Tune$finalModel
## n= 951 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 951 427 High (0.44900105 0.55099895)  
##     2) NumCarbon>=0.08489128 424 102 Low (0.75943396 0.24056604)  
##       4) SurfaceArea1< -0.5808955 119   3 Low (0.97478992 0.02521008) *
##       5) SurfaceArea1>=-0.5808955 305  99 Low (0.67540984 0.32459016)  
##        10) MolWeight>=0.6824776 188  35 Low (0.81382979 0.18617021)  
##          20) FP075=0 74   3 Low (0.95945946 0.04054054) *
##          21) FP075=1 114  32 Low (0.71929825 0.28070175)  
##            42) FP198=0 105  24 Low (0.77142857 0.22857143)  
##              84) FP009=1 30   1 Low (0.96666667 0.03333333) *
##              85) FP009=0 75  23 Low (0.69333333 0.30666667)  
##               170) FP088=0 58  14 Low (0.75862069 0.24137931)  
##                 340) SurfaceArea1< 1.438317 36   5 Low (0.86111111 0.13888889) *
##                 341) SurfaceArea1>=1.438317 22   9 Low (0.59090909 0.40909091)  
##                   682) NumRotBonds< 0.5184444 11   2 Low (0.81818182 0.18181818) *
##                   683) NumRotBonds>=0.5184444 11   4 High (0.36363636 0.63636364) *
##               171) FP088=1 17   8 High (0.47058824 0.52941176) *
##            43) FP198=1 9   1 High (0.11111111 0.88888889) *
##        11) MolWeight< 0.6824776 117  53 High (0.45299145 0.54700855)  
##          22) FP178=1 19   1 Low (0.94736842 0.05263158) *
##          23) FP178=0 98  35 High (0.35714286 0.64285714)  
##            46) NumCarbon>=0.4506182 49  23 Low (0.53061224 0.46938776)  
##              92) HydrophilicFactor< 0.3739684 40  14 Low (0.65000000 0.35000000)  
##               184) FP166=0 10   0 Low (1.00000000 0.00000000) *
##               185) FP166=1 30  14 Low (0.53333333 0.46666667)  
##                 370) FP065=1 21   7 Low (0.66666667 0.33333333)  
##                   740) HydrophilicFactor>=-0.2286019 8   0 Low (1.00000000 0.00000000) *
##                   741) HydrophilicFactor< -0.2286019 13   6 High (0.46153846 0.53846154) *
##                 371) FP065=0 9   2 High (0.22222222 0.77777778) *
##              93) HydrophilicFactor>=0.3739684 9   0 High (0.00000000 1.00000000) *
##            47) NumCarbon< 0.4506182 49   9 High (0.18367347 0.81632653)  
##              94) FP094=1 7   3 Low (0.57142857 0.42857143) *
##              95) FP094=0 42   5 High (0.11904762 0.88095238) *
##     3) NumCarbon< 0.08489128 527 105 High (0.19924099 0.80075901)  
##       6) MolWeight>=0.3719905 59  17 Low (0.71186441 0.28813559)  
##        12) FP115=0 46   7 Low (0.84782609 0.15217391)  
##          24) FP171=0 37   2 Low (0.94594595 0.05405405) *
##          25) FP171=1 9   4 High (0.44444444 0.55555556) *
##        13) FP115=1 13   3 High (0.23076923 0.76923077) *
##       7) MolWeight< 0.3719905 468  63 High (0.13461538 0.86538462)  
##        14) HydrophilicFactor< -0.789432 33   5 Low (0.84848485 0.15151515)  
##          28) NumBonds>=-0.5566408 26   0 Low (1.00000000 0.00000000) *
##          29) NumBonds< -0.5566408 7   2 High (0.28571429 0.71428571) *
##        15) HydrophilicFactor>=-0.789432 435  35 High (0.08045977 0.91954023)  
##          30) FP013=1 42  17 High (0.40476190 0.59523810)  
##            60) FP060=0 26  10 Low (0.61538462 0.38461538)  
##             120) MolWeight>=-0.1146511 9   0 Low (1.00000000 0.00000000) *
##             121) MolWeight< -0.1146511 17   7 High (0.41176471 0.58823529) *
##            61) FP060=1 16   1 High (0.06250000 0.93750000) *
##          31) FP013=0 393  18 High (0.04580153 0.95419847)  
##            62) FP206=1 31  11 High (0.35483871 0.64516129)  
##             124) NumOxygen< -0.6211843 7   1 Low (0.85714286 0.14285714) *
##             125) NumOxygen>=-0.6211843 24   5 High (0.20833333 0.79166667)  
##               250) NumRotBonds>=1.764021 7   2 Low (0.71428571 0.28571429) *
##               251) NumRotBonds< 1.764021 17   0 High (0.00000000 1.00000000) *
##            63) FP206=0 362   7 High (0.01933702 0.98066298) *
CART_Tune$results
##      cp       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1 0.001 0.9023673 0.8125692 0.8551524 0.02471610 0.04684097 0.05412641
## 2 0.005 0.8923973 0.8195460 0.8512700 0.02507914 0.06010888 0.04694613
## 3 0.010 0.8717310 0.8476190 0.8416183 0.04129882 0.05592549 0.05733463
## 4 0.015 0.8547744 0.8451827 0.8282293 0.04327629 0.05152127 0.07139618
## 5 0.020 0.8374508 0.8641750 0.8034107 0.04423715 0.05003381 0.06839680
(CART_Train_ROCCurveAUC <- CART_Tune$results[CART_Tune$results$cp==CART_Tune$bestTune$cp,
                              c("ROC")])
## [1] 0.9023673
##################################
# Identifying and plotting the
# best model predictors
##################################
CART_VarImp <- varImp(CART_Tune, scale = TRUE)
plot(CART_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Classification and Regression Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
CART_Test <- data.frame(CART_Observed = PMA_PreModelling_Test_CART$Log_Solubility_Class,
                      CART_Predicted = predict(CART_Tune,
                      PMA_PreModelling_Test_CART[,!names(PMA_PreModelling_Test_CART) %in% c("Log_Solubility_Class")],
                      type = "prob"))

CART_Test
##      CART_Observed CART_Predicted.Low CART_Predicted.High
## 20            High         0.01933702          0.98066298
## 21            High         0.01933702          0.98066298
## 23            High         0.01933702          0.98066298
## 25            High         0.01933702          0.98066298
## 28            High         0.01933702          0.98066298
## 31            High         0.01933702          0.98066298
## 32            High         0.01933702          0.98066298
## 33            High         0.01933702          0.98066298
## 34            High         0.01933702          0.98066298
## 37            High         0.01933702          0.98066298
## 38            High         0.01933702          0.98066298
## 42            High         0.11904762          0.88095238
## 49            High         0.01933702          0.98066298
## 54            High         0.01933702          0.98066298
## 55            High         0.01933702          0.98066298
## 58            High         0.01933702          0.98066298
## 60            High         0.01933702          0.98066298
## 61            High         0.01933702          0.98066298
## 65            High         0.01933702          0.98066298
## 69            High         0.01933702          0.98066298
## 73            High         0.01933702          0.98066298
## 86            High         0.01933702          0.98066298
## 90            High         0.01933702          0.98066298
## 91            High         0.01933702          0.98066298
## 93            High         0.01933702          0.98066298
## 96            High         0.01933702          0.98066298
## 98            High         0.01933702          0.98066298
## 100           High         0.01933702          0.98066298
## 104           High         0.11111111          0.88888889
## 112           High         0.01933702          0.98066298
## 115           High         0.46153846          0.53846154
## 119           High         0.01933702          0.98066298
## 128           High         0.01933702          0.98066298
## 130           High         0.01933702          0.98066298
## 139           High         0.01933702          0.98066298
## 143           High         0.01933702          0.98066298
## 145           High         0.01933702          0.98066298
## 146           High         0.01933702          0.98066298
## 149           High         0.01933702          0.98066298
## 150           High         0.01933702          0.98066298
## 152           High         0.01933702          0.98066298
## 157           High         1.00000000          0.00000000
## 161           High         0.01933702          0.98066298
## 162           High         0.01933702          0.98066298
## 166           High         0.01933702          0.98066298
## 167           High         0.01933702          0.98066298
## 173           High         0.01933702          0.98066298
## 176           High         0.01933702          0.98066298
## 182           High         0.01933702          0.98066298
## 187           High         0.01933702          0.98066298
## 190           High         0.01933702          0.98066298
## 194           High         0.01933702          0.98066298
## 195           High         0.01933702          0.98066298
## 201           High         0.01933702          0.98066298
## 207           High         0.01933702          0.98066298
## 208           High         0.01933702          0.98066298
## 215           High         0.01933702          0.98066298
## 222           High         0.01933702          0.98066298
## 224           High         0.01933702          0.98066298
## 231           High         0.11904762          0.88095238
## 236           High         0.01933702          0.98066298
## 237           High         0.01933702          0.98066298
## 240           High         0.01933702          0.98066298
## 243           High         0.01933702          0.98066298
## 248           High         0.01933702          0.98066298
## 251           High         0.86111111          0.13888889
## 256           High         0.11904762          0.88095238
## 258           High         0.06250000          0.93750000
## 262           High         0.01933702          0.98066298
## 266           High         0.01933702          0.98066298
## 272           High         0.44444444          0.55555556
## 280           High         0.94736842          0.05263158
## 283           High         0.01933702          0.98066298
## 286           High         0.94594595          0.05405405
## 287           High         0.01933702          0.98066298
## 289           High         0.01933702          0.98066298
## 290           High         0.11904762          0.88095238
## 298           High         0.01933702          0.98066298
## 305           High         0.01933702          0.98066298
## 306           High         0.57142857          0.42857143
## 312           High         0.01933702          0.98066298
## 320           High         0.01933702          0.98066298
## 325           High         0.01933702          0.98066298
## 332           High         0.00000000          1.00000000
## 333           High         0.01933702          0.98066298
## 335           High         0.01933702          0.98066298
## 339           High         0.97478992          0.02521008
## 346           High         0.11904762          0.88095238
## 347           High         0.01933702          0.98066298
## 350           High         0.00000000          1.00000000
## 353           High         0.01933702          0.98066298
## 358           High         0.11904762          0.88095238
## 365           High         0.06250000          0.93750000
## 367           High         0.01933702          0.98066298
## 370           High         0.01933702          0.98066298
## 379           High         0.01933702          0.98066298
## 386           High         0.28571429          0.71428571
## 394           High         0.94736842          0.05263158
## 396           High         0.01933702          0.98066298
## 400           High         0.01933702          0.98066298
## 404           High         0.01933702          0.98066298
## 405           High         0.01933702          0.98066298
## 413           High         0.57142857          0.42857143
## 415           High         0.01933702          0.98066298
## 417           High         0.28571429          0.71428571
## 418           High         0.11904762          0.88095238
## 423           High         0.41176471          0.58823529
## 434           High         0.01933702          0.98066298
## 437           High         0.23076923          0.76923077
## 440           High         0.81818182          0.18181818
## 449           High         0.57142857          0.42857143
## 450           High         0.06250000          0.93750000
## 457           High         0.57142857          0.42857143
## 467           High         0.81818182          0.18181818
## 469           High         0.23076923          0.76923077
## 474           High         0.86111111          0.13888889
## 475           High         0.86111111          0.13888889
## 485           High         0.94736842          0.05263158
## 504            Low         0.95945946          0.04054054
## 511            Low         0.96666667          0.03333333
## 512            Low         1.00000000          0.00000000
## 517            Low         0.01933702          0.98066298
## 519            Low         0.95945946          0.04054054
## 520            Low         0.01933702          0.98066298
## 522            Low         0.22222222          0.77777778
## 527            Low         1.00000000          0.00000000
## 528            Low         1.00000000          0.00000000
## 529            Low         0.94736842          0.05263158
## 537            Low         0.85714286          0.14285714
## 540            Low         0.95945946          0.04054054
## 541            Low         1.00000000          0.00000000
## 547            Low         0.86111111          0.13888889
## 550            Low         0.81818182          0.18181818
## 555            Low         0.00000000          1.00000000
## 564            Low         0.94594595          0.05405405
## 570            Low         0.94736842          0.05263158
## 573            Low         0.94594595          0.05405405
## 575            Low         1.00000000          0.00000000
## 578            Low         1.00000000          0.00000000
## 581            Low         0.06250000          0.93750000
## 585            Low         0.94594595          0.05405405
## 590            Low         1.00000000          0.00000000
## 601            Low         0.95945946          0.04054054
## 602            Low         0.11904762          0.88095238
## 607            Low         0.46153846          0.53846154
## 610            Low         0.97478992          0.02521008
## 618            Low         0.81818182          0.18181818
## 624            Low         0.94594595          0.05405405
## 626            Low         0.94736842          0.05263158
## 627            Low         1.00000000          0.00000000
## 634            Low         0.11111111          0.88888889
## 640            Low         0.47058824          0.52941176
## 642            Low         1.00000000          0.00000000
## 643            Low         0.97478992          0.02521008
## 644            Low         0.46153846          0.53846154
## 645            Low         0.11904762          0.88095238
## 646            Low         0.97478992          0.02521008
## 647            Low         0.96666667          0.03333333
## 652            Low         0.85714286          0.14285714
## 658            Low         0.95945946          0.04054054
## 659            Low         0.97478992          0.02521008
## 660            Low         0.95945946          0.04054054
## 664            Low         0.86111111          0.13888889
## 666            Low         0.94594595          0.05405405
## 667            Low         0.95945946          0.04054054
## 675            Low         0.97478992          0.02521008
## 680            Low         0.11111111          0.88888889
## 681            Low         0.86111111          0.13888889
## 687            Low         0.97478992          0.02521008
## 694            Low         0.95945946          0.04054054
## 697            Low         0.94594595          0.05405405
## 701            Low         1.00000000          0.00000000
## 705            Low         0.95945946          0.04054054
## 707            Low         0.95945946          0.04054054
## 710            Low         0.97478992          0.02521008
## 716            Low         0.95945946          0.04054054
## 719            Low         0.47058824          0.52941176
## 720            Low         0.95945946          0.04054054
## 725            Low         0.95945946          0.04054054
## 727            Low         1.00000000          0.00000000
## 730            Low         0.94594595          0.05405405
## 738            Low         0.97478992          0.02521008
## 745            Low         0.97478992          0.02521008
## 748            Low         0.94736842          0.05263158
## 751            Low         0.95945946          0.04054054
## 756            Low         0.96666667          0.03333333
## 766            Low         0.95945946          0.04054054
## 769            Low         0.94594595          0.05405405
## 783            Low         0.97478992          0.02521008
## 785            Low         0.97478992          0.02521008
## 790            Low         0.95945946          0.04054054
## 793            Low         0.46153846          0.53846154
## 795            Low         0.95945946          0.04054054
## 796            Low         0.95945946          0.04054054
## 797            Low         0.95945946          0.04054054
## 801            Low         0.94594595          0.05405405
## 811            Low         0.94594595          0.05405405
## 812            Low         0.95945946          0.04054054
## 815            Low         0.95945946          0.04054054
## 816            Low         0.94594595          0.05405405
## 817            Low         0.97478992          0.02521008
## 824            Low         0.97478992          0.02521008
## 825            Low         0.97478992          0.02521008
## 826            Low         0.97478992          0.02521008
## 830            Low         0.97478992          0.02521008
## 837            Low         0.97478992          0.02521008
## 838            Low         0.94594595          0.05405405
## 844            Low         0.97478992          0.02521008
## 845            Low         0.97478992          0.02521008
## 847            Low         0.97478992          0.02521008
## 850            Low         0.97478992          0.02521008
## 852            Low         0.97478992          0.02521008
## 853            Low         0.97478992          0.02521008
## 861            Low         0.97478992          0.02521008
## 868            Low         0.97478992          0.02521008
## 874            Low         0.97478992          0.02521008
## 879           High         0.01933702          0.98066298
## 895           High         0.01933702          0.98066298
## 899           High         0.01933702          0.98066298
## 903           High         0.01933702          0.98066298
## 917           High         0.01933702          0.98066298
## 927           High         0.01933702          0.98066298
## 929           High         0.01933702          0.98066298
## 931           High         0.00000000          1.00000000
## 933           High         0.11904762          0.88095238
## 944           High         0.01933702          0.98066298
## 947           High         0.01933702          0.98066298
## 949           High         0.01933702          0.98066298
## 953           High         0.01933702          0.98066298
## 958           High         0.01933702          0.98066298
## 961           High         0.85714286          0.14285714
## 963           High         0.01933702          0.98066298
## 964           High         0.01933702          0.98066298
## 973           High         0.01933702          0.98066298
## 976           High         0.01933702          0.98066298
## 977           High         0.01933702          0.98066298
## 980           High         0.36363636          0.63636364
## 983           High         0.01933702          0.98066298
## 984           High         0.01933702          0.98066298
## 986           High         0.01933702          0.98066298
## 989           High         0.01933702          0.98066298
## 991           High         0.01933702          0.98066298
## 996           High         0.01933702          0.98066298
## 997           High         0.01933702          0.98066298
## 999           High         0.41176471          0.58823529
## 1000          High         0.01933702          0.98066298
## 1003          High         0.01933702          0.98066298
## 1008          High         0.01933702          0.98066298
## 1009          High         0.01933702          0.98066298
## 1014          High         0.01933702          0.98066298
## 1015          High         0.00000000          1.00000000
## 1040          High         0.01933702          0.98066298
## 1042          High         0.11904762          0.88095238
## 1043          High         0.01933702          0.98066298
## 1050          High         0.01933702          0.98066298
## 1052          High         0.01933702          0.98066298
## 1056          High         0.23076923          0.76923077
## 1070          High         0.11904762          0.88095238
## 1073          High         0.41176471          0.58823529
## 1074          High         0.01933702          0.98066298
## 1079          High         0.00000000          1.00000000
## 1080          High         0.11904762          0.88095238
## 1085          High         0.01933702          0.98066298
## 1087          High         0.22222222          0.77777778
## 1096          High         0.86111111          0.13888889
## 1099          High         0.00000000          1.00000000
## 1100          High         0.57142857          0.42857143
## 1102          High         0.23076923          0.76923077
## 1107           Low         1.00000000          0.00000000
## 1109           Low         0.95945946          0.04054054
## 1114           Low         0.28571429          0.71428571
## 1118           Low         0.00000000          1.00000000
## 1123           Low         0.96666667          0.03333333
## 1132           Low         0.22222222          0.77777778
## 1134           Low         1.00000000          0.00000000
## 1137           Low         1.00000000          0.00000000
## 1154           Low         0.94594595          0.05405405
## 1155           Low         1.00000000          0.00000000
## 1157           Low         0.95945946          0.04054054
## 1162           Low         0.97478992          0.02521008
## 1164           Low         1.00000000          0.00000000
## 1171           Low         0.95945946          0.04054054
## 1172           Low         0.94594595          0.05405405
## 1175           Low         0.95945946          0.04054054
## 1177           Low         0.94736842          0.05263158
## 1179           Low         0.96666667          0.03333333
## 1183           Low         1.00000000          0.00000000
## 1185           Low         0.95945946          0.04054054
## 1189           Low         0.95945946          0.04054054
## 1211           Low         0.97478992          0.02521008
## 1218           Low         0.47058824          0.52941176
## 1224           Low         1.00000000          0.00000000
## 1225           Low         1.00000000          0.00000000
## 1227           Low         0.95945946          0.04054054
## 1232           Low         0.95945946          0.04054054
## 1235           Low         0.46153846          0.53846154
## 1238           Low         0.95945946          0.04054054
## 1240           Low         0.96666667          0.03333333
## 1241           Low         0.97478992          0.02521008
## 1248           Low         0.97478992          0.02521008
## 1258           Low         0.94594595          0.05405405
## 1261           Low         0.97478992          0.02521008
## 1263           Low         0.97478992          0.02521008
## 1269           Low         0.96666667          0.03333333
## 1270           Low         0.86111111          0.13888889
## 1271           Low         0.97478992          0.02521008
## 1272           Low         0.97478992          0.02521008
## 1280           Low         0.97478992          0.02521008
## 1286           Low         0.97478992          0.02521008
## 1287           Low         0.97478992          0.02521008
## 1289           Low         0.97478992          0.02521008
## 1290           Low         0.97478992          0.02521008
## 1291          High         0.01933702          0.98066298
## 1294          High         0.11904762          0.88095238
## 1305           Low         0.95945946          0.04054054
## 1308          High         0.95945946          0.04054054
##################################
# Reporting the independent evaluation results
# for the test set
##################################
CART_Test_ROC <- roc(response = CART_Test$CART_Observed,
             predictor = CART_Test$CART_Predicted.High,
             levels = rev(levels(CART_Test$CART_Observed)))

(CART_Test_ROCCurveAUC <- auc(CART_Test_ROC)[1])
## [1] 0.9452282

1.5.12 Conditional Inference Trees (CTREE)


[A] The conditional inference trees model from the party package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] mincriterion = 1-p-value threshold made to vary across a range of values equal to 0.75 to 0.99

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves mincriterion=0.95
     [C.2] ROC Curve AUC = 0.90967

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] NumCarbon variable (numeric)
     [D.3] NumBonds variable (numeric)
     [D.4] NumRings variable (numeric)
     [D.5] NumMultBonds variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.89647
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_CTREE <- PMA_PreModelling_Train
PMA_PreModelling_Test_CTREE <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_CTREE$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)

KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
CTREE_Grid = data.frame(mincriterion = sort(c(0.95, seq(0.75, 0.99, length = 2))))

##################################
# Running the conditional inference trees model
# by setting the caret method to 'ctree'
##################################
set.seed(12345678)
CTREE_Tune <- train(x = PMA_PreModelling_Train_CTREE[,!names(PMA_PreModelling_Train_CTREE) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_CTREE$Log_Solubility_Class,
                 method = "ctree",
                 tuneGrid = CTREE_Grid,
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
CTREE_Tune
## Conditional Inference Tree 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   mincriterion  ROC        Sens       Spec     
##   0.75          0.9074458  0.8639535  0.8357402
##   0.95          0.9096727  0.8780731  0.8168723
##   0.99          0.9040982  0.8993909  0.7977866
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mincriterion = 0.95.
CTREE_Tune$finalModel
## 
##   Conditional inference tree with 18 terminal nodes
## 
## Response:  .outcome 
## Inputs:  FP001, FP002, FP003, FP004, FP005, FP006, FP007, FP008, FP009, FP010, FP011, FP012, FP013, FP014, FP015, FP016, FP017, FP018, FP019, FP020, FP021, FP022, FP023, FP024, FP025, FP026, FP027, FP028, FP029, FP030, FP031, FP032, FP033, FP034, FP035, FP036, FP037, FP038, FP039, FP040, FP041, FP042, FP043, FP044, FP045, FP046, FP047, FP048, FP049, FP050, FP051, FP052, FP053, FP054, FP055, FP056, FP057, FP058, FP059, FP060, FP061, FP062, FP063, FP064, FP065, FP066, FP067, FP068, FP069, FP070, FP071, FP072, FP073, FP074, FP075, FP076, FP077, FP078, FP079, FP080, FP081, FP082, FP083, FP084, FP085, FP086, FP087, FP088, FP089, FP090, FP091, FP092, FP093, FP094, FP095, FP096, FP097, FP098, FP099, FP100, FP101, FP102, FP103, FP104, FP105, FP106, FP107, FP108, FP109, FP110, FP111, FP112, FP113, FP114, FP115, FP116, FP117, FP118, FP119, FP120, FP121, FP122, FP123, FP124, FP125, FP126, FP127, FP128, FP129, FP130, FP131, FP132, FP133, FP134, FP135, FP136, FP137, FP138, FP139, FP140, FP141, FP142, FP143, FP144, FP145, FP146, FP147, FP148, FP149, FP150, FP151, FP152, FP153, FP155, FP156, FP157, FP158, FP159, FP160, FP161, FP162, FP163, FP164, FP165, FP166, FP167, FP168, FP169, FP170, FP171, FP172, FP173, FP174, FP175, FP176, FP177, FP178, FP179, FP180, FP181, FP182, FP183, FP184, FP185, FP186, FP187, FP188, FP189, FP190, FP191, FP192, FP193, FP194, FP195, FP196, FP197, FP198, FP201, FP202, FP203, FP204, FP205, FP206, FP207, FP208, MolWeight, NumBonds, NumMultBonds, NumRotBonds, NumDblBonds, NumCarbon, NumNitrogen, NumOxygen, NumSulfer, NumChlorine, NumHalogen, NumRings, HydrophilicFactor, SurfaceArea1, SurfaceArea2 
## Number of observations:  951 
## 
## 1) MolWeight <= 0.2222905; criterion = 1, statistic = 322.106
##   2) FP072 == {0}; criterion = 1, statistic = 98.274
##     3) NumCarbon <= -0.4425175; criterion = 1, statistic = 60.278
##       4) FP172 == {0}; criterion = 1, statistic = 25.438
##         5) FP050 == {1}; criterion = 1, statistic = 30.749
##           6)*  weights = 19 
##         5) FP050 == {0}
##           7)*  weights = 103 
##       4) FP172 == {1}
##         8)*  weights = 12 
##     3) NumCarbon > -0.4425175
##       9) NumNitrogen <= -0.685246; criterion = 1, statistic = 34.514
##         10)*  weights = 45 
##       9) NumNitrogen > -0.685246
##         11)*  weights = 29 
##   2) FP072 == {1}
##     12) FP059 == {0}; criterion = 1, statistic = 78.968
##       13) NumCarbon <= 0.1817764; criterion = 1, statistic = 25.002
##         14)*  weights = 302 
##       13) NumCarbon > 0.1817764
##         15)*  weights = 10 
##     12) FP059 == {1}
##       16)*  weights = 22 
## 1) MolWeight > 0.2222905
##   17) FP075 == {0}; criterion = 1, statistic = 40.657
##     18) FP171 == {1}; criterion = 0.998, statistic = 19.88
##       19) NumCarbon <= 0.3642386; criterion = 0.995, statistic = 17.87
##         20)*  weights = 11 
##       19) NumCarbon > 0.3642386
##         21)*  weights = 24 
##     18) FP171 == {0}
##       22) FP025 == {1}; criterion = 1, statistic = 31.349
##         23)*  weights = 26 
##       22) FP025 == {0}
##         24) FP126 == {1}; criterion = 0.994, statistic = 23.836
##           25)*  weights = 10 
##         24) FP126 == {0}
##           26) FP055 == {1}; criterion = 0.99, statistic = 16.625
##             27)*  weights = 8 
##           26) FP055 == {0}
##             28)*  weights = 133 
##   17) FP075 == {1}
##     29) FP061 == {0}; criterion = 0.996, statistic = 18.375
##       30)*  weights = 47 
##     29) FP061 == {1}
##       31) MolWeight <= 0.6620108; criterion = 0.996, statistic = 18.221
##         32)*  weights = 38 
##       31) MolWeight > 0.6620108
##         33) FP198 == {0}; criterion = 0.997, statistic = 18.785
##           34)*  weights = 104 
##         33) FP198 == {1}
##           35)*  weights = 8
CTREE_Tune$results
##   mincriterion       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1         0.75 0.9074458 0.8639535 0.8357402 0.01513588 0.07335027 0.05733407
## 2         0.95 0.9096727 0.8780731 0.8168723 0.01486612 0.07203564 0.06543021
## 3         0.99 0.9040982 0.8993909 0.7977866 0.01746151 0.03982612 0.05232463
(CTREE_Train_ROCCurveAUC <- CTREE_Tune$results[CTREE_Tune$results$mincriterion==CTREE_Tune$bestTune$mincriterion,
                              c("ROC")])
## [1] 0.9096727
##################################
# Identifying and plotting the
# best model predictors
##################################
CTREE_VarImp <- varImp(CTREE_Tune, scale = TRUE)
plot(CTREE_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Conditional Inference Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
CTREE_Test <- data.frame(CTREE_Observed = PMA_PreModelling_Test_CTREE$Log_Solubility_Class,
                      CTREE_Predicted = predict(CTREE_Tune,
                      PMA_PreModelling_Test_CTREE[,!names(PMA_PreModelling_Test_CTREE) %in% c("Log_Solubility_Class")],
                      type = "prob"))

CTREE_Test
##     CTREE_Observed CTREE_Predicted.Low CTREE_Predicted.High
## 1             High          0.01986755           0.98013245
## 2             High          0.01986755           0.98013245
## 3             High          0.01986755           0.98013245
## 4             High          0.09708738           0.90291262
## 5             High          0.01986755           0.98013245
## 6             High          0.01986755           0.98013245
## 7             High          0.01986755           0.98013245
## 8             High          0.01986755           0.98013245
## 9             High          0.01986755           0.98013245
## 10            High          0.09708738           0.90291262
## 11            High          0.09708738           0.90291262
## 12            High          0.60000000           0.40000000
## 13            High          0.01986755           0.98013245
## 14            High          0.01986755           0.98013245
## 15            High          0.09708738           0.90291262
## 16            High          0.09708738           0.90291262
## 17            High          0.01986755           0.98013245
## 18            High          0.01986755           0.98013245
## 19            High          0.01986755           0.98013245
## 20            High          0.09708738           0.90291262
## 21            High          0.01986755           0.98013245
## 22            High          0.09708738           0.90291262
## 23            High          0.01986755           0.98013245
## 24            High          0.09708738           0.90291262
## 25            High          0.01986755           0.98013245
## 26            High          0.09708738           0.90291262
## 27            High          0.54545455           0.45454545
## 28            High          0.01986755           0.98013245
## 29            High          0.00000000           1.00000000
## 30            High          0.54545455           0.45454545
## 31            High          0.89361702           0.10638298
## 32            High          0.01986755           0.98013245
## 33            High          0.01986755           0.98013245
## 34            High          0.01986755           0.98013245
## 35            High          0.01986755           0.98013245
## 36            High          0.01986755           0.98013245
## 37            High          0.01986755           0.98013245
## 38            High          0.01986755           0.98013245
## 39            High          0.01986755           0.98013245
## 40            High          0.01986755           0.98013245
## 41            High          0.01986755           0.98013245
## 42            High          0.83333333           0.16666667
## 43            High          0.01986755           0.98013245
## 44            High          0.01986755           0.98013245
## 45            High          0.01986755           0.98013245
## 46            High          0.09708738           0.90291262
## 47            High          0.01986755           0.98013245
## 48            High          0.01986755           0.98013245
## 49            High          0.09708738           0.90291262
## 50            High          0.01986755           0.98013245
## 51            High          0.01986755           0.98013245
## 52            High          0.09708738           0.90291262
## 53            High          0.01986755           0.98013245
## 54            High          0.01986755           0.98013245
## 55            High          0.01986755           0.98013245
## 56            High          0.01986755           0.98013245
## 57            High          0.09708738           0.90291262
## 58            High          0.01986755           0.98013245
## 59            High          0.01986755           0.98013245
## 60            High          0.41379310           0.58620690
## 61            High          0.01986755           0.98013245
## 62            High          0.09708738           0.90291262
## 63            High          0.01986755           0.98013245
## 64            High          0.01986755           0.98013245
## 65            High          0.01986755           0.98013245
## 66            High          0.89361702           0.10638298
## 67            High          0.60000000           0.40000000
## 68            High          0.01986755           0.98013245
## 69            High          0.01986755           0.98013245
## 70            High          0.01986755           0.98013245
## 71            High          0.89361702           0.10638298
## 72            High          0.13157895           0.86842105
## 73            High          0.54545455           0.45454545
## 74            High          0.69230769           0.30769231
## 75            High          0.41379310           0.58620690
## 76            High          0.09090909           0.90909091
## 77            High          0.13157895           0.86842105
## 78            High          0.01986755           0.98013245
## 79            High          0.01986755           0.98013245
## 80            High          1.00000000           0.00000000
## 81            High          0.01986755           0.98013245
## 82            High          0.01986755           0.98013245
## 83            High          0.54545455           0.45454545
## 84            High          0.01986755           0.98013245
## 85            High          0.41379310           0.58620690
## 86            High          0.01986755           0.98013245
## 87            High          0.41379310           0.58620690
## 88            High          0.60000000           0.40000000
## 89            High          0.09708738           0.90291262
## 90            High          0.54545455           0.45454545
## 91            High          0.01986755           0.98013245
## 92            High          0.60000000           0.40000000
## 93            High          0.01986755           0.98013245
## 94            High          0.01986755           0.98013245
## 95            High          0.09708738           0.90291262
## 96            High          0.01986755           0.98013245
## 97            High          0.09708738           0.90291262
## 98            High          0.89361702           0.10638298
## 99            High          0.01986755           0.98013245
## 100           High          0.09708738           0.90291262
## 101           High          0.09708738           0.90291262
## 102           High          0.01986755           0.98013245
## 103           High          0.41379310           0.58620690
## 104           High          0.01986755           0.98013245
## 105           High          0.63157895           0.36842105
## 106           High          0.89361702           0.10638298
## 107           High          0.83333333           0.16666667
## 108           High          0.41379310           0.58620690
## 109           High          0.74038462           0.25961538
## 110           High          0.74038462           0.25961538
## 111           High          0.13157895           0.86842105
## 112           High          0.01986755           0.98013245
## 113           High          0.13157895           0.86842105
## 114           High          0.74038462           0.25961538
## 115           High          0.74038462           0.25961538
## 116           High          0.89361702           0.10638298
## 117           High          0.89361702           0.10638298
## 118           High          0.69230769           0.30769231
## 119            Low          1.00000000           0.00000000
## 120            Low          0.74038462           0.25961538
## 121            Low          0.89361702           0.10638298
## 122            Low          0.01986755           0.98013245
## 123            Low          0.87500000           0.12500000
## 124            Low          0.09708738           0.90291262
## 125            Low          0.89361702           0.10638298
## 126            Low          0.89361702           0.10638298
## 127            Low          0.63157895           0.36842105
## 128            Low          0.89361702           0.10638298
## 129            Low          0.63157895           0.36842105
## 130            Low          1.00000000           0.00000000
## 131            Low          0.41379310           0.58620690
## 132            Low          0.74038462           0.25961538
## 133            Low          0.74038462           0.25961538
## 134            Low          0.89361702           0.10638298
## 135            Low          1.00000000           0.00000000
## 136            Low          1.00000000           0.00000000
## 137            Low          0.69230769           0.30769231
## 138            Low          0.41379310           0.58620690
## 139            Low          0.63157895           0.36842105
## 140            Low          0.01986755           0.98013245
## 141            Low          1.00000000           0.00000000
## 142            Low          0.69230769           0.30769231
## 143            Low          1.00000000           0.00000000
## 144            Low          0.89361702           0.10638298
## 145            Low          0.60000000           0.40000000
## 146            Low          0.41379310           0.58620690
## 147            Low          0.74038462           0.25961538
## 148            Low          1.00000000           0.00000000
## 149            Low          0.54545455           0.45454545
## 150            Low          0.83333333           0.16666667
## 151            Low          0.00000000           1.00000000
## 152            Low          0.74038462           0.25961538
## 153            Low          0.09708738           0.90291262
## 154            Low          0.41379310           0.58620690
## 155            Low          1.00000000           0.00000000
## 156            Low          0.09090909           0.90909091
## 157            Low          0.41379310           0.58620690
## 158            Low          0.74038462           0.25961538
## 159            Low          0.63157895           0.36842105
## 160            Low          0.87500000           0.12500000
## 161            Low          0.41379310           0.58620690
## 162            Low          0.87500000           0.12500000
## 163            Low          0.89361702           0.10638298
## 164            Low          1.00000000           0.00000000
## 165            Low          0.80000000           0.20000000
## 166            Low          0.41379310           0.58620690
## 167            Low          0.89361702           0.10638298
## 168            Low          0.74038462           0.25961538
## 169            Low          0.41379310           0.58620690
## 170            Low          1.00000000           0.00000000
## 171            Low          0.74038462           0.25961538
## 172            Low          0.41379310           0.58620690
## 173            Low          1.00000000           0.00000000
## 174            Low          0.69230769           0.30769231
## 175            Low          1.00000000           0.00000000
## 176            Low          1.00000000           0.00000000
## 177            Low          0.74038462           0.25961538
## 178            Low          1.00000000           0.00000000
## 179            Low          1.00000000           0.00000000
## 180            Low          0.41379310           0.58620690
## 181            Low          1.00000000           0.00000000
## 182            Low          0.60000000           0.40000000
## 183            Low          0.41379310           0.58620690
## 184            Low          1.00000000           0.00000000
## 185            Low          1.00000000           0.00000000
## 186            Low          0.89361702           0.10638298
## 187            Low          0.87500000           0.12500000
## 188            Low          1.00000000           0.00000000
## 189            Low          1.00000000           0.00000000
## 190            Low          0.41379310           0.58620690
## 191            Low          0.87500000           0.12500000
## 192            Low          0.60000000           0.40000000
## 193            Low          1.00000000           0.00000000
## 194            Low          1.00000000           0.00000000
## 195            Low          1.00000000           0.00000000
## 196            Low          1.00000000           0.00000000
## 197            Low          1.00000000           0.00000000
## 198            Low          1.00000000           0.00000000
## 199            Low          1.00000000           0.00000000
## 200            Low          0.74038462           0.25961538
## 201            Low          1.00000000           0.00000000
## 202            Low          1.00000000           0.00000000
## 203            Low          1.00000000           0.00000000
## 204            Low          1.00000000           0.00000000
## 205            Low          0.41379310           0.58620690
## 206            Low          1.00000000           0.00000000
## 207            Low          0.74038462           0.25961538
## 208            Low          0.41379310           0.58620690
## 209            Low          1.00000000           0.00000000
## 210            Low          0.95833333           0.04166667
## 211            Low          1.00000000           0.00000000
## 212            Low          1.00000000           0.00000000
## 213            Low          1.00000000           0.00000000
## 214            Low          1.00000000           0.00000000
## 215            Low          1.00000000           0.00000000
## 216            Low          1.00000000           0.00000000
## 217           High          0.01986755           0.98013245
## 218           High          0.01986755           0.98013245
## 219           High          0.09708738           0.90291262
## 220           High          0.01986755           0.98013245
## 221           High          0.01986755           0.98013245
## 222           High          0.01986755           0.98013245
## 223           High          0.01986755           0.98013245
## 224           High          0.01986755           0.98013245
## 225           High          0.80000000           0.20000000
## 226           High          0.09708738           0.90291262
## 227           High          0.01986755           0.98013245
## 228           High          0.01986755           0.98013245
## 229           High          0.01986755           0.98013245
## 230           High          0.01986755           0.98013245
## 231           High          0.63157895           0.36842105
## 232           High          0.01986755           0.98013245
## 233           High          0.01986755           0.98013245
## 234           High          0.09708738           0.90291262
## 235           High          0.09708738           0.90291262
## 236           High          0.01986755           0.98013245
## 237           High          0.89361702           0.10638298
## 238           High          0.01986755           0.98013245
## 239           High          0.01986755           0.98013245
## 240           High          0.01986755           0.98013245
## 241           High          0.01986755           0.98013245
## 242           High          0.09708738           0.90291262
## 243           High          0.09708738           0.90291262
## 244           High          0.09708738           0.90291262
## 245           High          0.83333333           0.16666667
## 246           High          0.01986755           0.98013245
## 247           High          0.09708738           0.90291262
## 248           High          0.01986755           0.98013245
## 249           High          0.01986755           0.98013245
## 250           High          0.41379310           0.58620690
## 251           High          0.13157895           0.86842105
## 252           High          0.01986755           0.98013245
## 253           High          0.13157895           0.86842105
## 254           High          0.41379310           0.58620690
## 255           High          0.01986755           0.98013245
## 256           High          0.09708738           0.90291262
## 257           High          0.74038462           0.25961538
## 258           High          0.13157895           0.86842105
## 259           High          0.09708738           0.90291262
## 260           High          0.09708738           0.90291262
## 261           High          0.01986755           0.98013245
## 262           High          0.60000000           0.40000000
## 263           High          0.09708738           0.90291262
## 264           High          0.60000000           0.40000000
## 265           High          0.89361702           0.10638298
## 266           High          0.13157895           0.86842105
## 267           High          0.60000000           0.40000000
## 268           High          0.13157895           0.86842105
## 269            Low          0.41379310           0.58620690
## 270            Low          0.87500000           0.12500000
## 271            Low          0.41379310           0.58620690
## 272            Low          0.41379310           0.58620690
## 273            Low          0.74038462           0.25961538
## 274            Low          0.60000000           0.40000000
## 275            Low          0.95833333           0.04166667
## 276            Low          0.83333333           0.16666667
## 277            Low          1.00000000           0.00000000
## 278            Low          0.89361702           0.10638298
## 279            Low          1.00000000           0.00000000
## 280            Low          0.41379310           0.58620690
## 281            Low          0.09708738           0.90291262
## 282            Low          1.00000000           0.00000000
## 283            Low          1.00000000           0.00000000
## 284            Low          0.69230769           0.30769231
## 285            Low          0.54545455           0.45454545
## 286            Low          0.74038462           0.25961538
## 287            Low          0.63157895           0.36842105
## 288            Low          0.95833333           0.04166667
## 289            Low          0.95833333           0.04166667
## 290            Low          0.41379310           0.58620690
## 291            Low          0.74038462           0.25961538
## 292            Low          0.83333333           0.16666667
## 293            Low          0.41379310           0.58620690
## 294            Low          0.95833333           0.04166667
## 295            Low          1.00000000           0.00000000
## 296            Low          1.00000000           0.00000000
## 297            Low          0.87500000           0.12500000
## 298            Low          0.74038462           0.25961538
## 299            Low          0.41379310           0.58620690
## 300            Low          0.41379310           0.58620690
## 301            Low          0.74038462           0.25961538
## 302            Low          1.00000000           0.00000000
## 303            Low          1.00000000           0.00000000
## 304            Low          0.74038462           0.25961538
## 305            Low          0.74038462           0.25961538
## 306            Low          1.00000000           0.00000000
## 307            Low          1.00000000           0.00000000
## 308            Low          1.00000000           0.00000000
## 309            Low          1.00000000           0.00000000
## 310            Low          1.00000000           0.00000000
## 311            Low          1.00000000           0.00000000
## 312            Low          1.00000000           0.00000000
## 313           High          0.01986755           0.98013245
## 314           High          0.60000000           0.40000000
## 315            Low          0.87500000           0.12500000
## 316           High          0.95833333           0.04166667
##################################
# Reporting the independent evaluation results
# for the test set
##################################
CTREE_Test_ROC <- roc(response = CTREE_Test$CTREE_Observed,
             predictor = CTREE_Test$CTREE_Predicted.High,
             levels = rev(levels(CTREE_Test$CTREE_Observed)))

(CTREE_Test_ROCCurveAUC <- auc(CTREE_Test_ROC)[1])
## [1] 0.8964792

1.5.13 C5.0 Decision Trees (C50)


[A] The C5.0 decision trees model from the C50 and plyr packages was implemented through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] trials = number of boosting iterations made to vary across a range of values equal to 1 to 100
     [B.2] model = model type made to vary across a range of levels equal to TREE and RULES
     [B.3] winnow = winnow made to vary across a range of levels equal to TRUE and FALSE

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves trials=40, method=RULES and winnow=FALSE
     [C.2] ROC Curve AUC = 0.96540

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] NumBonds variable (numeric)
     [D.2] HydrophilicFactor variable (numeric)
     [D.3] NumCarbon variable (numeric)
     [D.4] Molweight variable (numeric)
     [D.5] FP197 variable (factor)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.97635
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_C50 <- PMA_PreModelling_Train
PMA_PreModelling_Test_C50 <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_C50$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
C50_Grid = expand.grid(trials = c(1:9, (1:10)*10),
                       model = c("tree", "rules"),
                       winnow = c(TRUE, FALSE))

##################################
# Running the C5.0 decision trees model
# by setting the caret method to 'C5.0'
##################################
set.seed(12345678)
C50_Tune <- train(x = PMA_PreModelling_Train_C50[,!names(PMA_PreModelling_Train_C50) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_C50$Log_Solubility_Class,
                 method = "C5.0",
                 tuneGrid = C50_Grid,
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
C50_Tune
## C5.0 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   model  winnow  trials  ROC        Sens       Spec     
##   rules  FALSE     1     0.8754712  0.8523256  0.8663280
##   rules  FALSE     2     0.9139992  0.8802326  0.8586357
##   rules  FALSE     3     0.9312186  0.8497785  0.8817852
##   rules  FALSE     4     0.9418542  0.8803987  0.8645138
##   rules  FALSE     5     0.9495156  0.8756368  0.8760160
##   rules  FALSE     6     0.9545297  0.9013843  0.8721335
##   rules  FALSE     7     0.9540497  0.8942414  0.8702830
##   rules  FALSE     8     0.9556435  0.9176633  0.8702467
##   rules  FALSE     9     0.9545048  0.9128461  0.8721698
##   rules  FALSE    10     0.9553917  0.9011074  0.8740566
##   rules  FALSE    20     0.9627843  0.9059801  0.8837083
##   rules  FALSE    30     0.9642571  0.9082503  0.8799347
##   rules  FALSE    40     0.9654007  0.9155039  0.8837808
##   rules  FALSE    50     0.9645413  0.9153931  0.8799710
##   rules  FALSE    60     0.9638177  0.9083610  0.8837808
##   rules  FALSE    70     0.9640453  0.9083056  0.8799347
##   rules  FALSE    80     0.9635541  0.9153378  0.8799347
##   rules  FALSE    90     0.9642681  0.9200997  0.8799347
##   rules  FALSE   100     0.9634606  0.9200997  0.8799347
##   rules   TRUE     1     0.8925361  0.8569214  0.8912554
##   rules   TRUE     2     0.9101197  0.8546512  0.8645864
##   rules   TRUE     3     0.9273596  0.8497231  0.8875181
##   rules   TRUE     4     0.9358808  0.8781285  0.8799710
##   rules   TRUE     5     0.9428694  0.8827796  0.8912917
##   rules   TRUE     6     0.9440485  0.8803433  0.8779753
##   rules   TRUE     7     0.9466928  0.8803433  0.8799347
##   rules   TRUE     8     0.9498695  0.8921373  0.8894412
##   rules   TRUE     9     0.9506061  0.8850498  0.8837083
##   rules   TRUE    10     0.9528304  0.8827243  0.8799347
##   rules   TRUE    20     0.9609361  0.8898117  0.8818578
##   rules   TRUE    30     0.9613386  0.8898671  0.8894775
##   rules   TRUE    40     0.9617762  0.8945183  0.8875544
##   rules   TRUE    50     0.9610015  0.8921927  0.8913643
##   rules   TRUE    60     0.9604662  0.8945736  0.8875181
##   rules   TRUE    70     0.9610535  0.8899225  0.8856313
##   rules   TRUE    80     0.9615022  0.8852159  0.8875544
##   rules   TRUE    90     0.9608758  0.8898671  0.8837446
##   rules   TRUE   100     0.9606082  0.8921927  0.8818215
##   tree   FALSE     1     0.9251507  0.8590255  0.8644775
##   tree   FALSE     2     0.9242512  0.8382614  0.8816401
##   tree   FALSE     3     0.9375375  0.8686600  0.8817126
##   tree   FALSE     4     0.9466693  0.8684939  0.8873367
##   tree   FALSE     5     0.9505678  0.8826689  0.8816038
##   tree   FALSE     6     0.9514910  0.8991141  0.8759071
##   tree   FALSE     7     0.9533817  0.8944075  0.8855225
##   tree   FALSE     8     0.9527229  0.8896456  0.8760160
##   tree   FALSE     9     0.9539725  0.8733112  0.8855588
##   tree   FALSE    10     0.9546979  0.8920266  0.8817489
##   tree   FALSE    20     0.9591829  0.8897564  0.8970972
##   tree   FALSE    30     0.9611743  0.8967331  0.8989840
##   tree   FALSE    40     0.9609107  0.8967885  0.8914006
##   tree   FALSE    50     0.9629556  0.8944629  0.8952104
##   tree   FALSE    60     0.9620595  0.8944075  0.8932874
##   tree   FALSE    70     0.9628225  0.8991141  0.8971335
##   tree   FALSE    80     0.9627740  0.8873754  0.8971335
##   tree   FALSE    90     0.9635952  0.8897010  0.8933237
##   tree   FALSE   100     0.9631377  0.8873200  0.8933237
##   tree    TRUE     1     0.9282666  0.8379845  0.8665094
##   tree    TRUE     2     0.9102836  0.8359911  0.8951016
##   tree    TRUE     3     0.9277501  0.8544297  0.8856313
##   tree    TRUE     4     0.9364175  0.8522702  0.8894412
##   tree    TRUE     5     0.9426873  0.8595238  0.8894049
##   tree    TRUE     6     0.9476441  0.8568660  0.9027576
##   tree    TRUE     7     0.9503419  0.8593023  0.8836357
##   tree    TRUE     8     0.9532930  0.8686047  0.8914006
##   tree    TRUE     9     0.9534653  0.8756921  0.8875907
##   tree    TRUE    10     0.9533833  0.8593023  0.8952467
##   tree    TRUE    20     0.9564897  0.8734773  0.8895138
##   tree    TRUE    30     0.9586314  0.8759136  0.8876270
##   tree    TRUE    40     0.9597348  0.8759136  0.8856676
##   tree    TRUE    50     0.9607841  0.8781838  0.8837808
##   tree    TRUE    60     0.9599619  0.8782946  0.8876270
##   tree    TRUE    70     0.9598905  0.8875969  0.8876270
##   tree    TRUE    80     0.9594845  0.8829457  0.8876270
##   tree    TRUE    90     0.9597357  0.8829457  0.8914369
##   tree    TRUE   100     0.9595649  0.8806202  0.8914369
## 
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were trials = 40, model = rules and
##  winnow = FALSE.
C50_Tune$finalModel
## 
## Call:
## (function (x, y, trials = 1, rules = FALSE, weights = NULL, control
##  1.23060333905164, -0.309270049682714, -1.07920674404989,
##  2.00054003341881, 2.00054
## 
## Rule-Based Model
## Number of samples: 951 
## Number of predictors: 220 
## 
## Number of boosting iterations: 40 
## Average number of rules: 24.1 
## 
## Non-standard options: attempt to group attributes
C50_Tune$results
##    model winnow trials       ROC      Sens      Spec       ROCSD     SensSD
## 39 rules  FALSE      1 0.8754712 0.8523256 0.8663280 0.020123929 0.06921646
## 58 rules   TRUE      1 0.8925361 0.8569214 0.8912554 0.028081192 0.05063962
## 1   tree  FALSE      1 0.9251507 0.8590255 0.8644775 0.027267901 0.08010132
## 20  tree   TRUE      1 0.9282666 0.8379845 0.8665094 0.019019183 0.06949847
## 40 rules  FALSE      2 0.9139992 0.8802326 0.8586357 0.024519619 0.06104610
## 59 rules   TRUE      2 0.9101197 0.8546512 0.8645864 0.019574620 0.04723783
## 2   tree  FALSE      2 0.9242512 0.8382614 0.8816401 0.019890210 0.08680223
## 21  tree   TRUE      2 0.9102836 0.8359911 0.8951016 0.016535669 0.06036470
## 41 rules  FALSE      3 0.9312186 0.8497785 0.8817852 0.022697450 0.06209568
## 60 rules   TRUE      3 0.9273596 0.8497231 0.8875181 0.022338765 0.07100797
## 3   tree  FALSE      3 0.9375375 0.8686600 0.8817126 0.012717207 0.06484938
## 22  tree   TRUE      3 0.9277501 0.8544297 0.8856313 0.017687438 0.05720028
## 42 rules  FALSE      4 0.9418542 0.8803987 0.8645138 0.020462972 0.06749559
## 61 rules   TRUE      4 0.9358808 0.8781285 0.8799710 0.021582812 0.05505165
## 4   tree  FALSE      4 0.9466693 0.8684939 0.8873367 0.013042441 0.07670975
## 23  tree   TRUE      4 0.9364175 0.8522702 0.8894412 0.018550163 0.04208341
## 43 rules  FALSE      5 0.9495156 0.8756368 0.8760160 0.016756734 0.05804377
## 62 rules   TRUE      5 0.9428694 0.8827796 0.8912917 0.024728078 0.05877042
## 5   tree  FALSE      5 0.9505678 0.8826689 0.8816038 0.012228006 0.05352303
## 24  tree   TRUE      5 0.9426873 0.8595238 0.8894049 0.017064601 0.04101446
## 44 rules  FALSE      6 0.9545297 0.9013843 0.8721335 0.016486902 0.05439803
## 63 rules   TRUE      6 0.9440485 0.8803433 0.8779753 0.020479258 0.04784632
## 6   tree  FALSE      6 0.9514910 0.8991141 0.8759071 0.014782063 0.04844165
## 25  tree   TRUE      6 0.9476441 0.8568660 0.9027576 0.015478762 0.04969921
## 45 rules  FALSE      7 0.9540497 0.8942414 0.8702830 0.015353099 0.06616054
## 64 rules   TRUE      7 0.9466928 0.8803433 0.8799347 0.018837204 0.04796721
## 7   tree  FALSE      7 0.9533817 0.8944075 0.8855225 0.013925129 0.03774449
## 26  tree   TRUE      7 0.9503419 0.8593023 0.8836357 0.013041675 0.03730181
## 46 rules  FALSE      8 0.9556435 0.9176633 0.8702467 0.012386967 0.05410264
## 65 rules   TRUE      8 0.9498695 0.8921373 0.8894412 0.017867684 0.03907638
## 8   tree  FALSE      8 0.9527229 0.8896456 0.8760160 0.013035417 0.04781327
## 27  tree   TRUE      8 0.9532930 0.8686047 0.8914006 0.013194317 0.04112726
## 47 rules  FALSE      9 0.9545048 0.9128461 0.8721698 0.012901729 0.06448717
## 66 rules   TRUE      9 0.9506061 0.8850498 0.8837083 0.017884983 0.04383931
## 9   tree  FALSE      9 0.9539725 0.8733112 0.8855588 0.013237853 0.04919251
## 28  tree   TRUE      9 0.9534653 0.8756921 0.8875907 0.012363399 0.03013779
## 48 rules  FALSE     10 0.9553917 0.9011074 0.8740566 0.012931834 0.07000687
## 67 rules   TRUE     10 0.9528304 0.8827243 0.8799347 0.018159244 0.03378669
## 10  tree  FALSE     10 0.9546979 0.8920266 0.8817489 0.012619546 0.03776971
## 29  tree   TRUE     10 0.9533833 0.8593023 0.8952467 0.012330017 0.03887943
## 49 rules  FALSE     20 0.9627843 0.9059801 0.8837083 0.013959967 0.04911489
## 68 rules   TRUE     20 0.9609361 0.8898117 0.8818578 0.013828196 0.02541040
## 11  tree  FALSE     20 0.9591829 0.8897564 0.8970972 0.011906887 0.04475922
## 30  tree   TRUE     20 0.9564897 0.8734773 0.8895138 0.013299528 0.04018987
## 50 rules  FALSE     30 0.9642571 0.9082503 0.8799347 0.010351842 0.04997863
## 69 rules   TRUE     30 0.9613386 0.8898671 0.8894775 0.011839750 0.03986066
## 12  tree  FALSE     30 0.9611743 0.8967331 0.8989840 0.009945763 0.04383624
## 31  tree   TRUE     30 0.9586314 0.8759136 0.8876270 0.014027718 0.04425405
## 51 rules  FALSE     40 0.9654007 0.9155039 0.8837808 0.010938803 0.04200514
## 70 rules   TRUE     40 0.9617762 0.8945183 0.8875544 0.012147590 0.03716347
## 13  tree  FALSE     40 0.9609107 0.8967885 0.8914006 0.009378583 0.05232563
## 32  tree   TRUE     40 0.9597348 0.8759136 0.8856676 0.012918611 0.03813811
## 52 rules  FALSE     50 0.9645413 0.9153931 0.8799710 0.010353401 0.03796026
## 71 rules   TRUE     50 0.9610015 0.8921927 0.8913643 0.010740704 0.03536434
## 14  tree  FALSE     50 0.9629556 0.8944629 0.8952104 0.010039726 0.05233930
## 33  tree   TRUE     50 0.9607841 0.8781838 0.8837808 0.013422075 0.03446569
## 53 rules  FALSE     60 0.9638177 0.9083610 0.8837808 0.010354489 0.04701664
## 72 rules   TRUE     60 0.9604662 0.8945736 0.8875181 0.011801838 0.03532497
## 15  tree  FALSE     60 0.9620595 0.8944075 0.8932874 0.010122127 0.04384929
## 34  tree   TRUE     60 0.9599619 0.8782946 0.8876270 0.012890401 0.03585962
## 54 rules  FALSE     70 0.9640453 0.9083056 0.8799347 0.010167855 0.04723491
## 73 rules   TRUE     70 0.9610535 0.8899225 0.8856313 0.011120628 0.03123194
## 16  tree  FALSE     70 0.9628225 0.8991141 0.8971335 0.010213449 0.04198859
## 35  tree   TRUE     70 0.9598905 0.8875969 0.8876270 0.013225333 0.03608236
## 55 rules  FALSE     80 0.9635541 0.9153378 0.8799347 0.009734285 0.04269630
## 74 rules   TRUE     80 0.9615022 0.8852159 0.8875544 0.011480370 0.03560627
## 17  tree  FALSE     80 0.9627740 0.8873754 0.8971335 0.009982550 0.04171706
## 36  tree   TRUE     80 0.9594845 0.8829457 0.8876270 0.012558967 0.03792290
## 56 rules  FALSE     90 0.9642681 0.9200997 0.8799347 0.009792287 0.03437964
## 75 rules   TRUE     90 0.9608758 0.8898671 0.8837446 0.012210998 0.03143162
## 18  tree  FALSE     90 0.9635952 0.8897010 0.8933237 0.009251954 0.04068568
## 37  tree   TRUE     90 0.9597357 0.8829457 0.8914369 0.011591678 0.03792290
## 57 rules  FALSE    100 0.9634606 0.9200997 0.8799347 0.009639079 0.03437964
## 76 rules   TRUE    100 0.9606082 0.8921927 0.8818215 0.012138268 0.02774701
## 19  tree  FALSE    100 0.9631377 0.8873200 0.8933237 0.009237875 0.03888627
## 38  tree   TRUE    100 0.9595649 0.8806202 0.8914369 0.011957611 0.03532497
##        SpecSD
## 39 0.05948617
## 58 0.05492303
## 1  0.05234230
## 20 0.05226348
## 40 0.05332739
## 59 0.05280739
## 2  0.06232832
## 21 0.03268801
## 41 0.04279647
## 60 0.04957934
## 3  0.03665989
## 22 0.04100084
## 42 0.05422507
## 61 0.06085627
## 4  0.04833127
## 23 0.04086656
## 43 0.04431397
## 62 0.05179528
## 5  0.03600158
## 24 0.04560432
## 44 0.05433072
## 63 0.05257286
## 6  0.04881636
## 25 0.03162282
## 45 0.06109125
## 64 0.05683215
## 7  0.04204556
## 26 0.04357429
## 46 0.05096306
## 65 0.05064455
## 8  0.04223745
## 27 0.05045239
## 47 0.05850621
## 66 0.05354258
## 9  0.03902346
## 28 0.05075527
## 48 0.06344503
## 67 0.05225564
## 10 0.04803562
## 29 0.05052917
## 49 0.04949495
## 68 0.05268159
## 11 0.04565318
## 30 0.05030378
## 50 0.05219682
## 69 0.04962275
## 12 0.03990896
## 31 0.05305481
## 51 0.04921807
## 70 0.05181258
## 13 0.04885921
## 32 0.05139217
## 52 0.05359516
## 71 0.05148907
## 14 0.04741597
## 33 0.05169177
## 53 0.05541358
## 72 0.05344845
## 15 0.04654212
## 34 0.05317049
## 54 0.05520050
## 73 0.05066210
## 16 0.04903411
## 35 0.04745336
## 55 0.05520050
## 74 0.05178292
## 17 0.04903411
## 36 0.05317049
## 56 0.05213793
## 75 0.05255231
## 18 0.04977339
## 37 0.05130082
## 57 0.05213793
## 76 0.05128977
## 19 0.05056186
## 38 0.05130082
(C50_Train_ROCCurveAUC <- C50_Tune$results[C50_Tune$results$trials==C50_Tune$bestTune$trials & 
                                             C50_Tune$results$model==C50_Tune$bestTune$model &
                                             C50_Tune$results$winnow==C50_Tune$bestTune$winnow,
                              c("ROC")])
## [1] 0.9654007
##################################
# Identifying and plotting the
# best model predictors
##################################
C50_VarImp <- varImp(C50_Tune, scale = TRUE)
plot(C50_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : C5.0 Decision Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
C50_Test <- data.frame(C50_Observed = PMA_PreModelling_Test_C50$Log_Solubility_Class,
                      C50_Predicted = predict(C50_Tune,
                      PMA_PreModelling_Test_C50[,!names(PMA_PreModelling_Test_C50) %in% c("Log_Solubility_Class")],
                      type = "prob"))

C50_Test
##      C50_Observed C50_Predicted.Low C50_Predicted.High
## 20           High        0.02655426         0.97344574
## 21           High        0.00000000         1.00000000
## 23           High        0.10015616         0.89984384
## 25           High        0.02061370         0.97938630
## 28           High        0.00000000         1.00000000
## 31           High        0.00000000         1.00000000
## 32           High        0.00000000         1.00000000
## 33           High        0.00000000         1.00000000
## 34           High        0.00000000         1.00000000
## 37           High        0.09558943         0.90441057
## 38           High        0.06953967         0.93046033
## 42           High        0.32696840         0.67303160
## 49           High        0.00000000         1.00000000
## 54           High        0.02063550         0.97936450
## 55           High        0.05495791         0.94504209
## 58           High        0.04087557         0.95912443
## 60           High        0.00000000         1.00000000
## 61           High        0.00000000         1.00000000
## 65           High        0.08831699         0.91168301
## 69           High        0.11449175         0.88550825
## 73           High        0.00000000         1.00000000
## 86           High        0.00000000         1.00000000
## 90           High        0.02063675         0.97936325
## 91           High        0.00000000         1.00000000
## 93           High        0.07186342         0.92813658
## 96           High        0.00000000         1.00000000
## 98           High        0.00000000         1.00000000
## 100          High        0.00000000         1.00000000
## 104          High        0.34768129         0.65231871
## 112          High        0.07305187         0.92694813
## 115          High        0.58938542         0.41061458
## 119          High        0.00000000         1.00000000
## 128          High        0.00000000         1.00000000
## 130          High        0.00000000         1.00000000
## 139          High        0.00000000         1.00000000
## 143          High        0.00000000         1.00000000
## 145          High        0.02472847         0.97527153
## 146          High        0.01574654         0.98425346
## 149          High        0.00000000         1.00000000
## 150          High        0.05367221         0.94632779
## 152          High        0.00000000         1.00000000
## 157          High        0.54137724         0.45862276
## 161          High        0.00000000         1.00000000
## 162          High        0.00000000         1.00000000
## 166          High        0.09277745         0.90722255
## 167          High        0.02411020         0.97588980
## 173          High        0.07151496         0.92848504
## 176          High        0.07198621         0.92801379
## 182          High        0.00000000         1.00000000
## 187          High        0.07308630         0.92691370
## 190          High        0.02769794         0.97230206
## 194          High        0.00000000         1.00000000
## 195          High        0.06254860         0.93745140
## 201          High        0.02767477         0.97232523
## 207          High        0.05437344         0.94562656
## 208          High        0.13798288         0.86201712
## 215          High        0.00000000         1.00000000
## 222          High        0.07513590         0.92486410
## 224          High        0.08287661         0.91712339
## 231          High        0.37372475         0.62627525
## 236          High        0.04103627         0.95896373
## 237          High        0.00000000         1.00000000
## 240          High        0.12079654         0.87920346
## 243          High        0.04061238         0.95938762
## 248          High        0.07974000         0.92026000
## 251          High        0.65865433         0.34134567
## 256          High        0.33441285         0.66558715
## 258          High        0.25863382         0.74136618
## 262          High        0.13665190         0.86334810
## 266          High        0.24532222         0.75467778
## 272          High        0.52133143         0.47866857
## 280          High        0.33335344         0.66664656
## 283          High        0.04288112         0.95711888
## 286          High        0.57234189         0.42765811
## 287          High        0.02870784         0.97129216
## 289          High        0.27147950         0.72852050
## 290          High        0.19882578         0.80117422
## 298          High        0.04486507         0.95513493
## 305          High        0.08582089         0.91417911
## 306          High        0.18447679         0.81552321
## 312          High        0.12865759         0.87134241
## 320          High        0.07140400         0.92859600
## 325          High        0.57801652         0.42198348
## 332          High        0.19367484         0.80632516
## 333          High        0.21915643         0.78084357
## 335          High        0.06819486         0.93180514
## 339          High        0.64044252         0.35955748
## 346          High        0.30029703         0.69970297
## 347          High        0.05700086         0.94299914
## 350          High        0.23904131         0.76095869
## 353          High        0.25506033         0.74493967
## 358          High        0.25410383         0.74589617
## 365          High        0.56033685         0.43966315
## 367          High        0.09239235         0.90760765
## 370          High        0.11573113         0.88426887
## 379          High        0.12238739         0.87761261
## 386          High        0.56797547         0.43202453
## 394          High        0.57974243         0.42025757
## 396          High        0.00000000         1.00000000
## 400          High        0.10428785         0.89571215
## 404          High        0.16768464         0.83231536
## 405          High        0.18722497         0.81277503
## 413          High        0.28472931         0.71527069
## 415          High        0.27545287         0.72454713
## 417          High        0.72339913         0.27660087
## 418          High        0.50995046         0.49004954
## 423          High        0.49519040         0.50480960
## 434          High        0.18027816         0.81972184
## 437          High        0.45983519         0.54016481
## 440          High        0.69802420         0.30197580
## 449          High        0.66121376         0.33878624
## 450          High        0.30891869         0.69108131
## 457          High        0.52254076         0.47745924
## 467          High        0.64614193         0.35385807
## 469          High        0.68060946         0.31939054
## 474          High        0.78376219         0.21623781
## 475          High        0.71175191         0.28824809
## 485          High        0.70769250         0.29230750
## 504           Low        0.55757690         0.44242310
## 511           Low        0.38540018         0.61459982
## 512           Low        0.63775425         0.36224575
## 517           Low        0.05347474         0.94652526
## 519           Low        0.85433291         0.14566709
## 520           Low        0.45699331         0.54300669
## 522           Low        0.86255060         0.13744940
## 527           Low        0.51996002         0.48003998
## 528           Low        0.88762875         0.11237125
## 529           Low        0.53908072         0.46091928
## 537           Low        0.76314617         0.23685383
## 540           Low        0.65609390         0.34390610
## 541           Low        0.87702545         0.12297455
## 547           Low        0.56799924         0.43200076
## 550           Low        0.80341287         0.19658713
## 555           Low        0.65177670         0.34822330
## 564           Low        0.59098769         0.40901231
## 570           Low        0.84818688         0.15181312
## 573           Low        0.86078262         0.13921738
## 575           Low        0.84157433         0.15842567
## 578           Low        0.84272529         0.15727471
## 581           Low        0.38198622         0.61801378
## 585           Low        0.81829764         0.18170236
## 590           Low        0.61083106         0.38916894
## 601           Low        0.98558164         0.01441836
## 602           Low        0.60401408         0.39598592
## 607           Low        0.44669929         0.55330071
## 610           Low        0.73117479         0.26882521
## 618           Low        0.66603962         0.33396038
## 624           Low        0.89189433         0.10810567
## 626           Low        0.92868358         0.07131642
## 627           Low        0.91974261         0.08025739
## 634           Low        0.31936753         0.68063247
## 640           Low        0.88274317         0.11725683
## 642           Low        0.84819935         0.15180065
## 643           Low        0.86172115         0.13827885
## 644           Low        0.82066203         0.17933797
## 645           Low        0.71012342         0.28987658
## 646           Low        0.91867892         0.08132108
## 647           Low        0.91319466         0.08680534
## 652           Low        0.91736402         0.08263598
## 658           Low        0.89316226         0.10683774
## 659           Low        0.97215330         0.02784670
## 660           Low        0.91665130         0.08334870
## 664           Low        0.91918463         0.08081537
## 666           Low        0.81269491         0.18730509
## 667           Low        0.97275169         0.02724831
## 675           Low        0.92769201         0.07230799
## 680           Low        0.86128796         0.13871204
## 681           Low        0.81408831         0.18591169
## 687           Low        0.98493734         0.01506266
## 694           Low        0.95871131         0.04128869
## 697           Low        0.88150319         0.11849681
## 701           Low        0.82150966         0.17849034
## 705           Low        0.95821185         0.04178815
## 707           Low        0.98223904         0.01776096
## 710           Low        0.95579735         0.04420265
## 716           Low        0.94284932         0.05715068
## 719           Low        0.75669678         0.24330322
## 720           Low        0.98569627         0.01430373
## 725           Low        0.95859368         0.04140632
## 727           Low        0.87018540         0.12981460
## 730           Low        0.95202026         0.04797974
## 738           Low        0.91308664         0.08691336
## 745           Low        0.91463298         0.08536702
## 748           Low        0.98289523         0.01710477
## 751           Low        0.95857778         0.04142222
## 756           Low        0.91959620         0.08040380
## 766           Low        0.93279140         0.06720860
## 769           Low        0.93926193         0.06073807
## 783           Low        1.00000000         0.00000000
## 785           Low        0.91453805         0.08546195
## 790           Low        0.91623500         0.08376500
## 793           Low        0.78007711         0.21992289
## 795           Low        0.95861275         0.04138725
## 796           Low        0.94263940         0.05736060
## 797           Low        0.94214449         0.05785551
## 801           Low        0.91331484         0.08668516
## 811           Low        1.00000000         0.00000000
## 812           Low        0.96953762         0.03046238
## 815           Low        0.98605448         0.01394552
## 816           Low        0.84296671         0.15703329
## 817           Low        0.98229247         0.01770753
## 824           Low        1.00000000         0.00000000
## 825           Low        1.00000000         0.00000000
## 826           Low        0.98342377         0.01657623
## 830           Low        1.00000000         0.00000000
## 837           Low        1.00000000         0.00000000
## 838           Low        0.87679966         0.12320034
## 844           Low        1.00000000         0.00000000
## 845           Low        1.00000000         0.00000000
## 847           Low        0.97245007         0.02754993
## 850           Low        1.00000000         0.00000000
## 852           Low        1.00000000         0.00000000
## 853           Low        1.00000000         0.00000000
## 861           Low        1.00000000         0.00000000
## 868           Low        1.00000000         0.00000000
## 874           Low        1.00000000         0.00000000
## 879          High        0.05420092         0.94579908
## 895          High        0.02096607         0.97903393
## 899          High        0.02738544         0.97261456
## 903          High        0.02614719         0.97385281
## 917          High        0.00000000         1.00000000
## 927          High        0.07090086         0.92909914
## 929          High        0.02577611         0.97422389
## 931          High        0.16136237         0.83863763
## 933          High        0.51046449         0.48953551
## 944          High        0.06847903         0.93152097
## 947          High        0.02646615         0.97353385
## 949          High        0.15656496         0.84343504
## 953          High        0.00000000         1.00000000
## 958          High        0.09757865         0.90242135
## 961          High        0.25809291         0.74190709
## 963          High        0.10729888         0.89270112
## 964          High        0.00000000         1.00000000
## 973          High        0.01639165         0.98360835
## 976          High        0.05709965         0.94290035
## 977          High        0.10332249         0.89667751
## 980          High        0.62681849         0.37318151
## 983          High        0.16718613         0.83281387
## 984          High        0.06254860         0.93745140
## 986          High        0.05263976         0.94736024
## 989          High        0.04912551         0.95087449
## 991          High        0.07013778         0.92986222
## 996          High        0.00000000         1.00000000
## 997          High        0.12023414         0.87976586
## 999          High        0.19575319         0.80424681
## 1000         High        0.11072472         0.88927528
## 1003         High        0.00000000         1.00000000
## 1008         High        0.00000000         1.00000000
## 1009         High        0.03509462         0.96490538
## 1014         High        0.27286503         0.72713497
## 1015         High        0.46790912         0.53209088
## 1040         High        0.15580504         0.84419496
## 1042         High        0.15020655         0.84979345
## 1043         High        0.53447819         0.46552181
## 1050         High        0.28582765         0.71417235
## 1052         High        0.06603163         0.93396837
## 1056         High        0.36279591         0.63720409
## 1070         High        0.31066953         0.68933047
## 1073         High        0.22259853         0.77740147
## 1074         High        0.13849911         0.86150089
## 1079         High        0.32835673         0.67164327
## 1080         High        0.40953975         0.59046025
## 1085         High        0.38582480         0.61417520
## 1087         High        0.50433378         0.49566622
## 1096         High        0.81719471         0.18280529
## 1099         High        0.32006657         0.67993343
## 1100         High        0.58225511         0.41774489
## 1102         High        0.27908234         0.72091766
## 1107          Low        0.80718189         0.19281811
## 1109          Low        0.81594540         0.18405460
## 1114          Low        0.76441806         0.23558194
## 1118          Low        0.70406518         0.29593482
## 1123          Low        0.65004534         0.34995466
## 1132          Low        0.98503092         0.01496908
## 1134          Low        0.69708338         0.30291662
## 1137          Low        0.86226992         0.13773008
## 1154          Low        0.94608462         0.05391538
## 1155          Low        0.42648387         0.57351613
## 1157          Low        0.90119806         0.09880194
## 1162          Low        0.84317290         0.15682710
## 1164          Low        0.86431708         0.13568292
## 1171          Low        0.98465297         0.01534703
## 1172          Low        0.93757842         0.06242158
## 1175          Low        0.90263208         0.09736792
## 1177          Low        1.00000000         0.00000000
## 1179          Low        0.92638055         0.07361945
## 1183          Low        0.84320955         0.15679045
## 1185          Low        0.75743165         0.24256835
## 1189          Low        0.93052040         0.06947960
## 1211          Low        0.93210858         0.06789142
## 1218          Low        0.83060734         0.16939266
## 1224          Low        0.75158852         0.24841148
## 1225          Low        0.76163588         0.23836412
## 1227          Low        0.96159929         0.03840071
## 1232          Low        0.95834118         0.04165882
## 1235          Low        0.85307109         0.14692891
## 1238          Low        0.92428798         0.07571202
## 1240          Low        0.90245364         0.09754636
## 1241          Low        0.97196344         0.02803656
## 1248          Low        1.00000000         0.00000000
## 1258          Low        0.87679966         0.12320034
## 1261          Low        1.00000000         0.00000000
## 1263          Low        0.98531864         0.01468136
## 1269          Low        0.85106195         0.14893805
## 1270          Low        0.97575850         0.02424150
## 1271          Low        1.00000000         0.00000000
## 1272          Low        1.00000000         0.00000000
## 1280          Low        1.00000000         0.00000000
## 1286          Low        0.97514152         0.02485848
## 1287          Low        0.97461916         0.02538084
## 1289          Low        1.00000000         0.00000000
## 1290          Low        1.00000000         0.00000000
## 1291         High        0.22947704         0.77052296
## 1294         High        0.35263931         0.64736069
## 1305          Low        0.88365575         0.11634425
## 1308         High        0.93307123         0.06692877
##################################
# Reporting the independent evaluation results
# for the test set
##################################
C50_Test_ROC <- roc(response = C50_Test$C50_Observed,
             predictor = C50_Test$C50_Predicted.High,
             levels = rev(levels(C50_Test$C50_Observed)))

(C50_Test_ROCCurveAUC <- auc(C50_Test_ROC)[1])
## [1] 0.9763531

1.5.14 Random Forest (RF)


[A] The random forest model from the randomForest package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] mtry = number of randomly selected predictors made to vary across a range of values equal to 25 to 125

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves mtry=125
     [C.2] ROC Curve AUC = 0.96507

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] NumCarbon variable (numeric)
     [D.3] HydroPhilicFactor variable (numeric)
     [D.4] SurfaceArea1 variable (numeric)
     [D.5] NumRotBonds variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.98207
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_RF <- PMA_PreModelling_Train
PMA_PreModelling_Test_RF <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_RF$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
RF_Grid = data.frame(mtry = c(25,75,125))

##################################
# Running the random forest model
# by setting the caret method to 'rf'
##################################
set.seed(12345678)
RF_Tune <- train(x = PMA_PreModelling_Train_RF[,!names(PMA_PreModelling_Train_RF) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_RF$Log_Solubility_Class,
                 method = "rf",
                 tuneGrid = RF_Grid,
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
RF_Tune
## Random Forest 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results across tuning parameters:
## 
##   mtry  ROC        Sens       Spec     
##    25   0.9639193  0.9061462  0.8817852
##    75   0.9650175  0.9202104  0.8779390
##   125   0.9650737  0.9203212  0.8798621
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 125.
RF_Tune$finalModel
## 
## Call:
##  randomForest(x = x, y = y, mtry = param$mtry) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 125
## 
##         OOB estimate of  error rate: 9.99%
## Confusion matrix:
##      Low High class.error
## Low  393   34  0.07962529
## High  61  463  0.11641221
RF_Tune$results
##   mtry       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1   25 0.9639193 0.9061462 0.8817852 0.01129087 0.04705140 0.04453780
## 2   75 0.9650175 0.9202104 0.8779390 0.01109720 0.03005539 0.04320822
## 3  125 0.9650737 0.9203212 0.8798621 0.01095588 0.03843884 0.04395980
(RF_Train_ROCCurveAUC <- RF_Tune$results[RF_Tune$results$mtry==RF_Tune$bestTune$mtry,
                              c("ROC")])
## [1] 0.9650737
##################################
# Identifying and plotting the
# best model predictors
##################################
RF_VarImp <- varImp(RF_Tune, scale = TRUE)
plot(RF_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Random Forest",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
RF_Test <- data.frame(RF_Observed = PMA_PreModelling_Test_RF$Log_Solubility_Class,
                      RF_Predicted = predict(RF_Tune,
                      PMA_PreModelling_Test_RF[,!names(PMA_PreModelling_Test_RF) %in% c("Log_Solubility_Class")],
                      type = "prob"))

RF_Test
##      RF_Observed RF_Predicted.Low RF_Predicted.High
## 20          High            0.000             1.000
## 21          High            0.000             1.000
## 23          High            0.040             0.960
## 25          High            0.004             0.996
## 28          High            0.000             1.000
## 31          High            0.000             1.000
## 32          High            0.000             1.000
## 33          High            0.002             0.998
## 34          High            0.002             0.998
## 37          High            0.008             0.992
## 38          High            0.002             0.998
## 42          High            0.394             0.606
## 49          High            0.000             1.000
## 54          High            0.000             1.000
## 55          High            0.000             1.000
## 58          High            0.026             0.974
## 60          High            0.000             1.000
## 61          High            0.002             0.998
## 65          High            0.000             1.000
## 69          High            0.014             0.986
## 73          High            0.006             0.994
## 86          High            0.008             0.992
## 90          High            0.000             1.000
## 91          High            0.004             0.996
## 93          High            0.000             1.000
## 96          High            0.030             0.970
## 98          High            0.004             0.996
## 100         High            0.000             1.000
## 104         High            0.418             0.582
## 112         High            0.012             0.988
## 115         High            0.550             0.450
## 119         High            0.000             1.000
## 128         High            0.000             1.000
## 130         High            0.026             0.974
## 139         High            0.002             0.998
## 143         High            0.000             1.000
## 145         High            0.000             1.000
## 146         High            0.000             1.000
## 149         High            0.002             0.998
## 150         High            0.004             0.996
## 152         High            0.002             0.998
## 157         High            0.526             0.474
## 161         High            0.000             1.000
## 162         High            0.000             1.000
## 166         High            0.152             0.848
## 167         High            0.000             1.000
## 173         High            0.012             0.988
## 176         High            0.000             1.000
## 182         High            0.000             1.000
## 187         High            0.000             1.000
## 190         High            0.002             0.998
## 194         High            0.048             0.952
## 195         High            0.002             0.998
## 201         High            0.000             1.000
## 207         High            0.020             0.980
## 208         High            0.162             0.838
## 215         High            0.000             1.000
## 222         High            0.038             0.962
## 224         High            0.006             0.994
## 231         High            0.174             0.826
## 236         High            0.000             1.000
## 237         High            0.002             0.998
## 240         High            0.110             0.890
## 243         High            0.000             1.000
## 248         High            0.002             0.998
## 251         High            0.526             0.474
## 256         High            0.170             0.830
## 258         High            0.182             0.818
## 262         High            0.174             0.826
## 266         High            0.090             0.910
## 272         High            0.480             0.520
## 280         High            0.434             0.566
## 283         High            0.024             0.976
## 286         High            0.532             0.468
## 287         High            0.018             0.982
## 289         High            0.260             0.740
## 290         High            0.144             0.856
## 298         High            0.008             0.992
## 305         High            0.006             0.994
## 306         High            0.186             0.814
## 312         High            0.004             0.996
## 320         High            0.000             1.000
## 325         High            0.530             0.470
## 332         High            0.064             0.936
## 333         High            0.360             0.640
## 335         High            0.008             0.992
## 339         High            0.542             0.458
## 346         High            0.070             0.930
## 347         High            0.038             0.962
## 350         High            0.122             0.878
## 353         High            0.020             0.980
## 358         High            0.032             0.968
## 365         High            0.328             0.672
## 367         High            0.018             0.982
## 370         High            0.120             0.880
## 379         High            0.024             0.976
## 386         High            0.436             0.564
## 394         High            0.554             0.446
## 396         High            0.212             0.788
## 400         High            0.046             0.954
## 404         High            0.148             0.852
## 405         High            0.058             0.942
## 413         High            0.160             0.840
## 415         High            0.032             0.968
## 417         High            0.374             0.626
## 418         High            0.660             0.340
## 423         High            0.588             0.412
## 434         High            0.016             0.984
## 437         High            0.456             0.544
## 440         High            0.484             0.516
## 449         High            0.542             0.458
## 450         High            0.182             0.818
## 457         High            0.448             0.552
## 467         High            0.494             0.506
## 469         High            0.534             0.466
## 474         High            0.728             0.272
## 475         High            0.820             0.180
## 485         High            0.540             0.460
## 504          Low            0.616             0.384
## 511          Low            0.440             0.560
## 512          Low            0.642             0.358
## 517          Low            0.024             0.976
## 519          Low            0.748             0.252
## 520          Low            0.228             0.772
## 522          Low            0.746             0.254
## 527          Low            0.734             0.266
## 528          Low            0.994             0.006
## 529          Low            0.570             0.430
## 537          Low            0.810             0.190
## 540          Low            0.842             0.158
## 541          Low            1.000             0.000
## 547          Low            0.572             0.428
## 550          Low            0.710             0.290
## 555          Low            0.610             0.390
## 564          Low            0.512             0.488
## 570          Low            0.658             0.342
## 573          Low            0.906             0.094
## 575          Low            0.984             0.016
## 578          Low            0.912             0.088
## 581          Low            0.104             0.896
## 585          Low            0.958             0.042
## 590          Low            0.516             0.484
## 601          Low            0.894             0.106
## 602          Low            0.822             0.178
## 607          Low            0.310             0.690
## 610          Low            0.638             0.362
## 618          Low            0.726             0.274
## 624          Low            0.964             0.036
## 626          Low            0.882             0.118
## 627          Low            0.948             0.052
## 634          Low            0.346             0.654
## 640          Low            0.764             0.236
## 642          Low            0.958             0.042
## 643          Low            1.000             0.000
## 644          Low            0.868             0.132
## 645          Low            0.838             0.162
## 646          Low            0.972             0.028
## 647          Low            0.842             0.158
## 652          Low            0.906             0.094
## 658          Low            0.912             0.088
## 659          Low            0.994             0.006
## 660          Low            0.916             0.084
## 664          Low            0.878             0.122
## 666          Low            0.888             0.112
## 667          Low            0.924             0.076
## 675          Low            0.994             0.006
## 680          Low            0.908             0.092
## 681          Low            0.798             0.202
## 687          Low            0.994             0.006
## 694          Low            0.936             0.064
## 697          Low            0.918             0.082
## 701          Low            0.990             0.010
## 705          Low            0.950             0.050
## 707          Low            0.936             0.064
## 710          Low            0.990             0.010
## 716          Low            0.986             0.014
## 719          Low            0.868             0.132
## 720          Low            1.000             0.000
## 725          Low            0.986             0.014
## 727          Low            0.994             0.006
## 730          Low            0.960             0.040
## 738          Low            0.926             0.074
## 745          Low            0.984             0.016
## 748          Low            0.956             0.044
## 751          Low            0.980             0.020
## 756          Low            0.938             0.062
## 766          Low            0.922             0.078
## 769          Low            0.944             0.056
## 783          Low            1.000             0.000
## 785          Low            0.988             0.012
## 790          Low            0.898             0.102
## 793          Low            0.796             0.204
## 795          Low            0.986             0.014
## 796          Low            0.988             0.012
## 797          Low            0.900             0.100
## 801          Low            0.938             0.062
## 811          Low            0.992             0.008
## 812          Low            0.998             0.002
## 815          Low            0.982             0.018
## 816          Low            0.956             0.044
## 817          Low            0.998             0.002
## 824          Low            1.000             0.000
## 825          Low            1.000             0.000
## 826          Low            0.998             0.002
## 830          Low            1.000             0.000
## 837          Low            0.994             0.006
## 838          Low            0.954             0.046
## 844          Low            1.000             0.000
## 845          Low            0.994             0.006
## 847          Low            1.000             0.000
## 850          Low            1.000             0.000
## 852          Low            1.000             0.000
## 853          Low            1.000             0.000
## 861          Low            1.000             0.000
## 868          Low            1.000             0.000
## 874          Low            1.000             0.000
## 879         High            0.000             1.000
## 895         High            0.000             1.000
## 899         High            0.014             0.986
## 903         High            0.000             1.000
## 917         High            0.014             0.986
## 927         High            0.000             1.000
## 929         High            0.002             0.998
## 931         High            0.020             0.980
## 933         High            0.286             0.714
## 944         High            0.030             0.970
## 947         High            0.000             1.000
## 949         High            0.034             0.966
## 953         High            0.000             1.000
## 958         High            0.096             0.904
## 961         High            0.090             0.910
## 963         High            0.018             0.982
## 964         High            0.000             1.000
## 973         High            0.006             0.994
## 976         High            0.000             1.000
## 977         High            0.004             0.996
## 980         High            0.510             0.490
## 983         High            0.044             0.956
## 984         High            0.002             0.998
## 986         High            0.000             1.000
## 989         High            0.014             0.986
## 991         High            0.008             0.992
## 996         High            0.000             1.000
## 997         High            0.016             0.984
## 999         High            0.158             0.842
## 1000        High            0.004             0.996
## 1003        High            0.000             1.000
## 1008        High            0.000             1.000
## 1009        High            0.000             1.000
## 1014        High            0.144             0.856
## 1015        High            0.428             0.572
## 1040        High            0.016             0.984
## 1042        High            0.116             0.884
## 1043        High            0.394             0.606
## 1050        High            0.084             0.916
## 1052        High            0.004             0.996
## 1056        High            0.354             0.646
## 1070        High            0.172             0.828
## 1073        High            0.186             0.814
## 1074        High            0.018             0.982
## 1079        High            0.014             0.986
## 1080        High            0.262             0.738
## 1085        High            0.084             0.916
## 1087        High            0.488             0.512
## 1096        High            0.906             0.094
## 1099        High            0.196             0.804
## 1100        High            0.430             0.570
## 1102        High            0.466             0.534
## 1107         Low            0.976             0.024
## 1109         Low            0.592             0.408
## 1114         Low            0.594             0.406
## 1118         Low            0.516             0.484
## 1123         Low            0.816             0.184
## 1132         Low            0.906             0.094
## 1134         Low            0.520             0.480
## 1137         Low            0.940             0.060
## 1154         Low            0.964             0.036
## 1155         Low            0.704             0.296
## 1157         Low            0.958             0.042
## 1162         Low            0.982             0.018
## 1164         Low            0.954             0.046
## 1171         Low            0.980             0.020
## 1172         Low            0.922             0.078
## 1175         Low            0.796             0.204
## 1177         Low            0.978             0.022
## 1179         Low            0.850             0.150
## 1183         Low            0.966             0.034
## 1185         Low            0.882             0.118
## 1189         Low            0.948             0.052
## 1211         Low            0.992             0.008
## 1218         Low            0.848             0.152
## 1224         Low            0.906             0.094
## 1225         Low            0.954             0.046
## 1227         Low            0.984             0.016
## 1232         Low            0.988             0.012
## 1235         Low            0.804             0.196
## 1238         Low            0.864             0.136
## 1240         Low            0.910             0.090
## 1241         Low            0.996             0.004
## 1248         Low            1.000             0.000
## 1258         Low            0.954             0.046
## 1261         Low            0.976             0.024
## 1263         Low            0.998             0.002
## 1269         Low            0.952             0.048
## 1270         Low            0.908             0.092
## 1271         Low            1.000             0.000
## 1272         Low            1.000             0.000
## 1280         Low            1.000             0.000
## 1286         Low            0.996             0.004
## 1287         Low            0.984             0.016
## 1289         Low            1.000             0.000
## 1290         Low            1.000             0.000
## 1291        High            0.024             0.976
## 1294        High            0.462             0.538
## 1305         Low            0.874             0.126
## 1308        High            0.792             0.208
##################################
# Reporting the independent evaluation results
# for the test set
##################################
RF_Test_ROC <- roc(response = RF_Test$RF_Observed,
             predictor = RF_Test$RF_Predicted.High,
             levels = rev(levels(RF_Test$RF_Observed)))

(RF_Test_ROCCurveAUC <- auc(RF_Test_ROC)[1])
## [1] 0.9820728

1.5.15 Bagged Trees (BTREE)


[A] The bagged trees model from the ipred, plyr and e1071 packages was implemented through the caret package.

[B] The model does not contain any hyperparameter.

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] ROC Curve AUC = 0.95881

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] NumCarbon variable (numeric)
     [D.3] NumBonds variable (numeric)
     [D.4] HydrophilicFactor variable (numeric)
     [D.5] FP076 variable (factor)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] ROC Curve AUC = 0.97528
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_BTREE <- PMA_PreModelling_Train
PMA_PreModelling_Test_BTREE <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments 
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_BTREE$Log_Solubility,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = twoClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# No hyperparameter tuning process conducted

##################################
# Running the bagged trees model
# by setting the caret method to 'treebag'
##################################
set.seed(12345678)
BTREE_Tune <- train(x = PMA_PreModelling_Train_BTREE[,!names(PMA_PreModelling_Train_BTREE) %in% c("Log_Solubility_Class")], 
                 y = PMA_PreModelling_Train_BTREE$Log_Solubility_Class,
                 method = "treebag",
                 nbagg = 50,
                 metric = "ROC",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
BTREE_Tune
## Bagged CART 
## 
## 951 samples
## 220 predictors
##   2 classes: 'Low', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 857, 855, 857, 855, 856, 856, ... 
## Resampling results:
## 
##   ROC        Sens       Spec    
##   0.9588129  0.9249169  0.883672
BTREE_Tune$finalModel
## 
## Bagging classification trees with 50 bootstrap replications
BTREE_Tune$results
##   parameter       ROC      Sens     Spec      ROCSD     SensSD     SpecSD
## 1      none 0.9588129 0.9249169 0.883672 0.01461297 0.02693862 0.04348798
(BTREE_Train_ROCCurveAUC <- BTREE_Tune$results$ROC)
## [1] 0.9588129
##################################
# Identifying and plotting the
# best model predictors
##################################
BTREE_VarImp <- varImp(BTREE_Tune, scale = TRUE)
plot(BTREE_VarImp, 
     top=25, 
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Bagged Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
BTREE_Test <- data.frame(BTREE_Observed = PMA_PreModelling_Test_BTREE$Log_Solubility_Class,
                      BTREE_Predicted = predict(BTREE_Tune, 
                      PMA_PreModelling_Test_BTREE[,!names(PMA_PreModelling_Test_BTREE) %in% c("Log_Solubility_Class")],
                      type = "prob"))

BTREE_Test
##     BTREE_Observed BTREE_Predicted.Low BTREE_Predicted.High
## 1             High                0.00                 1.00
## 2             High                0.00                 1.00
## 3             High                0.04                 0.96
## 4             High                0.00                 1.00
## 5             High                0.00                 1.00
## 6             High                0.00                 1.00
## 7             High                0.00                 1.00
## 8             High                0.00                 1.00
## 9             High                0.00                 1.00
## 10            High                0.00                 1.00
## 11            High                0.00                 1.00
## 12            High                0.38                 0.62
## 13            High                0.00                 1.00
## 14            High                0.00                 1.00
## 15            High                0.00                 1.00
## 16            High                0.00                 1.00
## 17            High                0.00                 1.00
## 18            High                0.00                 1.00
## 19            High                0.00                 1.00
## 20            High                0.00                 1.00
## 21            High                0.00                 1.00
## 22            High                0.00                 1.00
## 23            High                0.00                 1.00
## 24            High                0.00                 1.00
## 25            High                0.00                 1.00
## 26            High                0.10                 0.90
## 27            High                0.00                 1.00
## 28            High                0.00                 1.00
## 29            High                0.48                 0.52
## 30            High                0.00                 1.00
## 31            High                0.60                 0.40
## 32            High                0.00                 1.00
## 33            High                0.00                 1.00
## 34            High                0.10                 0.90
## 35            High                0.00                 1.00
## 36            High                0.00                 1.00
## 37            High                0.00                 1.00
## 38            High                0.00                 1.00
## 39            High                0.00                 1.00
## 40            High                0.00                 1.00
## 41            High                0.00                 1.00
## 42            High                0.58                 0.42
## 43            High                0.02                 0.98
## 44            High                0.00                 1.00
## 45            High                0.10                 0.90
## 46            High                0.00                 1.00
## 47            High                0.00                 1.00
## 48            High                0.00                 1.00
## 49            High                0.00                 1.00
## 50            High                0.00                 1.00
## 51            High                0.00                 1.00
## 52            High                0.00                 1.00
## 53            High                0.00                 1.00
## 54            High                0.00                 1.00
## 55            High                0.02                 0.98
## 56            High                0.30                 0.70
## 57            High                0.00                 1.00
## 58            High                0.02                 0.98
## 59            High                0.02                 0.98
## 60            High                0.10                 0.90
## 61            High                0.00                 1.00
## 62            High                0.00                 1.00
## 63            High                0.18                 0.82
## 64            High                0.00                 1.00
## 65            High                0.00                 1.00
## 66            High                0.46                 0.54
## 67            High                0.08                 0.92
## 68            High                0.18                 0.82
## 69            High                0.28                 0.72
## 70            High                0.08                 0.92
## 71            High                0.40                 0.60
## 72            High                0.42                 0.58
## 73            High                0.00                 1.00
## 74            High                0.60                 0.40
## 75            High                0.00                 1.00
## 76            High                0.16                 0.84
## 77            High                0.12                 0.88
## 78            High                0.00                 1.00
## 79            High                0.00                 1.00
## 80            High                0.34                 0.66
## 81            High                0.00                 1.00
## 82            High                0.02                 0.98
## 83            High                0.68                 0.32
## 84            High                0.06                 0.94
## 85            High                0.48                 0.52
## 86            High                0.00                 1.00
## 87            High                0.64                 0.36
## 88            High                0.06                 0.94
## 89            High                0.02                 0.98
## 90            High                0.20                 0.80
## 91            High                0.00                 1.00
## 92            High                0.02                 0.98
## 93            High                0.54                 0.46
## 94            High                0.00                 1.00
## 95            High                0.06                 0.94
## 96            High                0.04                 0.96
## 97            High                0.44                 0.56
## 98            High                0.64                 0.36
## 99            High                0.30                 0.70
## 100           High                0.06                 0.94
## 101           High                0.06                 0.94
## 102           High                0.00                 1.00
## 103           High                0.12                 0.88
## 104           High                0.06                 0.94
## 105           High                0.34                 0.66
## 106           High                0.72                 0.28
## 107           High                0.66                 0.34
## 108           High                0.00                 1.00
## 109           High                0.60                 0.40
## 110           High                0.56                 0.44
## 111           High                0.58                 0.42
## 112           High                0.14                 0.86
## 113           High                0.42                 0.58
## 114           High                0.52                 0.48
## 115           High                0.54                 0.46
## 116           High                0.80                 0.20
## 117           High                0.86                 0.14
## 118           High                0.58                 0.42
## 119            Low                0.64                 0.36
## 120            Low                0.48                 0.52
## 121            Low                0.72                 0.28
## 122            Low                0.00                 1.00
## 123            Low                0.78                 0.22
## 124            Low                0.26                 0.74
## 125            Low                0.74                 0.26
## 126            Low                0.74                 0.26
## 127            Low                1.00                 0.00
## 128            Low                0.78                 0.22
## 129            Low                0.74                 0.26
## 130            Low                0.86                 0.14
## 131            Low                1.00                 0.00
## 132            Low                0.54                 0.46
## 133            Low                0.74                 0.26
## 134            Low                0.60                 0.40
## 135            Low                0.56                 0.44
## 136            Low                0.74                 0.26
## 137            Low                0.90                 0.10
## 138            Low                1.00                 0.00
## 139            Low                0.92                 0.08
## 140            Low                0.04                 0.96
## 141            Low                0.92                 0.08
## 142            Low                0.60                 0.40
## 143            Low                0.98                 0.02
## 144            Low                0.82                 0.18
## 145            Low                0.20                 0.80
## 146            Low                0.46                 0.54
## 147            Low                0.76                 0.24
## 148            Low                0.90                 0.10
## 149            Low                0.94                 0.06
## 150            Low                0.98                 0.02
## 151            Low                0.44                 0.56
## 152            Low                0.84                 0.16
## 153            Low                0.92                 0.08
## 154            Low                1.00                 0.00
## 155            Low                0.82                 0.18
## 156            Low                0.92                 0.08
## 157            Low                1.00                 0.00
## 158            Low                0.80                 0.20
## 159            Low                0.80                 0.20
## 160            Low                0.78                 0.22
## 161            Low                1.00                 0.00
## 162            Low                0.90                 0.10
## 163            Low                0.94                 0.06
## 164            Low                0.84                 0.16
## 165            Low                0.92                 0.08
## 166            Low                0.98                 0.02
## 167            Low                0.90                 0.10
## 168            Low                0.80                 0.20
## 169            Low                1.00                 0.00
## 170            Low                0.98                 0.02
## 171            Low                0.90                 0.10
## 172            Low                1.00                 0.00
## 173            Low                0.98                 0.02
## 174            Low                1.00                 0.00
## 175            Low                0.98                 0.02
## 176            Low                0.98                 0.02
## 177            Low                0.82                 0.18
## 178            Low                1.00                 0.00
## 179            Low                0.98                 0.02
## 180            Low                1.00                 0.00
## 181            Low                0.98                 0.02
## 182            Low                1.00                 0.00
## 183            Low                0.96                 0.04
## 184            Low                0.96                 0.04
## 185            Low                0.96                 0.04
## 186            Low                0.86                 0.14
## 187            Low                0.90                 0.10
## 188            Low                0.96                 0.04
## 189            Low                1.00                 0.00
## 190            Low                1.00                 0.00
## 191            Low                0.90                 0.10
## 192            Low                0.84                 0.16
## 193            Low                1.00                 0.00
## 194            Low                0.98                 0.02
## 195            Low                0.94                 0.06
## 196            Low                0.94                 0.06
## 197            Low                0.98                 0.02
## 198            Low                0.98                 0.02
## 199            Low                1.00                 0.00
## 200            Low                0.96                 0.04
## 201            Low                1.00                 0.00
## 202            Low                1.00                 0.00
## 203            Low                1.00                 0.00
## 204            Low                1.00                 0.00
## 205            Low                1.00                 0.00
## 206            Low                1.00                 0.00
## 207            Low                0.96                 0.04
## 208            Low                1.00                 0.00
## 209            Low                1.00                 0.00
## 210            Low                0.98                 0.02
## 211            Low                1.00                 0.00
## 212            Low                1.00                 0.00
## 213            Low                1.00                 0.00
## 214            Low                1.00                 0.00
## 215            Low                1.00                 0.00
## 216            Low                1.00                 0.00
## 217           High                0.00                 1.00
## 218           High                0.00                 1.00
## 219           High                0.00                 1.00
## 220           High                0.00                 1.00
## 221           High                0.02                 0.98
## 222           High                0.00                 1.00
## 223           High                0.00                 1.00
## 224           High                0.00                 1.00
## 225           High                0.28                 0.72
## 226           High                0.10                 0.90
## 227           High                0.00                 1.00
## 228           High                0.02                 0.98
## 229           High                0.00                 1.00
## 230           High                0.08                 0.92
## 231           High                0.04                 0.96
## 232           High                0.00                 1.00
## 233           High                0.00                 1.00
## 234           High                0.00                 1.00
## 235           High                0.00                 1.00
## 236           High                0.02                 0.98
## 237           High                0.54                 0.46
## 238           High                0.04                 0.96
## 239           High                0.00                 1.00
## 240           High                0.00                 1.00
## 241           High                0.04                 0.96
## 242           High                0.00                 1.00
## 243           High                0.00                 1.00
## 244           High                0.00                 1.00
## 245           High                0.14                 0.86
## 246           High                0.00                 1.00
## 247           High                0.00                 1.00
## 248           High                0.00                 1.00
## 249           High                0.00                 1.00
## 250           High                0.08                 0.92
## 251           High                0.40                 0.60
## 252           High                0.04                 0.96
## 253           High                0.10                 0.90
## 254           High                0.48                 0.52
## 255           High                0.20                 0.80
## 256           High                0.00                 1.00
## 257           High                0.36                 0.64
## 258           High                0.10                 0.90
## 259           High                0.14                 0.86
## 260           High                0.02                 0.98
## 261           High                0.02                 0.98
## 262           High                0.42                 0.58
## 263           High                0.04                 0.96
## 264           High                0.40                 0.60
## 265           High                0.94                 0.06
## 266           High                0.16                 0.84
## 267           High                0.36                 0.64
## 268           High                0.52                 0.48
## 269            Low                0.98                 0.02
## 270            Low                0.58                 0.42
## 271            Low                0.78                 0.22
## 272            Low                0.54                 0.46
## 273            Low                0.74                 0.26
## 274            Low                0.92                 0.08
## 275            Low                0.42                 0.58
## 276            Low                0.96                 0.04
## 277            Low                0.98                 0.02
## 278            Low                0.70                 0.30
## 279            Low                0.94                 0.06
## 280            Low                0.98                 0.02
## 281            Low                0.92                 0.08
## 282            Low                0.98                 0.02
## 283            Low                0.86                 0.14
## 284            Low                0.84                 0.16
## 285            Low                1.00                 0.00
## 286            Low                0.88                 0.12
## 287            Low                1.00                 0.00
## 288            Low                0.98                 0.02
## 289            Low                0.98                 0.02
## 290            Low                1.00                 0.00
## 291            Low                0.84                 0.16
## 292            Low                0.92                 0.08
## 293            Low                0.98                 0.02
## 294            Low                0.98                 0.02
## 295            Low                1.00                 0.00
## 296            Low                0.72                 0.28
## 297            Low                0.82                 0.18
## 298            Low                0.90                 0.10
## 299            Low                1.00                 0.00
## 300            Low                1.00                 0.00
## 301            Low                0.96                 0.04
## 302            Low                0.96                 0.04
## 303            Low                1.00                 0.00
## 304            Low                0.94                 0.06
## 305            Low                0.90                 0.10
## 306            Low                1.00                 0.00
## 307            Low                1.00                 0.00
## 308            Low                1.00                 0.00
## 309            Low                0.98                 0.02
## 310            Low                0.98                 0.02
## 311            Low                1.00                 0.00
## 312            Low                1.00                 0.00
## 313           High                0.02                 0.98
## 314           High                0.44                 0.56
## 315            Low                0.86                 0.14
## 316           High                0.88                 0.12
##################################
# Reporting the independent evaluation results
# for the test set
##################################
BTREE_Test_ROC <- roc(response = BTREE_Test$BTREE_Observed,
             predictor = BTREE_Test$BTREE_Predicted.High,
             levels = rev(levels(BTREE_Test$BTREE_Observed)))

(BTREE_Test_ROCCurveAUC <- auc(BTREE_Test_ROC)[1])
## [1] 0.9752819

1.5.16 Model Evaluation Summary


Model performance comparison:

[A] The models which demonstrated the best and most consistent ROC Curve AUC metrics are as follows:
     [A.1] C50: C5.0 Decision Trees (C50 and plyr packages)
            [A.1.1] Cross-Validation ROC Curve AUC = 0.96540, Test ROC Curve AUC = 0.97635
     [A.2] RF: Random Forest (randomForest package)
            [A.2.1] Cross-Validation ROC Curve AUC = 0.96507, Test ROC Curve AUC = 0.98207
     [A.3] BTREE: Bagged Trees (ipred, plyr and e1071 packages)
            [A.2.1] Cross-Validation ROC Curve AUC = 0.95881, Test ROC Curve AUC = 0.97528
##################################
# Consolidating all evaluation results
# for the train and test sets
# using the ROC Curve AUC metric
##################################
Model <- c('LR','LDA','FDA','MDA','NB','NSC','AVNN','SVM_R','SVM_P','KNN','CART','CTREE','C50','RF','BTREE',
           'LR','LDA','FDA','MDA','NB','NSC','AVNN','SVM_R','SVM_P','KNN','CART','CTREE','C50','RF','BTREE')

Set <- c(rep('Cross-Validation',15),rep('Test',15))

ROCCurveAUC <- c(LR_Train_ROCCurveAUC,LDA_Train_ROCCurveAUC,FDA_Train_ROCCurveAUC,MDA_Train_ROCCurveAUC,NB_Train_ROCCurveAUC,
               NSC_Train_ROCCurveAUC,AVNN_Train_ROCCurveAUC,SVM_R_Train_ROCCurveAUC,SVM_P_Train_ROCCurveAUC,KNN_Train_ROCCurveAUC,
               CART_Train_ROCCurveAUC,CTREE_Train_ROCCurveAUC,C50_Train_ROCCurveAUC,RF_Train_ROCCurveAUC,BTREE_Train_ROCCurveAUC,
               LR_Test_ROCCurveAUC,LDA_Test_ROCCurveAUC,FDA_Test_ROCCurveAUC,MDA_Test_ROCCurveAUC,NB_Test_ROCCurveAUC,
               NSC_Test_ROCCurveAUC,AVNN_Test_ROCCurveAUC,SVM_R_Test_ROCCurveAUC,SVM_P_Test_ROCCurveAUC,KNN_Test_ROCCurveAUC,
               CART_Test_ROCCurveAUC,CTREE_Test_ROCCurveAUC,C50_Test_ROCCurveAUC,RF_Test_ROCCurveAUC,BTREE_Test_ROCCurveAUC)

ROCCurveAUC_Summary <- as.data.frame(cbind(Model,Set,ROCCurveAUC))

ROCCurveAUC_Summary$ROCCurveAUC <- as.numeric(as.character(ROCCurveAUC_Summary$ROCCurveAUC))
ROCCurveAUC_Summary$Set <- factor(ROCCurveAUC_Summary$Set,
                                        levels = c("Cross-Validation",
                                                   "Test"))
ROCCurveAUC_Summary$Model <- factor(ROCCurveAUC_Summary$Model,
                                        levels = c("LR",
                                                   "LDA",
                                                   "FDA",
                                                   "MDA",
                                                   "NB",
                                                   "NSC",
                                                   "AVNN",
                                                   "SVM_R",
                                                   "SVM_P",
                                                   "KNN",
                                                   "CART",
                                                   "CTREE",
                                                   "C50",
                                                   "RF",
                                                   "BTREE"))

print(ROCCurveAUC_Summary, row.names=FALSE)
##  Model              Set ROCCurveAUC
##     LR Cross-Validation   0.8616392
##    LDA Cross-Validation   0.9096763
##    FDA Cross-Validation   0.9494893
##    MDA Cross-Validation   0.9065884
##     NB Cross-Validation   0.8818276
##    NSC Cross-Validation   0.8662268
##   AVNN Cross-Validation   0.9157703
##  SVM_R Cross-Validation   0.9551422
##  SVM_P Cross-Validation   0.9504889
##    KNN Cross-Validation   0.8948909
##   CART Cross-Validation   0.9023673
##  CTREE Cross-Validation   0.9096727
##    C50 Cross-Validation   0.9654007
##     RF Cross-Validation   0.9650737
##  BTREE Cross-Validation   0.9588129
##     LR             Test   0.8730345
##    LDA             Test   0.9213792
##    FDA             Test   0.9593355
##    MDA             Test   0.9213792
##     NB             Test   0.8856057
##    NSC             Test   0.8877077
##   AVNN             Test   0.9189135
##  SVM_R             Test   0.9501597
##  SVM_P             Test   0.9501192
##    KNN             Test   0.8817050
##   CART             Test   0.9452282
##  CTREE             Test   0.8964792
##    C50             Test   0.9763531
##     RF             Test   0.9820728
##  BTREE             Test   0.9752819
(ROCCurveAUC_Plot <- dotplot(Model ~ ROCCurveAUC,
                           data = ROCCurveAUC_Summary,
                           groups = Set,
                           main = "Classification Model Performance Comparison",
                           ylab = "Model",
                           xlab = "ROC Curve AUC",
                           auto.key = list(adj = 1),
                           type=c("p", "h"),       
                           origin = 0,
                           alpha = 0.45,
                           pch = 16,
                           cex = 2))

1.6 References


[Book] Applied Predictive Modeling by Max Kuhn and Kjell Johnson
[Book] An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani
[Book] Multivariate Data Visualization with R by Deepayan Sarkar
[Book] Machine Learning by Samuel Jackson
[Book] Data Modeling Methods by Jacob Larget
[R Package] AppliedPredictiveModeling by Max Kuhn
[R Package] caret by Max Kuhn
[R Package] rpart by Terry Therneau and Beth Atkinson
[R Package] lattice by Deepayan Sarkar
[R Package] dplyr by Hadley Wickham
[R Package] moments by Lukasz Komsta and Frederick
[R Package] skimr by Elin Waring
[R Package] RANN by Sunil Arya, David Mount, Samuel Kemp and Gregory Jefferis
[R Package] corrplot by Taiyun Wei
[R Package] tidyverse by Hadley Wickham
[R Package] lares by Bernardo Lares
[R Package] DMwR by Luis Torgo
[R Package] gridExtra by Baptiste Auguie and Anton Antonov
[R Package] rattle by Graham Williams
[R Package] rpart.plot by Stephen Milborrow
[R Package] RColorBrewer by Erich Neuwirth
[R Package] stats by R Core Team
[R Package] pls by Kristian Hovde Liland
[R Package] nnet by Brian Ripley
[R Package] elasticnet by Hui Zou
[R Package] earth by Stephen Milborrow
[R Package] party by Torsten Hothorn
[R Package] kernlab by Alexandros Karatzoglou
[R Package] randomForest by Andy Liaw
[R Package] pROC by Xavier Robin
[R Package] mda by Trevor Hastie
[R Package] klaR by Christian Roever, Nils Raabe, Karsten Luebke, Uwe Ligges, Gero Szepannek, Marc Zentgraf and David Meyer
[R Package] pamr by Trevor Hastie, Rob Tibshirani, Balasubramanian Narasimhan and Gil Chu
[Article] The caret Package by Max Kuhn
[Article] A Short Introduction to the caret Package by Max Kuhn
[Article] Caret Package – A Practical Guide to Machine Learning in R by Selva Prabhakaran
[Article] Tuning Machine Learning Models Using the Caret R Package by Jason Brownlee
[Article] Lattice Graphs by Alboukadel Kassambara
[Article] A Tour of Machine Learning Algorithms by Jason Brownlee
[Article] Decision Tree Algorithm Examples In Data Mining by Software Testing Help Team
[Article] 4 Types of Classification Tasks in Machine Learning by Jason Brownlee
[Article] Spot-Check Classification Machine Learning Algorithms in Python with scikit-learn by Jason Brownlee
[Article] Feature Engineering and Selection: A Practical Approach for Predictive Models by Max Kuhn and Kjell Johnson
[Article] An Introduction to Naive Bayes Algorithm for Beginners by Turing Team
[Article] Machine Learning Tutorial: A Step-by-Step Guide for Beginners by Mayank Banoula
[Article] Nearest Shrunken Centroids With Python by Jason Brownlee
[Article] Discriminant Analysis Essentials in R by Alboukadel Kassambara
[Article] Linear Discriminant Analysis, Explained by Xiaozhou Yang
[Article] Flexible Discriminant Analysis by BCCVL Team
[Article] Classification Tree by BCCVL Team
[Article] Random Forest by BCCVL Team
[Article] Boosted Regression Tree by BCCVL Team
[Article] Artificial Neural Network by BCCVL Team
[Article] Generalized Linear Model by BCCVL Team
[Article] Generalized Boosting Model by BCCVL Team
[Article] C5.0: An Informal Tutorial by RuleQuest Team
[Article] What is Nearest Shrunken Centroid Classification? by Rob Tibshirani
[Course] Applied Data Mining and Statistical Learning by Penn State Eberly College of Science
[Course] Regression Methods by Penn State Eberly College of Science
[Course] Applied Regression Analysis by Penn State Eberly College of Science
[Course] Applied Data Mining and Statistical Learning by Penn State Eberly College of Science